half/slice.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
//! Contains utility functions and traits to convert between slices of `u16` bits and `f16` or
//! `bf16` numbers.
//!
//! The utility [`HalfBitsSliceExt`] sealed extension trait is implemented for `[u16]` slices,
//! while the utility [`HalfFloatSliceExt`] sealed extension trait is implemented for both `[f16]`
//! and `[bf16]` slices. These traits provide efficient conversions and reinterpret casting of
//! larger buffers of floating point values, and are automatically included in the [`prelude`]
//! module.
//!
//! [`HalfBitsSliceExt`]: trait.HalfBitsSliceExt.html
//! [`HalfFloatSliceExt`]: trait.HalfFloatSliceExt.html
//! [`prelude`]: ../prelude/index.html
use crate::{bf16, binary16::convert, f16};
use core::slice;
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
/// Extensions to `[f16]` and `[bf16]` slices to support conversion and reinterpret operations.
///
/// This trait is sealed and cannot be implemented outside of this crate.
pub trait HalfFloatSliceExt: private::SealedHalfFloatSlice {
/// Reinterpret a slice of [`f16`](../struct.f16.html) or [`bf16`](../struct.bf16.html)
/// numbers as a slice of `u16` bits.
///
/// This is a zero-copy operation. The reinterpreted slice has the same lifetime and memory
/// location as `self`.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let float_buffer = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)];
/// let int_buffer = float_buffer.reinterpret_cast();
///
/// assert_eq!(int_buffer, [float_buffer[0].to_bits(), float_buffer[1].to_bits(), float_buffer[2].to_bits()]);
/// ```
fn reinterpret_cast(&self) -> &[u16];
/// Reinterpret a mutable slice of [`f16`](../struct.f16.html) or
/// [`bf16`](../struct.bf16.html) numbers as a mutable slice of `u16` bits.
///
/// This is a zero-copy operation. The transmuted slice has the same lifetime as the original,
/// which prevents mutating `self` as long as the returned `&mut [u16]` is borrowed.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let mut float_buffer = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)];
///
/// {
/// let int_buffer = float_buffer.reinterpret_cast_mut();
///
/// assert_eq!(int_buffer, [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]);
///
/// // Mutating the u16 slice will mutating the original
/// int_buffer[0] = 0;
/// }
///
/// // Note that we need to drop int_buffer before using float_buffer again or we will get a borrow error.
/// assert_eq!(float_buffer, [f16::from_f32(0.), f16::from_f32(2.), f16::from_f32(3.)]);
/// ```
fn reinterpret_cast_mut(&mut self) -> &mut [u16];
/// Convert all of the elements of a `[f32]` slice into [`f16`](../struct.f16.html) or
/// [`bf16`](../struct.bf16.html) values in `self`.
///
/// The length of `src` must be the same as `self`.
///
/// The conversion operation is vectorized over the slice, meaning the conversion may be more
/// efficient than converting individual elements on some hardware that supports SIMD
/// conversions. See [crate documentation](../index.html) for more information on hardware
/// conversion support.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
/// ```rust
/// # use half::prelude::*;
/// // Initialize an empty buffer
/// let mut buffer = [0u16; 4];
/// let buffer = buffer.reinterpret_cast_mut::<f16>();
///
/// let float_values = [1., 2., 3., 4.];
///
/// // Now convert
/// buffer.convert_from_f32_slice(&float_values);
///
/// assert_eq!(buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]);
/// ```
fn convert_from_f32_slice(&mut self, src: &[f32]);
/// Convert all of the elements of a `[f64]` slice into [`f16`](../struct.f16.html) or
/// [`bf16`](../struct.bf16.html) values in `self`.
///
/// The length of `src` must be the same as `self`.
