delivery_blob/
compression.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Implementation of chunked-compression library in Rust. Archives can be created by making a new
//! [`ChunkedArchive`] and serializing/writing it. An archive's header can be verified and seek
//! table decoded using [`decode_archive`].

use crc::Hasher32;
use itertools::Itertools;
use rayon::prelude::*;
use std::ops::Range;
use thiserror::Error;
use zerocopy::byteorder::{LE, U16, U32, U64};
use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Ref, Unaligned};

/// Validated chunk information from an archive. Compressed ranges are relative to the start of
/// compressed data (i.e. they start after the header and seek table).
// *NOTE*: Use caution when using the `#[source]` attribute or naming fields `source`. Some callers
// attempt to downcast library errors into the concrete type of the root cause.
// See https://docs.rs/thiserror/latest/thiserror/ for more information.
#[derive(Debug, Error)]
pub enum ChunkedArchiveError {
    #[error("Invalid or unsupported archive version.")]
    InvalidVersion,

    #[error("Archive header has incorrect magic.")]
    BadMagic,

    #[error("Integrity checks failed (e.g. incorrect CRC, inconsistent header fields).")]
    IntegrityError,

    #[error("Value is out of range or cannot be represented in specified type.")]
    OutOfRange,

    #[error("Error invoking Zstd function: `{0:?}`.")]
    ZstdError(std::io::Error),

    #[error("Error decompressing chunk {index}: `{error}`.")]
    DecompressionError { index: usize, error: std::io::Error },

    #[error("Error compressing chunk {index}: `{error}`.")]
    CompressionError { index: usize, error: std::io::Error },
}

/// Validated chunk information from an archive. Compressed ranges are relative to the start of
/// compressed data (i.e. they start after the header and seek table).
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ChunkInfo {
    pub decompressed_range: Range<usize>,
    pub compressed_range: Range<usize>,
}

/// Decode a chunked archive header. Returns validated seek table and start of chunk data. Ranges
/// in resulting chunks are relative to start of returned slice. Returns `Ok(None)` if `data` is not
/// large enough to decode the archive header & seek table.
pub fn decode_archive(
    data: &[u8],
    archive_length: usize,
) -> Result<Option<(Vec<ChunkInfo>, /*archive_data*/ &[u8])>, ChunkedArchiveError> {
    match Ref::<_, ChunkedArchiveHeader>::from_prefix(data).map_err(Into::into) {
        Ok((header, data)) => header.decode_seek_table(data, archive_length as u64),
        Err(zerocopy::SizeError { .. }) => Ok(None), // Not enough data.
    }
}

impl ChunkInfo {
    fn from_entry(
        entry: &SeekTableEntry,
        header_length: usize,
    ) -> Result<Self, ChunkedArchiveError> {
        let decompressed_start = entry.decompressed_offset.get() as usize;
        let decompressed_size = entry.decompressed_size.get() as usize;
        let decompressed_range = decompressed_start
            ..decompressed_start
                .checked_add(decompressed_size)
                .ok_or(ChunkedArchiveError::OutOfRange)?;

        let compressed_offset = entry.compressed_offset.get() as usize;
        let compressed_start = compressed_offset
            .checked_sub(header_length)
            .ok_or(ChunkedArchiveError::IntegrityError)?;
        let compressed_size = entry.compressed_size.get() as usize;
        let compressed_range = compressed_start
            ..compressed_start
                .checked_add(compressed_size)
                .ok_or(ChunkedArchiveError::OutOfRange)?;

        Ok(Self { decompressed_range, compressed_range })
    }
}

/// Chunked archive header.
#[derive(IntoBytes, KnownLayout, FromBytes, Immutable, Unaligned, Clone, Copy, Debug)]
#[repr(C)]
struct ChunkedArchiveHeader {
    magic: [u8; 8],
    version: U16<LE>,
    reserved_0: U16<LE>,
    num_entries: U32<LE>,
    checksum: U32<LE>,
    reserved_1: U32<LE>,
    reserved_2: U64<LE>,
}

