tracing_mutex/
stdsync.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
//! Tracing mutex wrappers for locks found in `std::sync`.
//!
//! This module provides wrappers for `std::sync` primitives with exactly the same API and
//! functionality as their counterparts, with the exception that their acquisition order is tracked.
//!
//! Dedicated wrappers that provide the dependency tracing can be found in the [`tracing`] module.
//! The original primitives are available from [`std::sync`], imported as [`raw`] for convenience.
//!
//! If debug assertions are enabled, this module imports the primitives from [`tracing`], otherwise
//! it will import from [`raw`].
//!
//! ```rust
//! # use tracing_mutex::stdsync::tracing::Mutex;
//! # use tracing_mutex::stdsync::tracing::RwLock;
//! let mutex = Mutex::new(());
//! mutex.lock().unwrap();
//!
//! let rwlock = RwLock::new(());
//! rwlock.read().unwrap();
//! ```
pub use std::sync as raw;

#[cfg(not(debug_assertions))]
pub use std::sync::{
    Condvar, Mutex, MutexGuard, Once, OnceLock, RwLock, RwLockReadGuard, RwLockWriteGuard,
};

#[cfg(debug_assertions)]
pub use tracing::{
    Condvar, Mutex, MutexGuard, Once, OnceLock, RwLock, RwLockReadGuard, RwLockWriteGuard,
};

/// Dependency tracing versions of [`std::sync`].
pub mod tracing {
    use std::fmt;
    use std::ops::Deref;
    use std::ops::DerefMut;
    use std::sync;
    use std::sync::LockResult;
    use std::sync::OnceState;
    use std::sync::PoisonError;
    use std::sync::TryLockError;
    use std::sync::TryLockResult;
    use std::sync::WaitTimeoutResult;
    use std::time::Duration;

    use crate::BorrowedMutex;
    use crate::LazyMutexId;

    /// Wrapper for [`std::sync::Mutex`].
    ///
    /// Refer to the [crate-level][`crate`] documentation for the differences between this struct and
    /// the one it wraps.
    #[derive(Debug, Default)]
    pub struct Mutex<T> {
        inner: sync::Mutex<T>,
        id: LazyMutexId,
    }

    /// Wrapper for [`std::sync::MutexGuard`].
    ///
    /// Refer to the [crate-level][`crate`] documentation for the differences between this struct and
    /// the one it wraps.
    #[derive(Debug)]
    pub struct MutexGuard<'a, T> {
        inner: sync::MutexGuard<'a, T>,
        _mutex: BorrowedMutex<'a>,
    }

    fn map_lockresult<T, I, F>(result: LockResult<I>, mapper: F) -> LockResult<T>
    where
        F: FnOnce(I) -> T,
    {
        match result {
            Ok(inner) => Ok(mapper(inner)),
            Err(poisoned) => Err(PoisonError::new(mapper(poisoned.into_inner()))),
        }
    }

    fn map_trylockresult<T, I, F>(result: TryLockResult<I>, mapper: F) -> TryLockResult<T>
    where
        F: FnOnce(I) -> T,
    {
        match result {
            Ok(inner) => Ok(mapper(inner)),
            Err(TryLockError::WouldBlock) => Err(TryLockError::WouldBlock),
            Err(TryLockError::Poisoned(poisoned)) => {
                Err(PoisonError::new(mapper(poisoned.into_inner())).into())
            }
        }
    }

    impl<T> Mutex<T> {
        /// Create a new tracing mutex with the provided value.
        pub const fn new(t: T) -> Self {
            Self {
                inner: sync::Mutex::new(t),
                id: LazyMutexId::new(),
            }
        }

        /// Wrapper for [`std::sync::Mutex::lock`].
        ///
        /// # Panics
        ///
        /// This method participates in lock dependency tracking. If acquiring this lock introduces a
        /// dependency cycle, this method will panic.
        #[track_caller]
        pub fn lock(&self) -> LockResult<MutexGuard<T>> {
            let mutex = self.id.get_borrowed();
            let result = self.inner.lock();

            let mapper = |guard| MutexGuard {
                _mutex: mutex,
                inner: guard,
            };

            map_lockresult(result, mapper)
        }

        /// Wrapper for [`std::sync::Mutex::try_lock`].
        ///
        /// # Panics
        ///
        /// This method participates in lock dependency tracking. If acquiring this lock introduces a
        /// dependency cycle, this method will panic.
        #[track_caller]
        pub fn try_lock(&self) -> TryLockResult<MutexGuard<T>> {
            let mutex = self.id.get_borrowed();
            let result = self.inner.try_lock();

            let mapper = |guard| MutexGuard {
                _mutex: mutex,
                inner: guard,
            };

            map_trylockresult(result, mapper)
        }

        /// Wrapper for [`std::sync::Mutex::is_poisoned`].
        pub fn is_poisoned(&self) -> bool {
            self.inner.is_poisoned()
        }

