mundane/boringssl/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! The BoringSSL API.
//!
//! This module provides a safe access to the BoringSSL API.
//!
//! It accomplishes this using the following structure:
//! - The internal `raw` module provides nearly-raw access to the BoringSSL API.
//! For each function in the BoringSSL API, it exposes an equivalent Rust
//! function which performs error checking. Functions which return pointers
//! return `Result<NonNull<T>, BoringError>`, functions which return status
//! codes return `Result<(), BoringError>`, etc. This API makes it less likely
//! to accidentally forget to check for null pointers or error status codes.
//! - The internal `wrapper` module provides types which wrap C objects and
//! handle many of the details of their lifecycles. These include
//! `CStackWrapper`, which handles initializing and destructing
//! stack-allocated C objects; `CHeapWrapper`, which is analogous to Rust's
//! `Box` or `Rc`, and handles allocation, reference counting, and freeing;
//! and `CRef`, which is analogous to a Rust reference.
//! - This module builds on top of the `raw` and `wrapper` modules to provide a
//! safe API. This allows us to `#![forbid(unsafe_code)]` in the rest of the
//! crate, which in turn means that this is the only module whose memory
//! safety needs to be manually verified.
//!
//! # Usage
//!
//! Each type, `T`, from the BoringSSL API is exposed as either a
//! `CStackWrapper<T>`, a `CHeapWrapper<T>`, or a `CRef<T>`. Each function from
//! the BoringSSL API which operates on a particular type is exposed as a method
//! on the wrapped version of that type. For example, the BoringSSL `CBS_len`
//! function operates on a `CBS`; we provide the `cbs_len` method on the
//! `CStackWrapper<CBS>` type. While BoringSSL functions that operate on a
//! particular type take the form `TYPE_method`, the Rust equivalents are all
//! lower-case - `type_method`.
//!
//! Some functions which do not make sense as methods are exposed as bare
//! functions. For example, the BoringSSL `ECDSA_sign` function is exposed as a
//! bare function as `ecdsa_sign`.
//!
//! Types which can be constructed without arguments implement `Default`. Types
//! which require arguments to be constructed provide associated functions which
//! take those arguments and return a new instance of that type. For example,
//! the `CHeapWrapper<EC_KEY>::ec_key_parse_private_key` function parses a
//! private key from an input stream and returns a new `CHeapWrapper<EC_KEY>`.
//!
//! # API Guidelines
//!
//! This module is meant to be as close as possible to a direct set of FFI
//! bindings while still providing a safe API. While memory safety is handled
//! internally, and certain error conditions which could affect memory safety
//! are checked internally (and cause the process to abort if they fail), most
//! errors are returned from the API, as they are considered business logic,
//! which is outside the scope of this module.
// NOTES on safety requirements of the BoringSSL API:
// - Though it may not be explicitly documented, calling methods on uinitialized
// values is UB. Remember, this is C! Always initialize (usually via XXX_init
// or a similarly-named function) before calling any methods or functions.
// - Any BoringSSL documentation that says "x property must hold" means that, if
// that property doesn't hold, it may cause UB - you are not guaranteed that
// it will be detected and an error will be returned.
// - If a pointer parameter is const, the function does NOT take ownership of
// the object and does NOT retain a reference to the object (in Rust
// terminology, the object need only live as long as the function call). If
// the pointer parameter is not const, it MAY take ownership or hold a
// reference depending on the documentation. Generally, ownership is only
// taken if explicitly documented, but documentation bugs may exist, so be
// careful.