/// Chunked archive seek table entry.
#[derive(IntoBytes, KnownLayout, FromBytes, Immutable, Unaligned, Clone, Copy, Debug)]
#[repr(C)]
struct SeekTableEntry {
    decompressed_offset: U64<LE>,
    decompressed_size: U64<LE>,
    compressed_offset: U64<LE>,
    compressed_size: U64<LE>,
}

impl ChunkedArchiveHeader {
    const CHUNKED_ARCHIVE_MAGIC: [u8; 8] = [0x46, 0x9b, 0x78, 0xef, 0x0f, 0xd0, 0xb2, 0x03];
    const CHUNKED_ARCHIVE_VERSION: u16 = 2;
    const CHUNKED_ARCHIVE_MAX_FRAMES: usize = 1023;
    const CHUNKED_ARCHIVE_CHECKSUM_OFFSET: usize = 16;

    fn new(seek_table: &[SeekTableEntry]) -> Result<Self, ChunkedArchiveError> {
        let header: ChunkedArchiveHeader = Self {
            magic: Self::CHUNKED_ARCHIVE_MAGIC,
            version: Self::CHUNKED_ARCHIVE_VERSION.into(),
            reserved_0: 0.into(),
            num_entries: TryInto::<u32>::try_into(seek_table.len())
                .or(Err(ChunkedArchiveError::OutOfRange))?
                .into(),
            checksum: 0.into(), // `checksum` is calculated below.
            reserved_1: 0.into(),
            reserved_2: 0.into(),
        };
        Ok(Self { checksum: header.checksum(seek_table).into(), ..header })
    }

    /// Calculate the checksum of the header + all seek table entries.
    fn checksum(&self, entries: &[SeekTableEntry]) -> u32 {
        let mut first_crc = crc::crc32::Digest::new(crc::crc32::IEEE);
        first_crc.write(&self.as_bytes()[..Self::CHUNKED_ARCHIVE_CHECKSUM_OFFSET]);
        let mut crc = crc::crc32::Digest::new_with_initial(crc::crc32::IEEE, first_crc.sum32());
        crc.write(
            &self.as_bytes()
                [Self::CHUNKED_ARCHIVE_CHECKSUM_OFFSET + self.checksum.as_bytes().len()..],
        );
        crc.write(entries.as_bytes());
        crc.sum32()
    }

    /// Calculate the total header length of an archive *including* all seek table entries.
    fn header_length(num_entries: usize) -> usize {
        std::mem::size_of::<ChunkedArchiveHeader>()
            + (std::mem::size_of::<SeekTableEntry>() * num_entries)
    }

    /// Decode seek table for this archive. Returns validated seek table and start of chunk data.
    /// `data` must point to the start of the seek table. Returns `Ok(None)` if `data` is not large
    /// enough to decode all seek table entries.
    fn decode_seek_table(
        self,
        data: &[u8],
        archive_length: u64,
    ) -> Result<Option<(Vec<ChunkInfo>, /*chunk_data*/ &[u8])>, ChunkedArchiveError> {
        // Deserialize seek table.
        let num_entries = self.num_entries.get() as usize;
        let Ok((entries, chunk_data)) =
            Ref::<_, [SeekTableEntry]>::from_prefix_with_elems(data, num_entries)
        else {
            return Ok(None);
        };
        let entries: &[SeekTableEntry] = Ref::into_ref(entries);

        // Validate archive header.
        if self.magic != Self::CHUNKED_ARCHIVE_MAGIC {
            return Err(ChunkedArchiveError::BadMagic);
        }
        if self.version.get() != Self::CHUNKED_ARCHIVE_VERSION {
            return Err(ChunkedArchiveError::InvalidVersion);
        }
        if self.checksum.get() != self.checksum(entries) {
            return Err(ChunkedArchiveError::IntegrityError);
        }
        if entries.len() > Self::CHUNKED_ARCHIVE_MAX_FRAMES {
            return Err(ChunkedArchiveError::IntegrityError);
        }

        // Validate seek table using invariants I0 through I5.