        /// Return a mutable reference to the underlying data.
        ///
        /// This method does not block as the locking is handled compile-time by the type system.
        pub fn get_mut(&mut self) -> LockResult<&mut T> {
            self.inner.get_mut()
        }

        /// Unwrap the mutex and return its inner value.
        pub fn into_inner(self) -> LockResult<T> {
            self.inner.into_inner()
        }
    }

    impl<T> From<T> for Mutex<T> {
        fn from(t: T) -> Self {
            Self::new(t)
        }
    }

    impl<'a, T> Deref for MutexGuard<'a, T> {
        type Target = T;

        fn deref(&self) -> &Self::Target {
            &self.inner
        }
    }

    impl<'a, T> DerefMut for MutexGuard<'a, T> {
        fn deref_mut(&mut self) -> &mut Self::Target {
            &mut self.inner
        }
    }

    impl<'a, T: fmt::Display> fmt::Display for MutexGuard<'a, T> {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            self.inner.fmt(f)
        }
    }

    /// Wrapper around [`std::sync::Condvar`].
    ///
    /// Allows `TracingMutexGuard` to be used with a `Condvar`. Unlike other structs in this module,
    /// this wrapper does not add any additional dependency tracking or other overhead on top of the
    /// primitive it wraps. All dependency tracking happens through the mutexes itself.
    ///
    /// # Panics
    ///
    /// This struct does not add any panics over the base implementation of `Condvar`, but panics due to
    /// dependency tracking may poison associated mutexes.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use std::thread;
    ///
    /// use tracing_mutex::stdsync::tracing::{Condvar, Mutex};
    ///
    /// let pair = Arc::new((Mutex::new(false), Condvar::new()));
    /// let pair2 = Arc::clone(&pair);
    ///
    /// // Spawn a thread that will unlock the condvar
    /// thread::spawn(move || {
    ///     let (lock, condvar) = &*pair2;
    ///     *lock.lock().unwrap() = true;
    ///     condvar.notify_one();
    /// });
    ///
    /// // Wait until the thread unlocks the condvar
    /// let (lock, condvar) = &*pair;
    /// let guard = lock.lock().unwrap();
    /// let guard = condvar.wait_while(guard, |started| !*started).unwrap();
    ///
    /// // Guard should read true now
    /// assert!(*guard);
    /// ```
    #[derive(Debug, Default)]
    pub struct Condvar(sync::Condvar);

    impl Condvar {
        /// Creates a new condition variable which is ready to be waited on and notified.
        pub const fn new() -> Self {
            Self(sync::Condvar::new())
        }

        /// Wrapper for [`std::sync::Condvar::wait`].
        pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>) -> LockResult<MutexGuard<'a, T>> {
            let MutexGuard { _mutex, inner } = guard;

            map_lockresult(self.0.wait(inner), |inner| MutexGuard { _mutex, inner })
        }

        /// Wrapper for [`std::sync::Condvar::wait_while`].
        pub fn wait_while<'a, T, F>(
            &self,
            guard: MutexGuard<'a, T>,
            condition: F,
        ) -> LockResult<MutexGuard<'a, T>>
        where
            F: FnMut(&mut T) -> bool,
        {
            let MutexGuard { _mutex, inner } = guard;

            map_lockresult(self.0.wait_while(inner, condition), |inner| MutexGuard {
                _mutex,
                inner,
            })
        }

        /// Wrapper for [`std::sync::Condvar::wait_timeout`].
        pub fn wait_timeout<'a, T>(
            &self,
            guard: MutexGuard<'a, T>,
            dur: Duration,
        ) -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> {
            let MutexGuard { _mutex, inner } = guard;

            map_lockresult(self.0.wait_timeout(inner, dur), |(inner, result)| {
                (MutexGuard { _mutex, inner }, result)
            })
        }