#[macro_use]
mod abort;
#[macro_use]
mod wrapper;
mod raw;
// C types
pub use bssl_sys::{
BIGNUM, CBB, CBS, EC_GROUP, EC_KEY, EVP_MD, EVP_PKEY, HMAC_CTX, MD5_CTX, RC4_KEY, RSA, RSA_F4,
SHA256_CTX, SHA512_CTX, SHA_CTX,
};
// C constants
pub use bssl_sys::{
NID_X9_62_prime256v1, NID_md5, NID_secp384r1, NID_secp521r1, NID_sha1, NID_sha256, NID_sha384,
NID_sha512, ED25519_PRIVATE_KEY_LEN, ED25519_PUBLIC_KEY_LEN, ED25519_SIGNATURE_LEN,
MD5_DIGEST_LENGTH, SHA256_DIGEST_LENGTH, SHA384_DIGEST_LENGTH, SHA512_DIGEST_LENGTH,
SHA_DIGEST_LENGTH,
};
// wrapper types
pub use boringssl::wrapper::{CHeapWrapper, CRef, CStackWrapper};
use std::convert::TryInto;
use std::ffi::CStr;
use std::fmt::{self, Debug, Display, Formatter};
use std::mem::MaybeUninit;
use std::num::NonZeroUsize;
use std::os::raw::{c_char, c_int, c_uint, c_void};
use std::{cmp, ptr, slice};
use boringssl::abort::UnwrapAbort;
use boringssl::raw::{
BN_set_u64, CBB_data, CBB_init, CBB_len, CBS_init, CBS_len, CRYPTO_memcmp, ECDSA_sign,
ECDSA_size, ECDSA_verify, EC_GROUP_get_curve_name, EC_GROUP_new_by_curve_name,
EC_KEY_generate_key, EC_KEY_get0_group, EC_KEY_marshal_private_key, EC_KEY_parse_private_key,
EC_KEY_set_group, EC_curve_nid2nist, ED25519_keypair, ED25519_keypair_from_seed, ED25519_sign,
ED25519_verify, ERR_print_errors_cb, EVP_PBE_scrypt, EVP_PKEY_assign_EC_KEY,
EVP_PKEY_assign_RSA, EVP_PKEY_get1_EC_KEY, EVP_PKEY_get1_RSA, EVP_marshal_public_key,
EVP_parse_public_key, HMAC_CTX_copy, HMAC_CTX_init, HMAC_Final, HMAC_Init_ex, HMAC_Update,
HMAC_size, RAND_bytes, RC4_set_key, RSA_bits, RSA_generate_key_ex, RSA_marshal_private_key,
RSA_parse_private_key, RSA_sign_pss_mgf1, RSA_size, RSA_verify_pss_mgf1, SHA384_Init, RC4,
};
#[cfg(feature = "rsa-pkcs1v15")]
use boringssl::raw::{RSA_sign, RSA_verify};
impl CStackWrapper<BIGNUM> {
/// The `BN_set_u64` function.
#[must_use]
pub fn bn_set_u64(&mut self, value: u64) -> Result<(), BoringError> {
unsafe { BN_set_u64(self.as_mut(), value) }
}
}
impl CStackWrapper<CBB> {
/// Creates a new `CBB` and initializes it with `CBB_init`.
///
/// `cbb_new` can only fail due to OOM.
#[must_use]
pub fn cbb_new(initial_capacity: usize) -> Result<CStackWrapper<CBB>, BoringError> {
unsafe {
let mut cbb = MaybeUninit::uninit();
CBB_init(cbb.as_mut_ptr(), initial_capacity)?;
Ok(CStackWrapper::new(cbb.assume_init()))
}
}
/// Invokes a callback on the contents of a `CBB`.
///
/// `cbb_with_data` accepts a callback, and invokes that callback, passing a
/// slice of the current contents of this `CBB`.
#[must_use]
pub fn cbb_with_data<O, F: Fn(&[u8]) -> O>(&self, with_data: F) -> O {
unsafe {
// NOTE: The return value of CBB_data is only valid until the next
// operation on the CBB. This method is safe because the slice
// reference cannot outlive this function body, and thus cannot live
// beyond another method call that could invalidate the buffer.
let len = CBB_len(self.as_const());
if len == 0 {
// If len is 0, then CBB_data could technically return a null
// pointer. Constructing a slice from a null pointer is likely
// invalid, so we do this instead.
with_data(&[])
} else {
// Since the length is non-zero, CBB_data should not return a
// null pointer.
let ptr = CBB_data(self.as_const()).unwrap_abort();
// TODO(joshlf): Can with_data use this to smuggle out the
// reference, outliving the lifetime of self?
with_data(slice::from_raw_parts(ptr.as_ptr(), len))
}
}
}
}
impl CStackWrapper<CBS> {
/// The `CBS_len` function.
#[must_use]
pub fn cbs_len(&self) -> usize {
unsafe { CBS_len(self.as_const()) }
}
/// Invokes a callback on a temporary `CBS`.
///
/// `cbs_with_temp_buffer` constructs a `CBS` from the provided byte slice,
/// and invokes a callback on the `CBS`. The `CBS` is destructed before
/// `cbs_with_temp_buffer` returns.
// TODO(joshlf): Holdover until we figure out how to put lifetimes in CStackWrappers.
#[must_use]
pub fn cbs_with_temp_buffer<O, F: Fn(&mut CStackWrapper<CBS>) -> O>(
bytes: &[u8],
with_cbs: F,
) -> O {
unsafe {
let mut cbs = MaybeUninit::uninit();
CBS_init(cbs.as_mut_ptr(), bytes.as_ptr(), bytes.len());
let mut cbs = CStackWrapper::new(cbs.assume_init());
with_cbs(&mut cbs)
}
}
}
impl CRef<'static, EC_GROUP> {
/// The `EC_GROUP_new_by_curve_name` function.