        // I0: The first seek table entry, if any, must have decompressed offset 0.
        if !entries.is_empty() && entries[0].decompressed_offset.get() != 0 {
            return Err(ChunkedArchiveError::IntegrityError);
        }

        // I1: The compressed offsets of all seek table entries must not overlap with the header.
        let header_length = Self::header_length(entries.len());
        if entries.iter().any(|entry| entry.compressed_offset.get() < header_length as u64) {
            return Err(ChunkedArchiveError::IntegrityError);
        }

        // I2: Each entry's decompressed offset must be equal to the end of the previous frame
        //     (i.e. to the previous frame's decompressed offset + length).
        for (prev, curr) in entries.iter().tuple_windows() {
            if (prev.decompressed_offset.get() + prev.decompressed_size.get())
                != curr.decompressed_offset.get()
            {
                return Err(ChunkedArchiveError::IntegrityError);
            }
        }

        // I3: Each entry's compressed offset must be greater than or equal to the end of the
        //     previous frame (i.e. to the previous frame's compressed offset + length).
        for (prev, curr) in entries.iter().tuple_windows() {
            if (prev.compressed_offset.get() + prev.compressed_size.get())
                > curr.compressed_offset.get()
            {
                return Err(ChunkedArchiveError::IntegrityError);
            }
        }

        // I4: Each entry must have a non-zero decompressed and compressed length.
        for entry in entries.iter() {
            if entry.decompressed_size.get() == 0 || entry.compressed_size.get() == 0 {
                return Err(ChunkedArchiveError::IntegrityError);
            }
        }

        // I5: Data referenced by each entry must fit within the specified file size.
        for entry in entries.iter() {
            let compressed_end = entry.compressed_offset.get() + entry.compressed_size.get();
            if compressed_end > archive_length {
                return Err(ChunkedArchiveError::IntegrityError);
            }
        }

        let seek_table = entries
            .into_iter()
            .map(|entry| ChunkInfo::from_entry(entry, header_length))
            .try_collect()?;
        Ok(Some((seek_table, chunk_data)))
    }
}

/// In-memory representation of a compressed chunk.
pub struct CompressedChunk {
    /// Compressed data for this chunk.
    pub compressed_data: Vec<u8>,
    /// Size of this chunk when decompressed.
    pub decompressed_size: usize,
}

/// In-memory representation of a compressed chunked archive.
pub struct ChunkedArchive {
    /// Chunks this archive contains, in order. Right now we only allow creating archives with
    /// contiguous compressed and decompressed space.
    chunks: Vec<CompressedChunk>,
    /// Size used to chunk input when creating this archive. Last chunk may be smaller than this amount.
    chunk_size: usize,
}

impl ChunkedArchive {
    const MAX_CHUNKS: usize = ChunkedArchiveHeader::CHUNKED_ARCHIVE_MAX_FRAMES;
    const TARGET_CHUNK_SIZE: usize = 32 * 1024;
    const COMPRESSION_LEVEL: i32 = 14;

    /// Create a ChunkedArchive for `data` compressing each chunk in parallel. This function uses
    /// the `rayon` crate for parallelism. By default compression happens in the global thread pool,
    /// but this function can also be executed within a locally scoped pool.
    pub fn new(data: &[u8], chunk_alignment: usize) -> Result<Self, ChunkedArchiveError> {
        let chunk_size = ChunkedArchive::chunk_size_for(data.len(), chunk_alignment);
        let mut chunks: Vec<Result<CompressedChunk, ChunkedArchiveError>> = vec![];
        data.par_chunks(chunk_size)
            .enumerate()
            .map(|(index, chunk)| {
                // Creating and destroying zstd::bulk::Compressor objects is expensive. A single
                // `Compressor` is created for each `rayon` thread and is reused across chunks.
                thread_local! {
                    static COMPRESSOR: std::cell::RefCell<zstd::bulk::Compressor<'static>> =
                        std::cell::RefCell::new({
                            let mut compressor =
                                zstd::bulk::Compressor::new(ChunkedArchive::COMPRESSION_LEVEL)
                                    .unwrap();
                            compressor
                                .set_parameter(zstd::zstd_safe::CParameter::ChecksumFlag(true))
                                .unwrap();
                            compressor
                        });
                }
                let compressed_data = COMPRESSOR.with(|compressor| {
                    let mut compressor = compressor.borrow_mut();
                    compressor
                        .compress(chunk)
                        .map_err(|error| ChunkedArchiveError::CompressionError { index, error })
                })?;
                Ok(CompressedChunk { compressed_data, decompressed_size: chunk.len() })
            })
            .collect_into_vec(&mut chunks);
        let chunks: Vec<_> = chunks.into_iter().try_collect()?;
        Ok(ChunkedArchive { chunks, chunk_size })
    }