///
/// The conversion operation is vectorized over the slice, meaning the conversion may be more
/// efficient than converting individual elements on some hardware that supports SIMD
/// conversions. See [crate documentation](../index.html) for more information on hardware
/// conversion support.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
/// ```rust
/// # use half::prelude::*;
/// // Initialize an empty buffer
/// let mut buffer = [0u16; 4];
/// let buffer = buffer.reinterpret_cast_mut::<f16>();
///
/// let float_values = [1., 2., 3., 4.];
///
/// // Now convert
/// buffer.convert_from_f64_slice(&float_values);
///
/// assert_eq!(buffer, [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]);
/// ```
fn convert_from_f64_slice(&mut self, src: &[f64]);
/// Convert all of the [`f16`](../struct.f16.html) or [`bf16`](../struct.bf16.html)
/// elements of `self` into `f32` values in `dst`.
///
/// The length of `src` must be the same as `self`.
///
/// The conversion operation is vectorized over the slice, meaning the conversion may be more
/// efficient than converting individual elements on some hardware that supports SIMD
/// conversions. See [crate documentation](../index.html) for more information on hardware
/// conversion support.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
/// ```rust
/// # use half::prelude::*;
/// // Initialize an empty buffer
/// let mut buffer = [0f32; 4];
///
/// let half_values = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)];
///
/// // Now convert
/// half_values.convert_to_f32_slice(&mut buffer);
///
/// assert_eq!(buffer, [1., 2., 3., 4.]);
/// ```
fn convert_to_f32_slice(&self, dst: &mut [f32]);
/// Convert all of the [`f16`](../struct.f16.html) or [`bf16`](../struct.bf16.html)
/// elements of `self` into `f64` values in `dst`.
///
/// The length of `src` must be the same as `self`.
///
/// The conversion operation is vectorized over the slice, meaning the conversion may be more
/// efficient than converting individual elements on some hardware that supports SIMD
/// conversions. See [crate documentation](../index.html) for more information on hardware
/// conversion support.
///
/// # Panics
///
/// This function will panic if the two slices have different lengths.
///
/// # Examples
/// ```rust
/// # use half::prelude::*;
/// // Initialize an empty buffer
/// let mut buffer = [0f64; 4];
///
/// let half_values = [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)];
///
/// // Now convert
/// half_values.convert_to_f64_slice(&mut buffer);
///
/// assert_eq!(buffer, [1., 2., 3., 4.]);
/// ```
fn convert_to_f64_slice(&self, dst: &mut [f64]);
// Because trait is sealed, we can get away with different interfaces between features
#[cfg(any(feature = "alloc", feature = "std"))]
/// Convert all of the [`f16`](../struct.f16.html) or [`bf16`](../struct.bf16.html)
/// elements of `self` into `f32` values in a new vector.
///
/// The conversion operation is vectorized over the slice, meaning the conversion may be more
/// efficient than converting individual elements on some hardware that supports SIMD
/// conversions. See [crate documentation](../index.html) for more information on hardware
/// conversion support.
///
/// This method is only available with the `std` or `alloc` feature.
///
/// # Examples
/// ```rust
/// # use half::prelude::*;
/// let half_values = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)];
/// let vec = half_values.to_f32_vec();
///
/// assert_eq!(vec, vec![1., 2., 3., 4.]);
/// ```
fn to_f32_vec(&self) -> Vec<f32>;
/// Convert all of the [`f16`](../struct.f16.html) or [`bf16`](../struct.bf16.html)
/// elements of `self` into `f64` values in a new vector.
///
/// The conversion operation is vectorized over the slice, meaning the conversion may be more
/// efficient than converting individual elements on some hardware that supports SIMD
/// conversions. See [crate documentation](../index.html) for more information on hardware
/// conversion support.
///
/// This method is only available with the `std` or `alloc` feature.
///
/// # Examples
/// ```rust
/// # use half::prelude::*;
/// let half_values = [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)];
/// let vec = half_values.to_f64_vec();
///
/// assert_eq!(vec, vec![1., 2., 3., 4.]);
/// ```
#[cfg(any(feature = "alloc", feature = "std"))]
fn to_f64_vec(&self) -> Vec<f64>;
}
/// Extensions to `[u16]` slices to support reinterpret operations.
///
/// This trait is sealed and cannot be implemented outside of this crate.
pub trait HalfBitsSliceExt: private::SealedHalfBitsSlice {
/// Reinterpret a slice of `u16` bits as a slice of [`f16`](../struct.f16.html) or
/// [`bf16`](../struct.bf16.html) numbers.