        /// Wrapper for [`std::sync::Condvar::wait_timeout_while`].
        pub fn wait_timeout_while<'a, T, F>(
            &self,
            guard: MutexGuard<'a, T>,
            dur: Duration,
            condition: F,
        ) -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)>
        where
            F: FnMut(&mut T) -> bool,
        {
            let MutexGuard { _mutex, inner } = guard;

            map_lockresult(
                self.0.wait_timeout_while(inner, dur, condition),
                |(inner, result)| (MutexGuard { _mutex, inner }, result),
            )
        }

        /// Wrapper for [`std::sync::Condvar::notify_one`].
        pub fn notify_one(&self) {
            self.0.notify_one();
        }

        /// Wrapper for [`std::sync::Condvar::notify_all`].
        pub fn notify_all(&self) {
            self.0.notify_all();
        }
    }

    /// Wrapper for [`std::sync::RwLock`].
    #[derive(Debug, Default)]
    pub struct RwLock<T> {
        inner: sync::RwLock<T>,
        id: LazyMutexId,
    }

    /// Hybrid wrapper for both [`std::sync::RwLockReadGuard`] and [`std::sync::RwLockWriteGuard`].
    ///
    /// Please refer to [`RwLockReadGuard`] and [`RwLockWriteGuard`] for usable types.
    #[derive(Debug)]
    pub struct TracingRwLockGuard<'a, L> {
        inner: L,
        _mutex: BorrowedMutex<'a>,
    }

    /// Wrapper around [`std::sync::RwLockReadGuard`].
    pub type RwLockReadGuard<'a, T> = TracingRwLockGuard<'a, sync::RwLockReadGuard<'a, T>>;
    /// Wrapper around [`std::sync::RwLockWriteGuard`].
    pub type RwLockWriteGuard<'a, T> = TracingRwLockGuard<'a, sync::RwLockWriteGuard<'a, T>>;

    impl<T> RwLock<T> {
        pub const fn new(t: T) -> Self {
            Self {
                inner: sync::RwLock::new(t),
                id: LazyMutexId::new(),
            }
        }

        /// Wrapper for [`std::sync::RwLock::read`].
        ///
        /// # Panics
        ///
        /// This method participates in lock dependency tracking. If acquiring this lock introduces a
        /// dependency cycle, this method will panic.
        #[track_caller]
        pub fn read(&self) -> LockResult<RwLockReadGuard<T>> {
            let mutex = self.id.get_borrowed();
            let result = self.inner.read();

            map_lockresult(result, |inner| TracingRwLockGuard {
                inner,
                _mutex: mutex,
            })
        }

        /// Wrapper for [`std::sync::RwLock::write`].
        ///
        /// # Panics
        ///
        /// This method participates in lock dependency tracking. If acquiring this lock introduces a
        /// dependency cycle, this method will panic.
        #[track_caller]
        pub fn write(&self) -> LockResult<RwLockWriteGuard<T>> {
            let mutex = self.id.get_borrowed();
            let result = self.inner.write();

            map_lockresult(result, |inner| TracingRwLockGuard {
                inner,
                _mutex: mutex,
            })
        }

        /// Wrapper for [`std::sync::RwLock::try_read`].
        ///
        /// # Panics
        ///
        /// This method participates in lock dependency tracking. If acquiring this lock introduces a
        /// dependency cycle, this method will panic.
        #[track_caller]
        pub fn try_read(&self) -> TryLockResult<RwLockReadGuard<T>> {
            let mutex = self.id.get_borrowed();
            let result = self.inner.try_read();

            map_trylockresult(result, |inner| TracingRwLockGuard {
                inner,
                _mutex: mutex,
            })
        }

        /// Wrapper for [`std::sync::RwLock::try_write`].
        ///
        /// # Panics
        ///
        /// This method participates in lock dependency tracking. If acquiring this lock introduces a
        /// dependency cycle, this method will panic.
        #[track_caller]
        pub fn try_write(&self) -> TryLockResult<RwLockWriteGuard<T>> {
            let mutex = self.id.get_borrowed();
            let result = self.inner.try_write();

            map_trylockresult(result, |inner| TracingRwLockGuard {
                inner,
                _mutex: mutex,
            })
        }

        /// Return a mutable reference to the underlying data.
        ///
        /// This method does not block as the locking is handled compile-time by the type system.
        pub fn get_mut(&mut self) -> LockResult<&mut T> {
            self.inner.get_mut()
        }