    /// Accessor for compressed chunk data.
    pub fn chunks(&self) -> &Vec<CompressedChunk> {
        &self.chunks
    }

    /// The chunk size calculated for this archive during compression. Represents how input data
    /// was chunked for compression. Note that the final chunk may be smaller than this amount
    /// when decompressed.
    pub fn chunk_size(&self) -> usize {
        self.chunk_size
    }

    /// Sum of sizes of all compressed chunks.
    pub fn compressed_data_size(&self) -> usize {
        self.chunks.iter().map(|chunk| chunk.compressed_data.len()).sum()
    }

    /// Total size of the archive in bytes.
    pub fn serialized_size(&self) -> usize {
        ChunkedArchiveHeader::header_length(self.chunks.len()) + self.compressed_data_size()
    }

    /// Write the archive to `writer`.
    pub fn write(self, mut writer: impl std::io::Write) -> Result<(), std::io::Error> {
        let seek_table = self.make_seek_table();
        let header = ChunkedArchiveHeader::new(&seek_table).unwrap();
        writer.write_all(header.as_bytes())?;
        writer.write_all(seek_table.as_slice().as_bytes())?;
        for chunk in self.chunks {
            writer.write_all(&chunk.compressed_data)?;
        }
        Ok(())
    }

    /// Calculate how large chunks must be for a given uncompressed buffer.
    fn chunk_size_for(uncompressed_length: usize, chunk_alignment: usize) -> usize {
        if uncompressed_length <= (Self::MAX_CHUNKS * Self::TARGET_CHUNK_SIZE) {
            return Self::TARGET_CHUNK_SIZE;
        }
        // TODO(https://github.com/rust-lang/rust/issues/88581): Replace with
        // `{integer}::div_ceil()` when `int_roundings` is available.
        let chunk_size =
            round_up(uncompressed_length, ChunkedArchive::MAX_CHUNKS) / ChunkedArchive::MAX_CHUNKS;
        return round_up(chunk_size, chunk_alignment);
    }

    /// Create the seek table for this archive.
    fn make_seek_table(&self) -> Vec<SeekTableEntry> {
        let header_length = ChunkedArchiveHeader::header_length(self.chunks.len());
        let mut seek_table = vec![];
        seek_table.reserve(self.chunks.len());
        let mut compressed_size: usize = 0;
        let mut decompressed_offset: usize = 0;
        for chunk in &self.chunks {
            seek_table.push(SeekTableEntry {
                decompressed_offset: (decompressed_offset as u64).into(),
                decompressed_size: (chunk.decompressed_size as u64).into(),
                compressed_offset: ((header_length + compressed_size) as u64).into(),
                compressed_size: (chunk.compressed_data.len() as u64).into(),
            });
            compressed_size += chunk.compressed_data.len();
            decompressed_offset += chunk.decompressed_size;
        }
        seek_table
    }
}

/// Streaming decompressor for chunked archives. Example:
/// ```
/// // Create a chunked archive:
/// let data: Vec<u8> = vec![3; 1024];
/// let compressed = ChunkedArchive::new(&data, /*block_size*/ 8192).serialize().unwrap();
/// // Verify the header + decode the seek table:
/// let (seek_table, archive_data) = decode_archive(&compressed, compressed.len())?.unwrap();
/// let mut decompressed: Vec<u8> = vec![];
/// let mut on_chunk = |data: &[u8]| { decompressed.extend_from_slice(data); };
/// let mut decompressor = ChunkedDecompressor(seek_table);
/// // `on_chunk` is invoked as each slice is made available. Archive can be provided as chunks.
/// decompressor.update(archive_data, &mut on_chunk);
/// assert_eq!(data.as_slice(), decompressed.as_slice());
/// ```
pub struct ChunkedDecompressor {
    seek_table: Vec<ChunkInfo>,
    buffer: Vec<u8>,
    data_written: usize,
    curr_chunk: usize,
    total_compressed_size: usize,
    decompressor: zstd::bulk::Decompressor<'static>,
    decompressed_buffer: Vec<u8>,
    error_handler: Option<ErrorHandler>,
}