///
/// `H` is the type to cast to, and must be either the [`f16`](../struct.f16.html) or
/// [`bf16`](../struct.bf16.html) type.
///
/// This is a zero-copy operation. The reinterpreted slice has the same lifetime and memory
/// location as `self`.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let int_buffer = [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()];
/// let float_buffer: &[f16] = int_buffer.reinterpret_cast();
///
/// assert_eq!(float_buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]);
///
/// // You may have to specify the cast type directly if the compiler can't infer the type.
/// // The following is also valid in Rust.
/// let typed_buffer = int_buffer.reinterpret_cast::<f16>();
/// ```
fn reinterpret_cast<H>(&self) -> &[H]
where
H: crate::private::SealedHalf;
/// Reinterpret a mutable slice of `u16` bits as a mutable slice of [`f16`](../struct.f16.html)
/// or [`bf16`](../struct.bf16.html) numbers.
///
/// `H` is the type to cast to, and must be either the [`f16`](../struct.f16.html) or
/// [`bf16`](../struct.bf16.html) type.
///
/// This is a zero-copy operation. The transmuted slice has the same lifetime as the original,
/// which prevents mutating `self` as long as the returned `&mut [f16]` is borrowed.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let mut int_buffer = [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()];
///
/// {
/// let float_buffer: &mut [f16] = int_buffer.reinterpret_cast_mut();
///
/// assert_eq!(float_buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]);
///
/// // Mutating the f16 slice will mutating the original
/// float_buffer[0] = f16::from_f32(0.);
/// }
///
/// // Note that we need to drop float_buffer before using int_buffer again or we will get a borrow error.
/// assert_eq!(int_buffer, [f16::from_f32(0.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]);
///
/// // You may have to specify the cast type directly if the compiler can't infer the type.
/// // The following is also valid in Rust.
/// let typed_buffer = int_buffer.reinterpret_cast_mut::<f16>();
/// ```
fn reinterpret_cast_mut<H>(&mut self) -> &mut [H]
where
H: crate::private::SealedHalf;
}
mod private {
use crate::{bf16, f16};
pub trait SealedHalfFloatSlice {}
impl SealedHalfFloatSlice for [f16] {}
impl SealedHalfFloatSlice for [bf16] {}
pub trait SealedHalfBitsSlice {}
impl SealedHalfBitsSlice for [u16] {}
}
impl HalfFloatSliceExt for [f16] {
#[inline]
fn reinterpret_cast(&self) -> &[u16] {
let pointer = self.as_ptr() as *const u16;
let length = self.len();
// SAFETY: We are reconstructing full length of original slice, using its same lifetime,
// and the size of elements are identical
unsafe { slice::from_raw_parts(pointer, length) }
}
#[inline]
fn reinterpret_cast_mut(&mut self) -> &mut [u16] {
let pointer = self.as_ptr() as *mut u16;
let length = self.len();
// SAFETY: We are reconstructing full length of original slice, using its same lifetime,
// and the size of elements are identical
unsafe { slice::from_raw_parts_mut(pointer, length) }
}
fn convert_from_f32_slice(&mut self, src: &[f32]) {
assert_eq!(
self.len(),
src.len(),
"destination and source slices have different lengths"
);
let mut chunks = src.chunks_exact(4);
let mut chunk_count = 0usize; // Not using .enumerate() because we need this value for remainder
for chunk in &mut chunks {
let vec = convert::f32x4_to_f16x4(chunk);
let dst_idx = chunk_count * 4;
self[dst_idx..dst_idx + 4].copy_from_slice(vec.reinterpret_cast());
chunk_count += 1;
}
// Process remainder