        /// Unwrap the mutex and return its inner value.
        pub fn into_inner(self) -> LockResult<T> {
            self.inner.into_inner()
        }
    }

    impl<T> From<T> for RwLock<T> {
        fn from(t: T) -> Self {
            Self::new(t)
        }
    }

    impl<'a, L, T> Deref for TracingRwLockGuard<'a, L>
    where
        L: Deref<Target = T>,
    {
        type Target = T;

        fn deref(&self) -> &Self::Target {
            self.inner.deref()
        }
    }

    impl<'a, T, L> DerefMut for TracingRwLockGuard<'a, L>
    where
        L: Deref<Target = T> + DerefMut,
    {
        fn deref_mut(&mut self) -> &mut Self::Target {
            self.inner.deref_mut()
        }
    }

    /// Wrapper around [`std::sync::Once`].
    ///
    /// Refer to the [crate-level][`crate`] documentaiton for the differences between this struct
    /// and the one it wraps.
    #[derive(Debug)]
    pub struct Once {
        inner: sync::Once,
        mutex_id: LazyMutexId,
    }

    impl Once {
        /// Create a new `Once` value.
        pub const fn new() -> Self {
            Self {
                inner: sync::Once::new(),
                mutex_id: LazyMutexId::new(),
            }
        }

        /// Wrapper for [`std::sync::Once::call_once`].
        ///
        /// # Panics
        ///
        /// In addition to the panics that `Once` can cause, this method will panic if calling it
        /// introduces a cycle in the lock dependency graph.
        pub fn call_once<F>(&self, f: F)
        where
            F: FnOnce(),
        {
            let _guard = self.mutex_id.get_borrowed();
            self.inner.call_once(f);
        }

        /// Performs the same operation as [`call_once`][Once::call_once] except it ignores
        /// poisoning.
        ///
        /// # Panics
        ///
        /// This method participates in lock dependency tracking. If acquiring this lock introduces a
        /// dependency cycle, this method will panic.
        pub fn call_once_force<F>(&self, f: F)
        where
            F: FnOnce(&OnceState),
        {
            let _guard = self.mutex_id.get_borrowed();
            self.inner.call_once_force(f);
        }

        /// Returns true if some `call_once` has completed successfully.
        pub fn is_completed(&self) -> bool {
            self.inner.is_completed()
        }
    }

    /// Wrapper for [`std::sync::OnceLock`]
    ///
    /// The exact locking behaviour of [`std::sync::OnceLock`] is currently undefined, but may
    /// deadlock in the event of reentrant initialization attempts. This wrapper participates in
    /// cycle detection as normal and will therefore panic in the event of reentrancy.
    ///
    /// Most of this primitive's methods do not involve locking and as such are simply passed
    /// through to the inner implementation.
    ///
    /// # Examples
    ///
    /// ```
    /// use tracing_mutex::stdsync::tracing::OnceLock;
    ///
    /// static LOCK: OnceLock<i32> = OnceLock::new();
    /// assert!(LOCK.get().is_none());
    ///
    /// std::thread::spawn(|| {
    ///    let value: &i32 = LOCK.get_or_init(|| 42);
    ///    assert_eq!(value, &42);
    /// }).join().unwrap();
    ///
    /// let value: Option<&i32> = LOCK.get();
    /// assert_eq!(value, Some(&42));
    /// ```
    #[derive(Debug)]
    pub struct OnceLock<T> {
        id: LazyMutexId,
        inner: sync::OnceLock<T>,
    }

    // N.B. this impl inlines everything that directly calls the inner implementation as there
    // should be 0 overhead to doing so.
    impl<T> OnceLock<T> {
        /// Creates a new empty cell
        pub const fn new() -> Self {
            Self {
                id: LazyMutexId::new(),
                inner: sync::OnceLock::new(),
            }
        }

        /// Gets a reference to the underlying value.
        ///
        /// This method does not attempt to lock and therefore does not participate in cycle
        /// detection.
        #[inline]
        pub fn get(&self) -> Option<&T> {
            self.inner.get()
        }

        /// Gets a mutable reference to the underlying value.
        ///
        /// This method does not attempt to lock and therefore does not participate in cycle
        /// detection.
        #[inline]
        pub fn get_mut(&mut self) -> Option<&mut T> {
            self.inner.get_mut()
        }