type ErrorHandler = Box<dyn Fn(usize, ChunkInfo, &[u8]) -> () + Send + 'static>;

impl ChunkedDecompressor {
    /// Create a new decompressor to decode an archive from a validated seek table.
    pub fn new(seek_table: Vec<ChunkInfo>) -> Result<Self, ChunkedArchiveError> {
        let total_compressed_size =
            seek_table.last().map(|last_chunk| last_chunk.compressed_range.end).unwrap_or(0);
        let decompressed_buffer =
            vec![0u8; seek_table.first().map(|c| c.decompressed_range.len()).unwrap_or(0)];
        let decompressor =
            zstd::bulk::Decompressor::new().map_err(ChunkedArchiveError::ZstdError)?;
        Ok(Self {
            seek_table,
            buffer: vec![],
            data_written: 0,
            curr_chunk: 0,
            total_compressed_size,
            decompressor,
            decompressed_buffer,
            error_handler: None,
        })
    }

    /// Creates a new decompressor with an additional error handler invoked when a chunk fails to be
    /// decompressed.
    pub fn new_with_error_handler(
        seek_table: Vec<ChunkInfo>,
        error_handler: ErrorHandler,
    ) -> Result<Self, ChunkedArchiveError> {
        Ok(Self { error_handler: Some(error_handler), ..Self::new(seek_table)? })
    }

    pub fn seek_table(&self) -> &Vec<ChunkInfo> {
        &self.seek_table
    }

    fn finish_chunk(
        &mut self,
        data: &[u8],
        chunk_callback: &mut impl FnMut(&[u8]) -> (),
    ) -> Result<(), ChunkedArchiveError> {
        debug_assert_eq!(data.len(), self.seek_table[self.curr_chunk].compressed_range.len());
        let chunk = &self.seek_table[self.curr_chunk];
        let decompressed_size = self
            .decompressor
            .decompress_to_buffer(data, self.decompressed_buffer.as_mut_slice())
            .map_err(|error| {
                if let Some(ref error_handler) = self.error_handler {
                    error_handler(self.curr_chunk, chunk.clone(), data.as_bytes());
                }
                ChunkedArchiveError::DecompressionError { index: self.curr_chunk, error }
            })?;
        if decompressed_size != chunk.decompressed_range.len() {
            return Err(ChunkedArchiveError::IntegrityError);
        }
        chunk_callback(&self.decompressed_buffer[..decompressed_size]);
        self.curr_chunk += 1;
        Ok(())
    }

    /// Update the decompressor with more data.
    pub fn update(
        &mut self,
        mut data: &[u8],
        chunk_callback: &mut impl FnMut(&[u8]) -> (),
    ) -> Result<(), ChunkedArchiveError> {
        // Caller must not provide too much data.
        if self.data_written + data.len() > self.total_compressed_size {
            return Err(ChunkedArchiveError::OutOfRange);
        }
        self.data_written += data.len();

        // If we had leftover data from a previous read, append until we've filled a chunk.
        if !self.buffer.is_empty() {
            let to_read = std::cmp::min(
                data.len(),
                self.seek_table[self.curr_chunk]
                    .compressed_range
                    .len()
                    .checked_sub(self.buffer.len())
                    .unwrap(),
            );
            self.buffer.extend_from_slice(&data[..to_read]);
            if self.buffer.len() == self.seek_table[self.curr_chunk].compressed_range.len() {
                // Take self.buffer temporarily (so we don't have to split borrows).
                // That way we don't have to re-commit the pages we've already used in the buffer
                // for next time.
                let full_chunk = std::mem::take(&mut self.buffer);
                self.finish_chunk(&full_chunk[..], chunk_callback)?;
                self.buffer = full_chunk;
                // Draining the buffer will set the length to 0 but keep the capacity the same.
                self.buffer.drain(..);
            }
            data = &data[to_read..];
        }