#[must_use]
pub fn ec_group_new_by_curve_name(nid: c_int) -> Result<CRef<'static, EC_GROUP>, BoringError> {
unsafe { Ok(CRef::new(EC_GROUP_new_by_curve_name(nid)?)) }
}
}
impl<'a> CRef<'a, EC_GROUP> {
/// The `EC_GROUP_get_curve_name` function.
#[must_use]
pub fn ec_group_get_curve_name(&self) -> c_int {
unsafe { EC_GROUP_get_curve_name(self.as_const()) }
}
}
/// The `EC_curve_nid2nist` function.
#[must_use]
pub fn ec_curve_nid2nist(nid: c_int) -> Result<&'static CStr, BoringError> {
unsafe { Ok(CStr::from_ptr(EC_curve_nid2nist(nid)?.as_ptr())) }
}
impl CHeapWrapper<EC_KEY> {
/// The `EC_KEY_generate_key` function.
#[must_use]
pub fn ec_key_generate_key(&mut self) -> Result<(), BoringError> {
unsafe { EC_KEY_generate_key(self.as_mut()) }
}
/// The `EC_KEY_parse_private_key` function.
///
/// If `group` is `None`, then the group pointer argument to
/// `EC_KEY_parse_private_key` will be NULL.
#[must_use]
pub fn ec_key_parse_private_key(
cbs: &mut CStackWrapper<CBS>,
group: Option<CRef<'static, EC_GROUP>>,
) -> Result<CHeapWrapper<EC_KEY>, BoringError> {
unsafe {
Ok(CHeapWrapper::new_from(EC_KEY_parse_private_key(
cbs.as_mut(),
group.map(|g| g.as_const()).unwrap_or(ptr::null()),
)?))
}
}
/// The `EC_KEY_get0_group` function.
#[must_use]
#[allow(clippy::needless_lifetimes)] // to be more explicit
pub fn ec_key_get0_group<'a>(&'a self) -> Result<CRef<'a, EC_GROUP>, BoringError> {
// get0 doesn't increment the refcount; the lifetimes ensure that the
// returned CRef can't outlive self
unsafe { Ok(CRef::new(EC_KEY_get0_group(self.as_const())?)) }
}
/// The `EC_KEY_set_group` function.
#[must_use]
pub fn ec_key_set_group(&mut self, group: &CRef<'static, EC_GROUP>) -> Result<(), BoringError> {
unsafe { EC_KEY_set_group(self.as_mut(), group.as_const()) }
}
/// The `EC_KEY_marshal_private_key` function.
#[must_use]
pub fn ec_key_marshal_private_key(
&self,
cbb: &mut CStackWrapper<CBB>,
) -> Result<(), BoringError> {
unsafe { EC_KEY_marshal_private_key(cbb.as_mut(), self.as_const(), 0) }
}
}
/// The `ECDSA_sign` function.
///
/// `ecdsa_sign` returns the number of bytes written to `sig`.
///
/// # Aborts
///
/// `ecdsa_sign` aborts if `sig` is shorter than the minimum required signature
/// size given by `ecdsa_size`, or if `key` doesn't have a group set.
#[must_use]
pub fn ecdsa_sign(
digest: &[u8],
sig: &mut [u8],
key: &CHeapWrapper<EC_KEY>,
) -> Result<usize, BoringError> {
unsafe {
// If we call ECDSA_sign with sig.len() < min_size, it will invoke UB.
// ECDSA_size fails if the key doesn't have a group set.
let min_size = ecdsa_size(key).unwrap_abort();
assert_abort!(sig.len() >= min_size.get());
let mut sig_len: c_uint = 0;
ECDSA_sign(
0,
digest.as_ptr(),
digest.len(),
sig.as_mut_ptr(),
&mut sig_len,
key.as_const(),
)?;
// ECDSA_sign guarantees that it only needs ECDSA_size bytes for the
// signature.
let sig_len = sig_len.try_into().unwrap_abort();
assert_abort!(sig_len <= min_size.get());
Ok(sig_len)
}
}
/// The `ECDSA_verify` function.
#[must_use]
pub fn ecdsa_verify(digest: &[u8], sig: &[u8], key: &CHeapWrapper<EC_KEY>) -> bool {
unsafe {
ECDSA_verify(0, digest.as_ptr(), digest.len(), sig.as_ptr(), sig.len(), key.as_const())
}
}
/// The `ECDSA_size` function.
#[must_use]
pub fn ecdsa_size(key: &CHeapWrapper<EC_KEY>) -> Result<NonZeroUsize, BoringError> {
unsafe { ECDSA_size(key.as_const()) }
}
/// The `ED25519_keypair` function.
