char_collection/
char_collection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{format_err, Error};
use std::clone::Clone;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::ops::Range;
use unic_char_range::{chars, CharIter, CharRange};

/// A trait for objects that represent one or more disjoint, non-adjacent
/// [CharRanges](unic_char_range::CharRange).
pub trait MultiCharRange {
    /// Iterate over the disjoint, non-adjacent [CharRange]s in the collection in ascending order.
    fn iter_ranges<'a>(&'a self) -> Box<dyn Iterator<Item = CharRange> + 'a>;
    /// The number of ranges in the collection.
    fn range_count(&self) -> usize;
}

/// A collection of `char`s (i.e. Unicode code points), used for storing large continuous ranges
/// efficiently.
///
/// Lookups and insertions are O(log <var>R</var>), where <var>R</var> is the number of disjoint
/// ranges in the collection.
///
/// The easiest way to create instances is using the
/// [char_collect!](::char_collection::char_collect) macro.
///
/// ```
/// use char_collection::CharCollection;
///
/// let mut collection: CharCollection = char_collect!('a'..='d', 'x'..='z');
/// char_collection += 'e';
/// char_collection += chars!('p'..='t');
/// assert_eq!(
///     collection.iter_ranges().collect(),
///     vec![chars!('a'..='e'), chars!('p'..='t'), chars!('x'..='z')]);
///
/// assert!(collection.contains(&'c'));
/// assert!(collection.contains_range(chars!('q'..='s')));
/// assert!(!collection.contains(&'9'));
///
/// collection -= chars!('t'..='y');
/// assert_eq!(
///     collection.iter_ranges().collect(),
///     vec![chars!('a'..='e', chars!('p'..'s'), chars!('z'..='z'))]);
/// ```
///
/// TODO(kpozin): Implement IntoIter.
#[derive(Clone, Debug, Eq, PartialEq, Default)]
pub struct CharCollection {
    ranges: Vec<CharRange>,
}

impl CharCollection {
    /// Create a new, empty `CharCollection`.
    pub fn new() -> CharCollection {
        CharCollection::default()
    }

    /// Create a new `CharCollection` from a list of disjoint, non-adjacent `CharRange`s, pre-sorted
    /// in ascending code point order.
    ///
    /// This factory method is primarily intended for use in deserializing valid representations of
    /// `CharCollections`. Will return an error if ranges are out of order, overlapping, or
    /// adjacent.
    pub fn from_sorted_ranges<T>(ranges: T) -> Result<CharCollection, Error>
    where
        T: IntoIterator<Item = CharRange>,
    {
        // If the original `ranges` is also a Vec, this doesn't result in an extra copy.
        let collection = CharCollection { ranges: ranges.into_iter().collect() };
        let ranges: &Vec<CharRange> = &collection.ranges;
        match (1..ranges.len()).find(|i| (ranges[*i].low as i64 - ranges[*i - 1].high as i64) <= 1)
        {
            Some(i) => Err(format_err!(
                "These ranges are out of order, overlapping, or adjacent: {}, {}",
                format_range(&ranges[i - 1]),
                format_range(&ranges[i])
            )),
            None => Ok(collection),
        }
    }

    /// Create a new `CharCollection` from a list of `char`s, pre-sorted in ascending code point
    /// order.
    ///
    /// This factory method is primarily intended for use in deserializing valid representations of
    /// `CharCollections`. Will return an error if chars are out of order or contain duplicates.
    pub fn from_sorted_chars<T>(chars: T) -> Result<CharCollection, Error>
    where
        T: IntoIterator<Item = char>,
    {
        let mut collection = CharCollection::new();
        for ch in chars.into_iter() {
            collection.append(ch)?;
        }
        Ok(collection)
    }

    /// Iterate over all the `char`s in the collection.
    pub fn iter(&self) -> impl Iterator<Item = char> + '_ {
        self.ranges.iter().flat_map(CharRange::iter)
    }

    /// Test whether the collection contains a specific `char`.
    ///
    /// The time complexity is O(log <var>R</var>), where <var>R</var> is the number of ranges in
    /// the collection.
    pub fn contains(&self, ch: &char) -> bool {
        self.find_containing_range(ch).is_ok()
    }

    /// Test whether the collection contains an entire range of characters.
    ///
    /// The time complexity is O(log <var>R</var>), where <var>R</var> is the number of ranges in
    /// the collection.
    pub fn contains_range(&self, range: &CharRange) -> bool {
        if range.is_empty() {
            return false;
        }

        let lower_existing_range = self.find_containing_range(&range.low);
        let upper_existing_range = self.find_containing_range(&range.high);

        // Fully enclosed in existing range.
        return lower_existing_range == upper_existing_range && lower_existing_range.is_ok();
    }