        // Decode as many full chunks as we can.
        while !data.is_empty()
            && self.curr_chunk < self.seek_table.len()
            && self.seek_table[self.curr_chunk].compressed_range.len() <= data.len()
        {
            let len = self.seek_table[self.curr_chunk].compressed_range.len();
            self.finish_chunk(&data[..len], chunk_callback)?;
            data = &data[len..];
        }

        // Buffer the rest for the next call.
        if !data.is_empty() {
            debug_assert!(self.curr_chunk < self.seek_table.len());
            debug_assert!(self.data_written < self.total_compressed_size);
            self.buffer.extend_from_slice(data);
        }

        debug_assert!(
            self.data_written < self.total_compressed_size
                || self.curr_chunk == self.seek_table.len()
        );

        Ok(())
    }
}

/// TODO(https://github.com/rust-lang/rust/issues/88581): Replace with
/// `{integer}::checked_next_multiple_of()` when `int_roundings` is available.
fn round_up(value: usize, multiple: usize) -> usize {
    let remainder = value % multiple;
    if remainder > 0 {
        value.checked_add(multiple - remainder).unwrap()
    } else {
        value
    }
}

#[cfg(test)]
mod tests {

    use super::*;
    use rand::Rng;
    use std::matches;

    const BLOCK_SIZE: usize = 8192;

    /// Create a compressed archive and ensure we can decode it as a valid archive that passes all
    /// required integrity checks.
    #[test]
    fn compress_simple() {
        let data: Vec<u8> = vec![0; 32 * 1024 * 16];
        let archive = ChunkedArchive::new(&data, BLOCK_SIZE).unwrap();
        // This data is highly compressible, so the result should be smaller than the original.
        let mut compressed: Vec<u8> = vec![];
        archive.write(&mut compressed).unwrap();
        assert!(compressed.len() <= data.len());
        // We should be able to decode and verify the archive's integrity in-place.
        assert!(decode_archive(&compressed, compressed.len()).unwrap().is_some());
    }

    /// Generate a header + seek table for verifying invariants/integrity checks.
    fn generate_archive(
        num_entries: usize,
    ) -> (ChunkedArchiveHeader, Vec<SeekTableEntry>, /*archive_length*/ u64) {
        let mut seek_table = vec![];
        seek_table.reserve(num_entries);
        let header_length = ChunkedArchiveHeader::header_length(num_entries) as u64;
        const COMPRESSED_CHUNK_SIZE: u64 = 1024;
        const DECOMPRESSED_CHUNK_SIZE: u64 = 2048;
        for n in 0..(num_entries as u64) {
            seek_table.push(SeekTableEntry {
                compressed_offset: (header_length + (n * COMPRESSED_CHUNK_SIZE)).into(),
                compressed_size: COMPRESSED_CHUNK_SIZE.into(),
                decompressed_offset: (n * DECOMPRESSED_CHUNK_SIZE).into(),
                decompressed_size: DECOMPRESSED_CHUNK_SIZE.into(),
            });
        }
        let header = ChunkedArchiveHeader::new(&seek_table).unwrap();
        let archive_length: u64 = header_length + (num_entries as u64 * COMPRESSED_CHUNK_SIZE);
        (header, seek_table, archive_length)
    }

    #[test]
    fn should_validate_self() {
        let (header, seek_table, archive_length) = generate_archive(4);
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(header.decode_seek_table(serialized_table, archive_length).unwrap().is_some());
    }

    #[test]
    fn should_validate_empty() {
        let (header, _, archive_length) = generate_archive(0);
        assert!(header.decode_seek_table(&[], archive_length).unwrap().is_some());
    }

    #[test]
    fn should_detect_bad_magic() {
        let (header, seek_table, archive_length) = generate_archive(4);
        let mut corrupt_magic = ChunkedArchiveHeader::CHUNKED_ARCHIVE_MAGIC;
        corrupt_magic[0] = !corrupt_magic[0];
        let bad_magic = ChunkedArchiveHeader { magic: corrupt_magic, ..header };
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            bad_magic.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::BadMagic
        ));
    }
    #[test]
    fn should_detect_wrong_version() {
        let (header, seek_table, archive_length) = generate_archive(4);
        let wrong_version = ChunkedArchiveHeader {
            version: (ChunkedArchiveHeader::CHUNKED_ARCHIVE_VERSION + 1).into(),
            ..header
        };
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            wrong_version.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::InvalidVersion
        ));
    }