#[must_use]
pub fn ed25519_keypair() -> [u8; ED25519_PRIVATE_KEY_LEN as usize] {
let mut public_unused = [0u8; ED25519_PUBLIC_KEY_LEN as usize];
let mut private = [0u8; ED25519_PRIVATE_KEY_LEN as usize];
unsafe {
ED25519_keypair((&mut public_unused[..]).as_mut_ptr(), (&mut private[..]).as_mut_ptr())
};
private
}
/// The `ED25519_sign` function.
#[must_use]
pub fn ed25519_sign(message: &[u8], private_key: &[u8; 64]) -> Result<[u8; 64], BoringError> {
let mut sig = [0u8; 64];
unsafe { ED25519_sign(&mut sig, message.as_ptr(), message.len(), private_key)? };
Ok(sig)
}
/// The `ED25519_keypair_from_seed` function.
#[must_use]
pub fn ed25519_keypair_from_seed(seed: &[u8; 32]) -> ([u8; 32], [u8; 64]) {
let mut public = [0u8; 32];
let mut private = [0u8; 64];
unsafe {
ED25519_keypair_from_seed(
(&mut public[..]).as_mut_ptr(),
(&mut private[..]).as_mut_ptr(),
(&seed[..]).as_ptr(),
)
};
(public, private)
}
/// The `ED25519_verify` function.
#[must_use]
pub fn ed25519_verify(message: &[u8], signature: &[u8; 64], public_key: &[u8; 32]) -> bool {
unsafe { ED25519_verify(message.as_ptr(), message.len(), signature, public_key) }
}
impl CHeapWrapper<EVP_PKEY> {
/// The `EVP_parse_public_key` function.
#[must_use]
pub fn evp_parse_public_key(
cbs: &mut CStackWrapper<CBS>,
) -> Result<CHeapWrapper<EVP_PKEY>, BoringError> {
unsafe { Ok(CHeapWrapper::new_from(EVP_parse_public_key(cbs.as_mut())?)) }
}
/// The `EVP_marshal_public_key` function.
#[must_use]
pub fn evp_marshal_public_key(&self, cbb: &mut CStackWrapper<CBB>) -> Result<(), BoringError> {
unsafe { EVP_marshal_public_key(cbb.as_mut(), self.as_const()) }
}
/// The `EVP_PKEY_assign_EC_KEY` function.
pub fn evp_pkey_assign_ec_key(&mut self, ec_key: CHeapWrapper<EC_KEY>) {
unsafe {
// NOTE: It's very important that we use 'into_mut' here so that
// ec_key's refcount is not decremented. That's because
// EVP_PKEY_assign_EC_KEY doesn't increment the refcount of its
// argument.
let key = ec_key.into_mut();
// EVP_PKEY_assign_EC_KEY only fails if key is NULL.
EVP_PKEY_assign_EC_KEY(self.as_mut(), key).unwrap_abort()
}
}
/// The `EVP_PKEY_assign_RSA` function.
pub fn evp_pkey_assign_rsa(&mut self, rsa: CHeapWrapper<RSA>) {
unsafe {
// NOTE: It's very important that we use 'into_mut' here so that
// rsa's refcount is not decremented. That's because
// EVP_PKEY_assign_RSA doesn't increment the refcount of its
// argument.
let key = rsa.into_mut();
// EVP_PKEY_assign_RSA only fails if key is NULL.
EVP_PKEY_assign_RSA(self.as_mut(), key).unwrap_abort()
}
}
/// The `EVP_PKEY_get1_EC_KEY` function.
#[must_use]
pub fn evp_pkey_get1_ec_key(&mut self) -> Result<CHeapWrapper<EC_KEY>, BoringError> {
// NOTE: It's important that we use get1 here, as it increments the
// refcount of the EC_KEY before returning a pointer to it.
unsafe { Ok(CHeapWrapper::new_from(EVP_PKEY_get1_EC_KEY(self.as_mut())?)) }
}
/// The `EVP_PKEY_get1_RSA` function.
#[must_use]
pub fn evp_pkey_get1_rsa(&mut self) -> Result<CHeapWrapper<RSA>, BoringError> {
// NOTE: It's important that we use get1 here, as it increments the
// refcount of the RSA key before returning a pointer to it.
unsafe { Ok(CHeapWrapper::new_from(EVP_PKEY_get1_RSA(self.as_mut())?)) }
}
}
/// The `EVP_PBE_scrypt` function.
#[allow(non_snake_case)]
#[must_use]
pub fn evp_pbe_scrypt(
password: &[u8],
salt: &[u8],
N: u64,
r: u64,
p: u64,
max_mem: usize,
out_key: &mut [u8],
) -> Result<(), BoringError> {
unsafe {
EVP_PBE_scrypt(
password.as_ptr() as *const c_char,
password.len(),
salt.as_ptr(),
salt.len(),
N,
r,
p,
max_mem,
out_key.as_mut_ptr(),
out_key.len(),
)
}
}
/// The `PKCS5_PBKDF2_HMAC` function.