    /// Insert a `char` or other collection of chars into this collection.
    ///
    /// Returns `&mut self` for easy chaining.
    ///
    /// The time complexity is O(<var>T</var> log(<var>R</var> + <var>T</var>)), where <var>R</var>
    /// is the number of ranges in this collection and <var>T</var> is the number of ranges in
    /// `to_add`.
    pub fn insert<V: MultiCharRange>(&mut self, to_add: &V) -> &mut Self {
        to_add.iter_ranges().for_each(|range| self.insert_char_range(&range));
        self
    }

    /// Appends a `char` to the end of the existing collection. Panics if the given `char` is not
    /// higher than the highest code point in the existing collection.
    ///
    /// Returns `&mut self` for easy chaining.
    ///
    /// The time complexity is O(1).
    pub fn append(&mut self, ch: char) -> Result<&mut Self, Error> {
        let mut coalesced = false;
        if let Some(last_range) = self.ranges.last_mut() {
            if last_range.cmp_char(ch) != Ordering::Less {
                return Err(format_err!("Cannot append {} after {}", ch, last_range.high));
            }
            if are_chars_adjacent(&last_range.high, &ch) {
                last_range.high = ch;
                coalesced = true;
            }
        }
        if !coalesced {
            self.ranges.push(chars!(ch..=ch));
        }
        Ok(self)
    }

    /// Appends a `CharRange` to the end of the existing collection. Panics if the given range is
    /// not higher than the highest code point in the existing collection. (The new range _may_ be
    /// adjacent to the previous highest range, but may not overlap.)
    ///
    /// Returns `&mut self` for easy chaining.
    ///
    /// The time complexity is O(1).
    pub fn append_range(&mut self, range: CharRange) -> Result<&mut Self, Error> {
        let mut coalesced = false;
        if let Some(last_range) = self.ranges.last_mut() {
            if last_range.cmp_char(range.low) != Ordering::Less {
                return Err(format_err!(
                    "Cannot append {} after {}",
                    format_range(&range),
                    last_range.high
                ));
            }
            if are_chars_adjacent(&last_range.high, &range.low) {
                last_range.high = range.high;
                coalesced = true;
            }
        }
        if !coalesced {
            self.ranges.push(range);
        }
        Ok(self)
    }

    /// Remove a `char` or other collection of chars from this collection.
    ///
    /// Returns `&mut self` for easy chaining.
    ///
    /// The time complexity is O(<var>T</var> log(<var>R</var> + <var>T</var>)), where <var>R</var>
    /// is the number of ranges in this collection and <var>T</var> is the number of ranges in
    /// `to_remove`.
    pub fn remove<V: MultiCharRange>(&mut self, to_remove: &V) -> &mut Self {
        to_remove.iter_ranges().for_each(|range| self.remove_char_range(&range));
        self
    }

    /// Remove all entries from this collection.
    ///
    /// Returns `&mut self` for easy chaining.
    pub fn clear(&mut self) -> &mut Self {
        self.ranges.clear();
        self
    }

    /// Return the set union of this collection and another one.
    ///
    /// The time complexity is O(min(<var>R</var>, <var>T</var>) log(<var>R</var> + <var>T</var>)),
    /// where <var>R</var> is the number of ranges in this collection and <var>T</var> is the number
    /// of ranges in `rhs`.
    pub fn union<V: MultiCharRange>(&self, rhs: &V) -> CharCollection {
        let mut result: CharCollection;
        if self.range_count() > rhs.range_count() {
            result = self.clone();
            result.insert(rhs);
        } else {
            result = rhs.into();
            result.insert(self);
        }
        result
    }

    /// Return the set intersection of this collection and another one.
    ///
    /// The time complexity is O(min(<var>R</var>, <var>T</var>) log(<var>R</var> + <var>T</var>)),
    /// where <var>R</var> is the number of ranges in this collection and <var>T</var> is the number
    /// of ranges in `rhs`.
    pub fn intersection<V: MultiCharRange>(&self, rhs: &V) -> CharCollection {
        let mut result: CharCollection;
        if self.range_count() > rhs.range_count() {
            result = self.clone();
            let rhs: CharCollection = rhs.into();
            result.remove(&rhs.complement());
        } else {
            result = rhs.into();
            result.remove(&self.complement());
        }
        result
    }

    /// Return the (non-symmetric) set difference of this collection and another one.
    ///
    /// The time complexity is O(<var>T</var> log(<var>R</var> + <var>T</var>)), where <var>R</var>
    /// is the number of ranges in this collection and <var>T</var> is the number of ranges in
    /// `rhs`.
    pub fn difference<V: MultiCharRange>(&self, rhs: &V) -> CharCollection {
        let mut result: CharCollection = self.clone();
        result.remove(rhs);
        result
    }