    #[test]
    fn should_detect_corrupt_checksum() {
        let (header, seek_table, archive_length) = generate_archive(4);
        let corrupt_checksum =
            ChunkedArchiveHeader { checksum: (!header.checksum.get()).into(), ..header };
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            corrupt_checksum.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn should_reject_too_many_entries() {
        let (too_many_entries, seek_table, archive_length) =
            generate_archive(ChunkedArchiveHeader::CHUNKED_ARCHIVE_MAX_FRAMES + 1);

        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            too_many_entries.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn invariant_i0_first_entry_zero() {
        let (header, mut seek_table, archive_length) = generate_archive(4);
        assert_eq!(seek_table[0].decompressed_offset.get(), 0);
        seek_table[0].decompressed_offset = 1.into();

        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            header.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn invariant_i1_no_header_overlap() {
        let (header, mut seek_table, archive_length) = generate_archive(4);
        let header_end = ChunkedArchiveHeader::header_length(seek_table.len()) as u64;
        assert!(seek_table[0].compressed_offset.get() >= header_end);
        seek_table[0].compressed_offset = (header_end - 1).into();
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            header.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn invariant_i2_decompressed_monotonic() {
        let (header, mut seek_table, archive_length) = generate_archive(4);
        assert_eq!(
            seek_table[0].decompressed_offset.get() + seek_table[0].decompressed_size.get(),
            seek_table[1].decompressed_offset.get()
        );
        seek_table[1].decompressed_offset = (seek_table[1].decompressed_offset.get() - 1).into();
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            header.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn invariant_i3_compressed_monotonic() {
        let (header, mut seek_table, archive_length) = generate_archive(4);
        assert!(
            (seek_table[0].compressed_offset.get() + seek_table[0].compressed_size.get())
                <= seek_table[1].compressed_offset.get()
        );
        seek_table[1].compressed_offset = (seek_table[1].compressed_offset.get() - 1).into();
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            header.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn invariant_i4_nonzero_compressed_size() {
        let (header, mut seek_table, archive_length) = generate_archive(4);
        assert!(seek_table[0].compressed_size.get() > 0);
        seek_table[0].compressed_size = 0.into();
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            header.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn invariant_i4_nonzero_decompressed_size() {
        let (header, mut seek_table, archive_length) = generate_archive(4);
        assert!(seek_table[0].decompressed_size.get() > 0);
        seek_table[0].decompressed_size = 0.into();
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            header.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn invariant_i5_within_archive() {
        let (header, mut seek_table, archive_length) = generate_archive(4);
        let last_entry = seek_table.last_mut().unwrap();
        assert!(
            (last_entry.compressed_offset.get() + last_entry.compressed_size.get())
                <= archive_length
        );
        last_entry.compressed_offset = (archive_length + 1).into();
        let serialized_table = seek_table.as_slice().as_bytes();
        assert!(matches!(
            header.decode_seek_table(serialized_table, archive_length).unwrap_err(),
            ChunkedArchiveError::IntegrityError
        ));
    }

    #[test]
    fn max_chunks() {
        assert_eq!(
            ChunkedArchive::chunk_size_for(
                ChunkedArchive::MAX_CHUNKS * ChunkedArchive::TARGET_CHUNK_SIZE,
                BLOCK_SIZE,
            ),
            ChunkedArchive::TARGET_CHUNK_SIZE
        );
        assert_eq!(
            ChunkedArchive::chunk_size_for(
                ChunkedArchive::MAX_CHUNKS * ChunkedArchive::TARGET_CHUNK_SIZE + 1,
                BLOCK_SIZE,
            ),
            ChunkedArchive::TARGET_CHUNK_SIZE + BLOCK_SIZE
        );
    }