if !chunks.remainder().is_empty() {
let mut buf = [0f32; 4];
buf[..chunks.remainder().len()].copy_from_slice(chunks.remainder());
let vec = convert::f32x4_to_f16x4(&buf);
let dst_idx = chunk_count * 4;
self[dst_idx..dst_idx + chunks.remainder().len()]
.copy_from_slice(vec[..chunks.remainder().len()].reinterpret_cast());
}
}
fn convert_from_f64_slice(&mut self, src: &[f64]) {
assert_eq!(
self.len(),
src.len(),
"destination and source slices have different lengths"
);
let mut chunks = src.chunks_exact(4);
let mut chunk_count = 0usize; // Not using .enumerate() because we need this value for remainder
for chunk in &mut chunks {
let vec = convert::f64x4_to_f16x4(chunk);
let dst_idx = chunk_count * 4;
self[dst_idx..dst_idx + 4].copy_from_slice(vec.reinterpret_cast());
chunk_count += 1;
}
// Process remainder
if !chunks.remainder().is_empty() {
let mut buf = [0f64; 4];
buf[..chunks.remainder().len()].copy_from_slice(chunks.remainder());
let vec = convert::f64x4_to_f16x4(&buf);
let dst_idx = chunk_count * 4;
self[dst_idx..dst_idx + chunks.remainder().len()]
.copy_from_slice(vec[..chunks.remainder().len()].reinterpret_cast());
}
}
fn convert_to_f32_slice(&self, dst: &mut [f32]) {
assert_eq!(
self.len(),
dst.len(),
"destination and source slices have different lengths"
);
let mut chunks = self.chunks_exact(4);
let mut chunk_count = 0usize; // Not using .enumerate() because we need this value for remainder
for chunk in &mut chunks {
let vec = convert::f16x4_to_f32x4(chunk.reinterpret_cast());
let dst_idx = chunk_count * 4;
dst[dst_idx..dst_idx + 4].copy_from_slice(&vec);
chunk_count += 1;
}
// Process remainder
if !chunks.remainder().is_empty() {
let mut buf = [0u16; 4];
buf[..chunks.remainder().len()].copy_from_slice(chunks.remainder().reinterpret_cast());
let vec = convert::f16x4_to_f32x4(&buf);
let dst_idx = chunk_count * 4;
dst[dst_idx..dst_idx + chunks.remainder().len()]
.copy_from_slice(&vec[..chunks.remainder().len()]);
}
}
fn convert_to_f64_slice(&self, dst: &mut [f64]) {
assert_eq!(
self.len(),
dst.len(),
"destination and source slices have different lengths"
);
let mut chunks = self.chunks_exact(4);
let mut chunk_count = 0usize; // Not using .enumerate() because we need this value for remainder
for chunk in &mut chunks {
let vec = convert::f16x4_to_f64x4(chunk.reinterpret_cast());
let dst_idx = chunk_count * 4;
dst[dst_idx..dst_idx + 4].copy_from_slice(&vec);
chunk_count += 1;
}
// Process remainder
if !chunks.remainder().is_empty() {
let mut buf = [0u16; 4];
buf[..chunks.remainder().len()].copy_from_slice(chunks.remainder().reinterpret_cast());
let vec = convert::f16x4_to_f64x4(&buf);
let dst_idx = chunk_count * 4;
dst[dst_idx..dst_idx + chunks.remainder().len()]
.copy_from_slice(&vec[..chunks.remainder().len()]);
}
}
#[cfg(any(feature = "alloc", feature = "std"))]
#[inline]
fn to_f32_vec(&self) -> Vec<f32> {
let mut vec = Vec::with_capacity(self.len());
// SAFETY: convert will initialize every value in the vector without reading them,
// so this is safe to do instead of double initialize from resize, and we're setting it to
// same value as capacity.
unsafe { vec.set_len(self.len()) };
self.convert_to_f32_slice(&mut vec);
vec
}
#[cfg(any(feature = "alloc", feature = "std"))]
#[inline]
fn to_f64_vec(&self) -> Vec<f64> {
let mut vec = Vec::with_capacity(self.len());
// SAFETY: convert will initialize every value in the vector without reading them,
// so this is safe to do instead of double initialize from resize, and we're setting it to
// same value as capacity.