        /// Sets the contents of this cell to the underlying value
        ///
        /// As this method may block until initialization is complete, it participates in cycle
        /// detection.
        pub fn set(&self, value: T) -> Result<(), T> {
            let _guard = self.id.get_borrowed();

            self.inner.set(value)
        }

        /// Gets the contents of the cell, initializing it with `f` if the cell was empty.
        ///
        /// This method participates in cycle detection. Reentrancy is considered a cycle.
        pub fn get_or_init<F>(&self, f: F) -> &T
        where
            F: FnOnce() -> T,
        {
            let _guard = self.id.get_borrowed();
            self.inner.get_or_init(f)
        }

        /// Takes the value out of this `OnceLock`, moving it back to an uninitialized state.
        ///
        /// This method does not attempt to lock and therefore does not participate in cycle
        /// detection.
        #[inline]
        pub fn take(&mut self) -> Option<T> {
            self.inner.take()
        }

        /// Consumes the `OnceLock`, returning the wrapped value. Returns None if the cell was
        /// empty.
        ///
        /// This method does not attempt to lock and therefore does not participate in cycle
        /// detection.
        #[inline]
        pub fn into_inner(mut self) -> Option<T> {
            self.take()
        }
    }

    impl<T> Default for OnceLock<T> {
        #[inline]
        fn default() -> Self {
            Self::new()
        }
    }

    impl<T: PartialEq> PartialEq for OnceLock<T> {
        #[inline]
        fn eq(&self, other: &Self) -> bool {
            self.inner == other.inner
        }
    }

    impl<T: Eq> Eq for OnceLock<T> {}

    impl<T: Clone> Clone for OnceLock<T> {
        fn clone(&self) -> Self {
            Self {
                id: LazyMutexId::new(),
                inner: self.inner.clone(),
            }
        }
    }

    impl<T> From<T> for OnceLock<T> {
        #[inline]
        fn from(value: T) -> Self {
            Self {
                id: LazyMutexId::new(),
                inner: sync::OnceLock::from(value),
            }
        }
    }

    #[cfg(test)]
    mod tests {
        use std::sync::Arc;
        use std::thread;

        use super::*;

        #[test]
        fn test_mutex_usage() {
            let mutex = Arc::new(Mutex::new(0));

            assert_eq!(*mutex.lock().unwrap(), 0);
            *mutex.lock().unwrap() = 1;
            assert_eq!(*mutex.lock().unwrap(), 1);

            let mutex_clone = mutex.clone();

            let _guard = mutex.lock().unwrap();

            // Now try to cause a blocking exception in another thread
            let handle = thread::spawn(move || {
                let result = mutex_clone.try_lock().unwrap_err();

                assert!(matches!(result, TryLockError::WouldBlock));
            });

            handle.join().unwrap();
        }

        #[test]
        fn test_rwlock_usage() {
            let rwlock = Arc::new(RwLock::new(0));

            assert_eq!(*rwlock.read().unwrap(), 0);
            assert_eq!(*rwlock.write().unwrap(), 0);
            *rwlock.write().unwrap() = 1;
            assert_eq!(*rwlock.read().unwrap(), 1);
            assert_eq!(*rwlock.write().unwrap(), 1);

            let rwlock_clone = rwlock.clone();

            let _read_lock = rwlock.read().unwrap();

            // Now try to cause a blocking exception in another thread
            let handle = thread::spawn(move || {
                let write_result = rwlock_clone.try_write().unwrap_err();

                assert!(matches!(write_result, TryLockError::WouldBlock));

                // Should be able to get a read lock just fine.
                let _read_lock = rwlock_clone.read().unwrap();
            });

            handle.join().unwrap();
        }

        #[test]
        fn test_once_usage() {
            let once = Arc::new(Once::new());
            let once_clone = once.clone();

            assert!(!once.is_completed());

            let handle = thread::spawn(move || {
                assert!(!once_clone.is_completed());

                once_clone.call_once(|| {});

                assert!(once_clone.is_completed());
            });

            handle.join().unwrap();

            assert!(once.is_completed());
        }

        #[test]
        #[should_panic(expected = "Found cycle in mutex dependency graph")]
        fn test_detect_cycle() {
            let a = Mutex::new(());
            let b = Mutex::new(());

            let hold_a = a.lock().unwrap();
            let _ = b.lock();

            drop(hold_a);

            let _hold_b = b.lock().unwrap();
            let _ = a.lock();
        }
    }
}