#[cfg(feature = "kdf")]
#[must_use]
pub fn pkcs5_pbkdf2_hmac(
password: &[u8],
salt: &[u8],
iterations: c_uint,
digest: &CRef<'static, EVP_MD>,
out_key: &mut [u8],
) -> Result<(), BoringError> {
unsafe {
raw::PKCS5_PBKDF2_HMAC(
password.as_ptr() as *const c_char,
password.len(),
salt.as_ptr(),
salt.len(),
iterations,
digest.as_const(),
out_key.len(),
out_key.as_mut_ptr(),
)
}
}
impl CStackWrapper<SHA512_CTX> {
/// Initializes a new `CStackWrapper<SHA512_CTX>` as a SHA-384 hash.
///
/// The BoringSSL `SHA512_CTX` is used for both the SHA-512 and SHA-384 hash
/// functions. The implementation of `Default` for
/// `CStackWrapper<SHA512_CTX>` produces a context initialized for a SHA-512
/// hash. In order to produce a context for a SHA-384 hash, use this
/// constructor instead.
#[must_use]
pub fn sha384_new() -> CStackWrapper<SHA512_CTX> {
unsafe {
let mut ctx = MaybeUninit::uninit();
SHA384_Init(ctx.as_mut_ptr());
CStackWrapper::new(ctx.assume_init())
}
}
}
macro_rules! impl_evp_digest {
(#[$doc:meta] $name:ident, $raw_name:ident) => {
#[$doc]
#[must_use]
pub fn $name() -> CRef<'static, EVP_MD> {
unsafe { CRef::new(::boringssl::raw::$raw_name()) }
}
};
}
impl CRef<'static, EVP_MD> {
impl_evp_digest!(
/// The `EVP_md5` function.
evp_md5,
EVP_md5
);
impl_evp_digest!(
/// The `EVP_sha1` function.
evp_sha1,
EVP_sha1
);
impl_evp_digest!(
/// The `EVP_sha256` function.
evp_sha256,
EVP_sha256
);
impl_evp_digest!(
/// The `EVP_sha384` function.
evp_sha384,
EVP_sha384
);
impl_evp_digest!(
/// The `EVP_sha512` function.
evp_sha512,
EVP_sha512
);
}
impl CStackWrapper<HMAC_CTX> {
/// Initializes a new `HMAC_CTX`.
///
/// `hmac_ctx_new` initializes a new `HMAC_CTX` using `HMAC_CTX_init` and
/// then further initializes it with `HMAC_CTX_Init_ex`. It can only fail
/// due to OOM.
#[must_use]
pub fn hmac_ctx_new(
key: &[u8],
md: &CRef<'static, EVP_MD>,
) -> Result<CStackWrapper<HMAC_CTX>, BoringError> {
unsafe {
let mut ctx = MaybeUninit::uninit();
HMAC_CTX_init(ctx.as_mut_ptr());
HMAC_Init_ex(
ctx.as_mut_ptr(),
key.as_ptr() as *const c_void,
key.len(),
md.as_const(),
)?;
Ok(CStackWrapper::new(ctx.assume_init()))
}
}
/// The `HMAC_Update` function.
pub fn hmac_update(&mut self, data: &[u8]) {
unsafe { HMAC_Update(self.as_mut(), data.as_ptr(), data.len()) }
}
// NOTE(joshlf): We require exactly the right length (as opposed to just
// long enough) so that we don't have to have hmac_final return a length.
/// The `HMAC_Final` function.
///
/// # Aborts
///
/// `hmac_final` aborts if `out` is not exactly the right length (as defined
/// by `HMAC_size`).
pub fn hmac_final(&mut self, out: &mut [u8]) {
unsafe {
let hmac_size = HMAC_size(self.as_const());
assert_abort_eq!(out.len(), hmac_size);
let mut hmac_final_size: u32 = 0;
// HMAC_Final is documented to fail on allocation failure, but an
// internal comment states that it's infallible. In either case, we
// want to panic. Normally, for allocation failure, we'd put the
// unwrap higher in the stack, but since this is supposed to be
// infallible anyway, we put it here.
//
// TODO(joshlf): Remove this comment once HMAC_Final is documented
// as being infallible.