unsafe { vec.set_len(self.len()) };
self.convert_to_f64_slice(&mut vec);
vec
}
}
impl HalfFloatSliceExt for [bf16] {
#[inline]
fn reinterpret_cast(&self) -> &[u16] {
let pointer = self.as_ptr() as *const u16;
let length = self.len();
// SAFETY: We are reconstructing full length of original slice, using its same lifetime,
// and the size of elements are identical
unsafe { slice::from_raw_parts(pointer, length) }
}
#[inline]
fn reinterpret_cast_mut(&mut self) -> &mut [u16] {
let pointer = self.as_ptr() as *mut u16;
let length = self.len();
// SAFETY: We are reconstructing full length of original slice, using its same lifetime,
// and the size of elements are identical
unsafe { slice::from_raw_parts_mut(pointer, length) }
}
fn convert_from_f32_slice(&mut self, src: &[f32]) {
assert_eq!(
self.len(),
src.len(),
"destination and source slices have different lengths"
);
// Just use regular loop here until there's any bf16 SIMD support.
for (i, f) in src.iter().enumerate() {
self[i] = bf16::from_f32(*f);
}
}
fn convert_from_f64_slice(&mut self, src: &[f64]) {
assert_eq!(
self.len(),
src.len(),
"destination and source slices have different lengths"
);
// Just use regular loop here until there's any bf16 SIMD support.
for (i, f) in src.iter().enumerate() {
self[i] = bf16::from_f64(*f);
}
}
fn convert_to_f32_slice(&self, dst: &mut [f32]) {
assert_eq!(
self.len(),
dst.len(),
"destination and source slices have different lengths"
);
// Just use regular loop here until there's any bf16 SIMD support.
for (i, f) in self.iter().enumerate() {
dst[i] = f.to_f32();
}
}
fn convert_to_f64_slice(&self, dst: &mut [f64]) {
assert_eq!(
self.len(),
dst.len(),
"destination and source slices have different lengths"
);
// Just use regular loop here until there's any bf16 SIMD support.
for (i, f) in self.iter().enumerate() {
dst[i] = f.to_f64();
}
}
#[cfg(any(feature = "alloc", feature = "std"))]
#[inline]
fn to_f32_vec(&self) -> Vec<f32> {
let mut vec = Vec::with_capacity(self.len());
// SAFETY: convert will initialize every value in the vector without reading them,
// so this is safe to do instead of double initialize from resize, and we're setting it to
// same value as capacity.
unsafe { vec.set_len(self.len()) };
self.convert_to_f32_slice(&mut vec);
vec
}
#[cfg(any(feature = "alloc", feature = "std"))]
#[inline]
fn to_f64_vec(&self) -> Vec<f64> {
let mut vec = Vec::with_capacity(self.len());
// SAFETY: convert will initialize every value in the vector without reading them,
// so this is safe to do instead of double initialize from resize, and we're setting it to
// same value as capacity.
unsafe { vec.set_len(self.len()) };
self.convert_to_f64_slice(&mut vec);
vec
}
}
impl HalfBitsSliceExt for [u16] {
// Since we sealed all the traits involved, these are safe.
#[inline]
fn reinterpret_cast<H>(&self) -> &[H]
where
H: crate::private::SealedHalf,
{
let pointer = self.as_ptr() as *const H;
let length = self.len();
// SAFETY: We are reconstructing full length of original slice, using its same lifetime,
// and the size of elements are identical
unsafe { slice::from_raw_parts(pointer, length) }
}
#[inline]
fn reinterpret_cast_mut<H>(&mut self) -> &mut [H]
where
H: crate::private::SealedHalf,
{
let pointer = self.as_mut_ptr() as *mut H;
let length = self.len();
// SAFETY: We are reconstructing full length of original slice, using its same lifetime,
// and the size of elements are identical
unsafe { slice::from_raw_parts_mut(pointer, length) }
}
}
/// Reinterpret a mutable slice of `u16` bits as a mutable slice of [`f16`](../struct.f16.html)
/// numbers.
///
/// The transmuted slice has the same life time as the original, which prevents mutating the borrowed
/// `mut [u16]` argument as long as the returned `mut [f16]` is borrowed.
#[deprecated(
since = "1.4.0",
note = "use [`HalfBitsSliceExt::reinterpret_cast_mut`](trait.HalfBitsSliceExt.html#tymethod.reinterpret_cast_mut) instead"
)]
#[inline]
pub fn from_bits_mut(bits: &mut [u16]) -> &mut [f16] {
bits.reinterpret_cast_mut()
}
/// Reinterpret a mutable slice of [`f16`](../struct.f16.html) numbers as a mutable slice of `u16`
/// bits.