    #[test]
    fn test_decompressor_empty_archive() {
        let mut compressed: Vec<u8> = vec![];
        ChunkedArchive::new(&[], BLOCK_SIZE)
            .expect("compress")
            .write(&mut compressed)
            .expect("write archive");
        let (seek_table, chunk_data) =
            decode_archive(&compressed, compressed.len()).unwrap().unwrap();
        assert!(seek_table.is_empty());
        let mut decompressor = ChunkedDecompressor::new(seek_table).unwrap();
        let mut chunk_callback = |_chunk: &[u8]| panic!("Archive doesn't have any chunks.");
        // Stream data into the decompressor in small chunks to exhaust more edge cases.
        chunk_data
            .chunks(4)
            .for_each(|data| decompressor.update(data, &mut chunk_callback).unwrap());
    }

    #[test]
    fn test_decompressor() {
        const UNCOMPRESSED_LENGTH: usize = 3_000_000;
        let data: Vec<u8> = {
            let range = rand::distributions::Uniform::<u8>::new_inclusive(0, 255);
            rand::thread_rng().sample_iter(&range).take(UNCOMPRESSED_LENGTH).collect()
        };
        let mut compressed: Vec<u8> = vec![];
        ChunkedArchive::new(&data, BLOCK_SIZE)
            .expect("compress")
            .write(&mut compressed)
            .expect("write archive");
        let (seek_table, chunk_data) =
            decode_archive(&compressed, compressed.len()).unwrap().unwrap();

        // Make sure we have multiple chunks for this test.
        let num_chunks = seek_table.len();
        assert!(num_chunks > 1);

        let mut decompressor = ChunkedDecompressor::new(seek_table).unwrap();

        let mut decoded_chunks: usize = 0;
        let mut decompressed_offset: usize = 0;
        let mut chunk_callback = |decompressed_chunk: &[u8]| {
            assert!(
                decompressed_chunk
                    == &data[decompressed_offset..decompressed_offset + decompressed_chunk.len()]
            );
            decompressed_offset += decompressed_chunk.len();
            decoded_chunks += 1;
        };

        // Stream data into the decompressor in small chunks to exhaust more edge cases.
        chunk_data
            .chunks(4)
            .for_each(|data| decompressor.update(data, &mut chunk_callback).unwrap());
        assert_eq!(decoded_chunks, num_chunks);
    }

    #[test]
    fn test_decompressor_corrupt_decompressed_size() {
        let data = vec![0; 3_000_000];
        let mut compressed: Vec<u8> = vec![];
        ChunkedArchive::new(&data, BLOCK_SIZE)
            .expect("compress")
            .write(&mut compressed)
            .expect("write archive");
        let (mut seek_table, chunk_data) =
            decode_archive(&compressed, compressed.len()).unwrap().unwrap();

        // Corrupt the decompressed size of the chunk.
        seek_table[0].decompressed_range =
            seek_table[0].decompressed_range.start..seek_table[0].decompressed_range.end + 1;

        let mut decompressor = ChunkedDecompressor::new(seek_table).unwrap();
        assert!(matches!(
            decompressor.update(&chunk_data, &mut |_chunk| {}),
            Err(ChunkedArchiveError::IntegrityError)
        ));
    }

    #[test]
    fn test_decompressor_corrupt_compressed_size() {
        let data = vec![0; 3_000_000];
        let mut compressed: Vec<u8> = vec![];
        ChunkedArchive::new(&data, BLOCK_SIZE)
            .expect("compress")
            .write(&mut compressed)
            .expect("write archive");
        let (mut seek_table, chunk_data) =
            decode_archive(&compressed, compressed.len()).unwrap().unwrap();

        // Corrupt the compressed size of the chunk.
        seek_table[0].compressed_range =
            seek_table[0].compressed_range.start..seek_table[0].compressed_range.end - 1;
        let first_chunk_info = seek_table[0].clone();
        let error_handler = move |chunk_index: usize, chunk_info: ChunkInfo, chunk_data: &[u8]| {
            assert_eq!(chunk_index, 0);
            assert_eq!(chunk_info, first_chunk_info);
            assert_eq!(chunk_data.len(), chunk_info.compressed_range.len());
        };

        let mut decompressor =
            ChunkedDecompressor::new_with_error_handler(seek_table, Box::new(error_handler))
                .unwrap();
        assert!(matches!(
            decompressor.update(&chunk_data, &mut |_chunk| {}),
            Err(ChunkedArchiveError::DecompressionError { index: 0, .. })
        ));
    }
}