HMAC_Final(self.as_mut(), out.as_mut_ptr(), &mut hmac_final_size).unwrap_abort();
// `HMAC_Final` guarantees that it will set its out argument to the
// same value returned by `HMAC_size`. If the conversion from `u32`
// to `usize` fails, that means that a) we are on a 16-bit platform
// and b) that `HMAC_Final` failed to uphold its contract.
assert_abort_eq!(
hmac_size,
hmac_final_size
.try_into()
.expect("`HMAC_Final` returned size out of range of `usize`")
);
assert_abort_eq!(out.len(), hmac_size);
}
}
/// The `HMAC_CTX_copy` function.
pub fn hmac_ctx_copy(&self) -> Result<Self, BoringError> {
unsafe {
let mut ctx = MaybeUninit::uninit();
HMAC_CTX_copy(ctx.as_mut_ptr(), self.as_const())?;
Ok(CStackWrapper::new(ctx.assume_init()))
}
}
}
impl CStackWrapper<RC4_KEY> {
/// The `RC4_set_key` function.
///
/// # Aborts
///
/// `RC4_set_key` encodes the key length with `u32`, which may differ from
/// the target platform's word size (`usize`). This function aborts if the
/// length of the `key` slice exceeds `u32::MAX`.
pub fn rc4_set_key(key: &[u8]) -> Self {
let mut rc4 = RC4_KEY { x: 0, y: 0, data: [0; 256] };
unsafe {
// `RC4_set_key` reads `key` and writes into `rc4`. It does not take
// ownership of `key` and `key` need not live as long as `rc4`.
RC4_set_key(&mut rc4, key.len().try_into().unwrap_abort(), key.as_ptr());
CStackWrapper::new(rc4)
}
}
/// The `RC4` function.
pub fn rc4(&mut self, input: &[u8], output: &mut [u8]) {
let len = cmp::min(input.len(), output.len());
let input = &input[..len];
let output = &mut output[..len];
unsafe {
RC4(self.as_mut(), len, input.as_ptr(), output.as_mut_ptr());
}
}
}
impl CHeapWrapper<RSA> {
/// The `RSA_bits` function.
#[must_use]
pub fn rsa_bits(&self) -> c_uint {
// RSA_bits does not mutate its argument but, for
// backwards-compatibility reasons, continues to take a normal
// (non-const) pointer.
unsafe { RSA_bits(self.as_const() as *mut _) }
}
/// The `RSA_generate_key_ex` function.
#[must_use]
pub fn rsa_generate_key_ex(
&mut self,
bits: c_int,
e: &CRef<'_, BIGNUM>,
) -> Result<(), BoringError> {
unsafe {
// NOTE: It's very important that we use 'into_mut' here so that e's
// refcount is not decremented. That's because RSA_generate_key_ex
// takes ownership of e, and thus doesn't increment its refcount.
RSA_generate_key_ex(self.as_mut(), bits, e.as_const(), ptr::null_mut())
}
}
/// The `RSA_marshal_private_key` function.
#[must_use]
pub fn rsa_marshal_private_key(&self, cbb: &mut CStackWrapper<CBB>) -> Result<(), BoringError> {
unsafe { RSA_marshal_private_key(cbb.as_mut(), self.as_const()) }
}
/// The `RSA_parse_private_key` function.
#[must_use]
pub fn rsa_parse_private_key(
cbs: &mut CStackWrapper<CBS>,
) -> Result<CHeapWrapper<RSA>, BoringError> {
unsafe { Ok(CHeapWrapper::new_from(RSA_parse_private_key(cbs.as_mut())?)) }
}
/// The `RSA_size` function.
#[must_use]
pub fn rsa_size(&self) -> Result<NonZeroUsize, BoringError> {
unsafe { RSA_size(self.as_const()) }
}
}
/// The `RSA_sign` function.
///
/// # Aborts
///
/// `rsa_sign` aborts if `sig` is shorter than the minimum required signature
/// size given by `rsa_size`.
#[cfg(feature = "rsa-pkcs1v15")]
pub fn rsa_sign(
hash_nid: c_int,
digest: &[u8],
sig: &mut [u8],
key: &CHeapWrapper<RSA>,
) -> Result<usize, BoringError> {
unsafe {
// If we call RSA_sign with sig.len() < min_size, it will invoke UB.
let min_size = key.rsa_size().unwrap_abort();
assert_abort!(sig.len() >= min_size.get());
let mut sig_len: c_uint = 0;
RSA_sign(
hash_nid,
digest.as_ptr(),
digest.len().try_into().unwrap_abort(),
sig.as_mut_ptr(),
&mut sig_len,
// RSA_sign does not mutate its argument but, for
// backwards-compatibility reasons, continues to take a normal
// (non-const) pointer.
key.as_const() as *mut _,
)?;
// RSA_sign guarantees that it only needs RSA_size bytes for the
// signature.
let sig_len = sig_len.try_into().unwrap_abort();
assert_abort!(sig_len <= min_size.get());
Ok(sig_len)
}
}
/// The `rsa_sign_pss_mgf1` function.