///
///The transmuted slice has the same life time as the original, which prevents mutating the
/// borrowed `mut [f16]` argument as long as the returned `mut [u16]` is borrowed.
#[deprecated(
since = "1.4.0",
note = "use [`HalfFloatSliceExt::reinterpret_cast_mut`](trait.HalfFloatSliceExt.html#tymethod.reinterpret_cast_mut) instead"
)]
#[inline]
pub fn to_bits_mut(bits: &mut [f16]) -> &mut [u16] {
bits.reinterpret_cast_mut()
}
/// Reinterpret a slice of `u16` bits as a slice of [`f16`](../struct.f16.html) numbers.
///
/// The transmuted slice has the same life time as the original.
#[deprecated(
since = "1.4.0",
note = "use [`HalfBitsSliceExt::reinterpret_cast`](trait.HalfBitsSliceExt.html#tymethod.reinterpret_cast) instead"
)]
#[inline]
pub fn from_bits(bits: &[u16]) -> &[f16] {
bits.reinterpret_cast()
}
/// Reinterpret a slice of [`f16`](../struct.f16.html) numbers as a slice of `u16` bits.
///
/// The transmuted slice has the same life time as the original.
#[deprecated(
since = "1.4.0",
note = "use [`HalfFloatSliceExt::reinterpret_cast`](trait.HalfFloatSliceExt.html#tymethod.reinterpret_cast) instead"
)]
#[inline]
pub fn to_bits(bits: &[f16]) -> &[u16] {
bits.reinterpret_cast()
}
#[cfg(test)]
mod test {
use super::{HalfBitsSliceExt, HalfFloatSliceExt};
use crate::{bf16, f16};
#[test]
fn test_slice_conversions_f16() {
let bits = &[
f16::E.to_bits(),
f16::PI.to_bits(),
f16::EPSILON.to_bits(),
f16::FRAC_1_SQRT_2.to_bits(),
];
let numbers = &[f16::E, f16::PI, f16::EPSILON, f16::FRAC_1_SQRT_2];
// Convert from bits to numbers
let from_bits = bits.reinterpret_cast::<f16>();
assert_eq!(from_bits, numbers);
// Convert from numbers back to bits
let to_bits = from_bits.reinterpret_cast();
assert_eq!(to_bits, bits);
}
#[test]
fn test_mutablility_f16() {
let mut bits_array = [f16::PI.to_bits()];
let bits = &mut bits_array[..];
{
// would not compile without these braces
// TODO: add automated test to check that it does not compile without braces
let numbers = bits.reinterpret_cast_mut();
numbers[0] = f16::E;
}
assert_eq!(bits, &[f16::E.to_bits()]);
bits[0] = f16::LN_2.to_bits();
assert_eq!(bits, &[f16::LN_2.to_bits()]);
}
#[test]
fn test_slice_conversions_bf16() {
let bits = &[
bf16::E.to_bits(),
bf16::PI.to_bits(),
bf16::EPSILON.to_bits(),
bf16::FRAC_1_SQRT_2.to_bits(),
];
let numbers = &[bf16::E, bf16::PI, bf16::EPSILON, bf16::FRAC_1_SQRT_2];
// Convert from bits to numbers
let from_bits = bits.reinterpret_cast::<bf16>();
assert_eq!(from_bits, numbers);
// Convert from numbers back to bits
let to_bits = from_bits.reinterpret_cast();
assert_eq!(to_bits, bits);
}
#[test]
fn test_mutablility_bf16() {
let mut bits_array = [bf16::PI.to_bits()];
let bits = &mut bits_array[..];
{
// would not compile without these braces
// TODO: add automated test to check that it does not compile without braces
let numbers = bits.reinterpret_cast_mut();
numbers[0] = bf16::E;
}
assert_eq!(bits, &[bf16::E.to_bits()]);
bits[0] = bf16::LN_2.to_bits();
assert_eq!(bits, &[bf16::LN_2.to_bits()]);
}
#[test]
fn slice_convert_f16_f32() {
// Exact chunks
let vf32 = [1., 2., 3., 4., 5., 6., 7., 8.];
let vf16 = [
f16::from_f32(1.),
f16::from_f32(2.),
f16::from_f32(3.),
f16::from_f32(4.),
f16::from_f32(5.),
f16::from_f32(6.),
f16::from_f32(7.),
f16::from_f32(8.),
];
let mut buf32 = vf32;
let mut buf16 = vf16;
vf16.convert_to_f32_slice(&mut buf32);
assert_eq!(&vf32, &buf32);
buf16.convert_from_f32_slice(&vf32);
assert_eq!(&vf16, &buf16);
// Partial with chunks
let vf32 = [1., 2., 3., 4., 5., 6., 7., 8., 9.];
let vf16 = [
f16::from_f32(1.),
f16::from_f32(2.),
f16::from_f32(3.),
f16::from_f32(4.),
f16::from_f32(5.),
f16::from_f32(6.),
f16::from_f32(7.),
f16::from_f32(8.),
f16::from_f32(9.),
];
let mut buf32 = vf32;
let mut buf16 = vf16;
vf16.convert_to_f32_slice(&mut buf32);
assert_eq!(&vf32, &buf32);
buf16.convert_from_f32_slice(&vf32);
assert_eq!(&vf16, &buf16);
// Partial with chunks
let vf32 = [1., 2.];
let vf16 = [f16::from_f32(1.), f16::from_f32(2.)];
let mut buf32 = vf32;
let mut buf16 = vf16;
vf16.convert_to_f32_slice(&mut buf32);
assert_eq!(&vf32, &buf32);
buf16.convert_from_f32_slice(&vf32);
assert_eq!(&vf16, &buf16);
}
#[test]
fn slice_convert_bf16_f32() {
// Exact chunks
let vf32 = [1., 2., 3., 4., 5., 6., 7., 8.];
let vf16 = [
bf16::from_f32(1.),
bf16::from_f32(2.),
bf16::from_f32(3.),
bf16::from_f32(4.),
bf16::from_f32(5.),
bf16::from_f32(6.),
bf16::from_f32(7.),
bf16::from_f32(8.),
];
let mut buf32 = vf32;
let mut buf16 = vf16;
vf16.convert_to_f32_slice(&mut buf32);
assert_eq!(&vf32, &buf32);
buf16.convert_from_f32_slice(&vf32);
assert_eq!(&vf16, &buf16);
// Partial with chunks
let vf32 = [1., 2., 3., 4., 5., 6., 7., 8., 9.];
let vf16 = [
bf16::from_f32(1.),
bf16::from_f32(2.),
bf16::from_f32(3.),
bf16::from_f32(4.),
bf16::from_f32(5.),
bf16::from_f32(6.),
bf16::from_f32(7.),
bf16::from_f32(8.),
bf16::from_f32(9.),
];
let mut buf32 = vf32;
let mut buf16 = vf16;
vf16.convert_to_f32_slice(&mut buf32);
assert_eq!(&vf32, &buf32);
buf16.convert_from_f32_slice(&vf32);
assert_eq!(&vf16, &buf16);
// Partial with chunks
let vf32 = [1., 2.];
let vf16 = [bf16::from_f32(1.), bf16::from_f32(2.)];
let mut buf32 = vf32;
let mut buf16 = vf16;
vf16.convert_to_f32_slice(&mut buf32);
assert_eq!(&vf32, &buf32);
buf16.convert_from_f32_slice(&vf32);
assert_eq!(&vf16, &buf16);
}
#[test]
fn slice_convert_f16_f64() {
// Exact chunks
let vf64 = [1., 2., 3., 4., 5., 6., 7., 8.];
let vf16 = [
f16::from_f64(1.),
f16::from_f64(2.),
f16::from_f64(3.),
f16::from_f64(4.),
f16::from_f64(5.),
f16::from_f64(6.),