#[must_use]
pub fn rsa_sign_pss_mgf1(
key: &CHeapWrapper<RSA>,
sig: &mut [u8],
digest: &[u8],
md: &CRef<'static, EVP_MD>,
mgf1_md: Option<&CRef<'static, EVP_MD>>,
salt_len: c_int,
) -> Result<usize, BoringError> {
unsafe {
let mut sig_len: usize = 0;
RSA_sign_pss_mgf1(
// RSA_sign_pss_mgf1 does not mutate its argument but, for
// backwards-compatibility reasons, continues to take a normal
// (non-const) pointer.
key.as_const() as *mut _,
&mut sig_len,
sig.as_mut_ptr(),
sig.len(),
digest.as_ptr(),
digest.len(),
md.as_const(),
mgf1_md.map(CRef::as_const).unwrap_or(ptr::null()),
salt_len,
)?;
// RSA_sign_pss_mgf1 guarantees that it only needs RSA_size bytes for
// the signature.
let rsa_size = key.rsa_size().unwrap_abort();
let sig_len = sig_len;
assert_abort!(sig_len <= rsa_size.get());
Ok(sig_len)
}
}
/// The `RSA_verify` function.
#[must_use]
#[cfg(feature = "rsa-pkcs1v15")]
pub fn rsa_verify(hash_nid: c_int, digest: &[u8], sig: &[u8], key: &CHeapWrapper<RSA>) -> bool {
unsafe {
RSA_verify(
hash_nid,
digest.as_ptr(),
digest.len(),
sig.as_ptr(),
sig.len(),
// RSA_verify does not mutate its argument but, for
// backwards-compatibility reasons, continues to take a normal
// (non-const) pointer.
key.as_const() as *mut _,
)
}
}
/// The `RSA_verify_pss_mgf1` function.
#[must_use]
pub fn rsa_verify_pss_mgf1(
key: &CHeapWrapper<RSA>,
digest: &[u8],
md: &CRef<'static, EVP_MD>,
mgf1_md: Option<&CRef<'static, EVP_MD>>,
salt_len: c_int,
sig: &[u8],
) -> bool {
unsafe {
RSA_verify_pss_mgf1(
// RSA_verify_pss_mgf1 does not mutate its argument but, for
// backwards-compatibility reasons, continues to take a normal
// (non-const) pointer.
key.as_const() as *mut _,
digest.as_ptr(),
digest.len(),
md.as_const(),
mgf1_md.map(CRef::as_const).unwrap_or(ptr::null()),
salt_len,
sig.as_ptr(),
sig.len(),
)
}
}
/// Implements `CStackWrapper` for a hash context type.
///
/// The caller provides doc comments, a public method name, and a private
/// function name (from the `raw` module) for an update function and a final
/// function (e.g., `SHA256_Update` and `SHA256_Final`). Note that, as multiple
/// impl blocks are allowed for a particular type, the same context type may be
/// used multiple times. This is useful because both SHA-384 and SHA-512 use the
/// `SHA512_CTX` context type.
macro_rules! impl_hash {
($ctx:ident, $digest_len:ident, #[$update_doc:meta] $update:ident, $update_raw:ident, #[$final_doc:meta] $final:ident, $final_raw:ident) => {
impl CStackWrapper<$ctx> {
#[$update_doc]
pub fn $update(&mut self, data: &[u8]) {
unsafe {
::boringssl::raw::$update_raw(
self.as_mut(),
data.as_ptr() as *const c_void,
data.len(),
)
}
}
#[$final_doc]
#[must_use]
pub fn $final(
&mut self,
) -> [u8; ::bssl_sys::$digest_len as usize] {
unsafe {
let mut md = MaybeUninit::<[u8; ::bssl_sys::$digest_len as usize]>::uninit();
// SHA1_Final promises to return 1. SHA256_Final,
// SHA384_Final, and SHA512_Final all document that they
// only fail due to programmer error. The only input to the
// function which could cause this is the context. I suspect
// that the error condition is that XXX_Final is called
// twice without resetting, but I'm not sure. Until we
// figure it out, let's err on the side of caution and abort
// here.
//
// TODO(joshlf): Figure out how XXX_Final can fail.
::boringssl::raw::$final_raw(md.as_mut_ptr() as _, self.as_mut()).unwrap_abort();
md.assume_init()
}
}
}
};
(@doc_string $s:expr) => (#[doc="The `"] #[doc=$s] #[doc="` function."]);
}
/// Implements `Clone` for a `CStackWrapper<T>`.