f16::from_f64(7.),
f16::from_f64(8.),
];
let mut buf64 = vf64;
let mut buf16 = vf16;
vf16.convert_to_f64_slice(&mut buf64);
assert_eq!(&vf64, &buf64);
buf16.convert_from_f64_slice(&vf64);
assert_eq!(&vf16, &buf16);
// Partial with chunks
let vf64 = [1., 2., 3., 4., 5., 6., 7., 8., 9.];
let vf16 = [
f16::from_f64(1.),
f16::from_f64(2.),
f16::from_f64(3.),
f16::from_f64(4.),
f16::from_f64(5.),
f16::from_f64(6.),
f16::from_f64(7.),
f16::from_f64(8.),
f16::from_f64(9.),
];
let mut buf64 = vf64;
let mut buf16 = vf16;
vf16.convert_to_f64_slice(&mut buf64);
assert_eq!(&vf64, &buf64);
buf16.convert_from_f64_slice(&vf64);
assert_eq!(&vf16, &buf16);
// Partial with chunks
let vf64 = [1., 2.];
let vf16 = [f16::from_f64(1.), f16::from_f64(2.)];
let mut buf64 = vf64;
let mut buf16 = vf16;
vf16.convert_to_f64_slice(&mut buf64);
assert_eq!(&vf64, &buf64);
buf16.convert_from_f64_slice(&vf64);
assert_eq!(&vf16, &buf16);
}
#[test]
fn slice_convert_bf16_f64() {
// Exact chunks
let vf64 = [1., 2., 3., 4., 5., 6., 7., 8.];
let vf16 = [
bf16::from_f64(1.),
bf16::from_f64(2.),
bf16::from_f64(3.),
bf16::from_f64(4.),
bf16::from_f64(5.),
bf16::from_f64(6.),
bf16::from_f64(7.),
bf16::from_f64(8.),
];
let mut buf64 = vf64;
let mut buf16 = vf16;
vf16.convert_to_f64_slice(&mut buf64);
assert_eq!(&vf64, &buf64);
buf16.convert_from_f64_slice(&vf64);
assert_eq!(&vf16, &buf16);
// Partial with chunks
let vf64 = [1., 2., 3., 4., 5., 6., 7., 8., 9.];
let vf16 = [
bf16::from_f64(1.),
bf16::from_f64(2.),
bf16::from_f64(3.),
bf16::from_f64(4.),
bf16::from_f64(5.),
bf16::from_f64(6.),
bf16::from_f64(7.),
bf16::from_f64(8.),
bf16::from_f64(9.),
];
let mut buf64 = vf64;
let mut buf16 = vf16;
vf16.convert_to_f64_slice(&mut buf64);
assert_eq!(&vf64, &buf64);
buf16.convert_from_f64_slice(&vf64);
assert_eq!(&vf16, &buf16);
// Partial with chunks
let vf64 = [1., 2.];
let vf16 = [bf16::from_f64(1.), bf16::from_f64(2.)];
let mut buf64 = vf64;
let mut buf16 = vf16;
vf16.convert_to_f64_slice(&mut buf64);
assert_eq!(&vf64, &buf64);
buf16.convert_from_f64_slice(&vf64);
assert_eq!(&vf16, &buf16);
}
#[test]
#[should_panic]
fn convert_from_f32_slice_len_mismatch_panics() {
let mut slice1 = [f16::ZERO; 3];
let slice2 = [0f32; 4];
slice1.convert_from_f32_slice(&slice2);
}
#[test]
#[should_panic]
fn convert_from_f64_slice_len_mismatch_panics() {
let mut slice1 = [f16::ZERO; 3];
let slice2 = [0f64; 4];
slice1.convert_from_f64_slice(&slice2);
}
#[test]
#[should_panic]
fn convert_to_f32_slice_len_mismatch_panics() {
let slice1 = [f16::ZERO; 3];
let mut slice2 = [0f32; 4];
slice1.convert_to_f32_slice(&mut slice2);
}
#[test]
#[should_panic]
fn convert_to_f64_slice_len_mismatch_panics() {
let slice1 = [f16::ZERO; 3];
let mut slice2 = [0f64; 4];
slice1.convert_to_f64_slice(&mut slice2);
}
}