///
/// Unsound for types without no-op `CDestruct` impls, or which
/// capture `!Sync` shared state.
macro_rules! impl_clone {
($ty: ty) => {
impl Clone for CStackWrapper<$ty> {
fn clone(&self) -> Self {
unsafe { CStackWrapper::new(*self.as_const()) }
}
}
};
}
impl_hash!(
MD5_CTX,
MD5_DIGEST_LENGTH,
/// The `MD5_Update` function.
md5_update,
MD5_Update,
/// The `MD5_Final` function.
md5_final,
MD5_Final
);
impl_clone!(MD5_CTX);
impl_hash!(
SHA_CTX,
SHA_DIGEST_LENGTH,
/// The `SHA1_Update` function.
sha1_update,
SHA1_Update,
/// The `SHA1_Final` function.
sha1_final,
SHA1_Final
);
impl_clone!(SHA_CTX);
impl_hash!(
SHA256_CTX,
SHA256_DIGEST_LENGTH,
/// The `SHA256_Update` function.
sha256_update,
SHA256_Update,
/// The `SHA256_Final` function.
sha256_final,
SHA256_Final
);
impl_clone!(SHA256_CTX);
impl_hash!(
SHA512_CTX,
SHA384_DIGEST_LENGTH,
/// The `SHA384_Update` function.
sha384_update,
SHA384_Update,
/// The `SHA384_Final` function.
sha384_final,
SHA384_Final
);
impl_hash!(
SHA512_CTX,
SHA512_DIGEST_LENGTH,
/// The `SHA512_Update` function.
sha512_update,
SHA512_Update,
/// The `SHA512_Final` function.
sha512_final,
SHA512_Final
);
impl_clone!(SHA512_CTX);
/// The `CRYPTO_memcmp` function.
///
/// `crypto_memcmp` first verifies that `a.len() == b.len()` before calling
/// `CRYPTO_memcmp`.
#[must_use]
pub fn crypto_memcmp(a: &[u8], b: &[u8]) -> bool {
if a.len() != b.len() {
return false;
}
unsafe { CRYPTO_memcmp(a.as_ptr() as *const c_void, b.as_ptr() as *const c_void, a.len()) == 0 }
}
/// The `RAND_bytes` function.
pub fn rand_bytes(buf: &mut [u8]) {
unsafe { RAND_bytes(buf.as_mut_ptr(), buf.len()) }
}
/// An error generated by BoringSSL.
///
/// The `Debug` impl prints a stack trace. Each element of the trace corresponds
/// to a function within BoringSSL which voluntarily pushed itself onto the
/// stack. In this sense, it is not the same as a normal stack trace. Each
/// element of the trace is of the form `[thread id]:error:[error code]:[library
/// name]:OPENSSL_internal:[reason string]:[file]:[line number]:[optional string
/// data]`.
///
/// The `Display` impl prints the first element of the stack trace.
///
/// Some BoringSSL functions do not record any error in the error stack. Errors
/// generated from such functions are printed as `error calling <function name>`
/// for both `Debug` and `Display` impls.
pub struct BoringError {
stack_trace: Vec<String>,
}
impl BoringError {
/// Consumes the error stack.
///
/// `f` is the name of the function that failed. If the error stack is empty
/// (some BoringSSL functions do not push errors onto the stack when
/// returning errors), the returned `BoringError` will simply note that the
/// named function failed; both the `Debug` and `Display` implementations
/// will return `error calling f`, where `f` is the value of the `f`
/// argument.
#[must_use]
fn consume_stack(f: &str) -> BoringError {
let stack_trace = {
let trace = get_error_stack_trace();
if trace.is_empty() {
vec![format!("error calling {}", f)]
} else {
trace
}
};
BoringError { stack_trace }
}
/// The number of frames in the stack trace.
///
/// Guaranteed to be at least 1.
#[must_use]
pub fn stack_depth(&self) -> usize {
self.stack_trace.len()
}
}
fn get_error_stack_trace() -> Vec<String> {
// Credit to agl@google.com for this implementation.
unsafe extern "C" fn error_callback(s: *const c_char, s_len: usize, ctx: *mut c_void) -> c_int {
let stack_trace = ctx as *mut Vec<String>;
let s = ::std::slice::from_raw_parts(s as *const u8, s_len - 1);
(*stack_trace).push(String::from_utf8_lossy(s).to_string());
1
}
let mut stack_trace = Vec::new();
unsafe { ERR_print_errors_cb(Some(error_callback), &mut stack_trace as *mut _ as *mut c_void) };
stack_trace
}
impl Display for BoringError {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "{}", self.stack_trace[0])
}
}
impl Debug for BoringError {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
for elem in &self.stack_trace {
writeln!(f, "{}", elem)?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use util::should_fail;
#[test]
fn test_boring_error() {
let _ = CStackWrapper::cbs_with_temp_buffer(&[], |cbs| {
should_fail(
CHeapWrapper::evp_parse_public_key(cbs),
"boringssl::EVP_parse_public_key",
"public key routines:OPENSSL_internal:DECODE_ERROR",
);
});
}
}