    /// Return the set complement of this collection (over the universe of `char`s).
    ///
    /// The time complexity is O(<var>R</var>), where <var>R</var> is the number of ranges in this
    /// collection.
    pub fn complement(&self) -> CharCollection {
        if self.ranges.is_empty() {
            return CharCollection::from(&CharRange::all());
        }

        let mut result_ranges: Vec<CharRange> = Vec::new();

        if self.ranges[0].low != '\u{0}' {
            result_ranges.push(CharRange::open_right('\u{0}', self.ranges[0].low));
        }

        let mut prev_high = self.ranges[0].high;

        for range in &self.ranges[1..] {
            result_ranges.push(CharRange::open(prev_high, range.low));
            prev_high = range.high;
        }

        if prev_high != std::char::MAX {
            result_ranges.push(CharRange::open_left(prev_high, std::char::MAX));
        }

        CharCollection { ranges: result_ranges }
    }

    /// Insert a single `CharRange`.
    ///
    /// Depending on how the new range relates to existing ranges in
    /// the collection, it might be subsumed by an existing range, modify the endpoints of an
    /// existing range, or replace one or more existing ranges.
    fn insert_char_range(&mut self, new_range: &CharRange) {
        if new_range.is_empty() {
            return;
        }

        let lower_existing_range = self.find_containing_range(&new_range.low);
        let upper_existing_range = self.find_containing_range(&new_range.high);

        // Fully enclosed in existing range.
        if lower_existing_range == upper_existing_range && lower_existing_range.is_ok() {
            return;
        }

        let new_low: char;
        let new_high: char;

        let remove_from_idx: usize;
        let remove_to_idx: usize;

        match lower_existing_range {
            Ok((idx, lower_existing_range)) => {
                new_low = lower_existing_range.low;
                remove_from_idx = idx;
            }
            Err(idx) => {
                new_low = new_range.low;
                remove_from_idx = idx;
            }
        }

        match upper_existing_range {
            Ok((idx, higher_existing_range)) => {
                new_high = higher_existing_range.high;
                remove_to_idx = idx + 1;
            }
            Err(idx) => {
                new_high = new_range.high;
                remove_to_idx = idx;
            }
        }

        self.replace_ranges(chars!(new_low..=new_high), remove_from_idx..remove_to_idx);
    }

    /// Remove a single `CharRange`.
    ///
    /// Depending on how the removed range relates to existing ranges in the collection, it might
    /// remove or modify the endpoints of existing ranges.
    fn remove_char_range(&mut self, range_to_remove: &CharRange) {
        if range_to_remove.is_empty() {
            return;
        }

        let lower_existing_range = self.find_containing_range(&range_to_remove.low);
        let upper_existing_range = self.find_containing_range(&range_to_remove.high);

        let mut replacement_ranges: Vec<CharRange> = Vec::new();

        let remove_from_idx: usize;
        let remove_to_idx: usize;

        match lower_existing_range {
            Ok((idx, lower_existing_range)) => {
                if lower_existing_range.low < range_to_remove.low {
                    replacement_ranges
                        .push(CharRange::open_right(lower_existing_range.low, range_to_remove.low));
                }
                remove_from_idx = idx;
            }
            Err(idx) => remove_from_idx = idx,
        }

        match upper_existing_range {
            Ok((idx, higher_existing_range)) => {
                if range_to_remove.high < higher_existing_range.high {
                    replacement_ranges.push(CharRange::open_left(
                        range_to_remove.high,
                        higher_existing_range.high,
                    ));
                }
                remove_to_idx = idx + 1;
            }
            Err(idx) => {
                remove_to_idx = idx;
            }
        }

        self.ranges.splice(remove_from_idx..remove_to_idx, replacement_ranges);
    }

    /// Delete all the existing `CharRange`s that fall within `indices_to_replace` in the vector,
    /// and insert `char_range_to_insert` in their place. If the newly formed range is adjacent to
    /// a kept range on its left or right, coalesce them.
    fn replace_ranges(
        &mut self,
        mut char_range_to_insert: CharRange,
        mut indices_to_replace: Range<usize>,
    ) {
        // If the newly formed range is adjacent to the range on its left, coalesce the two.
        if indices_to_replace.start > 0 {
            let prev_char_range = self.ranges[indices_to_replace.start - 1];
            if are_chars_adjacent(&prev_char_range.high, &char_range_to_insert.low) {
                char_range_to_insert.low = prev_char_range.low;
                indices_to_replace.start -= 1;
            }
        }

        // If the newly formed range is adjacent to the range on its right, coalesce the two.
        if indices_to_replace.end < self.ranges.len() {
            let next_char_range = self.ranges[indices_to_replace.end];
            if are_chars_adjacent(&char_range_to_insert.high, &next_char_range.low) {
                char_range_to_insert.high = next_char_range.high;
                indices_to_replace.end += 1;
            }
        }

        self.ranges.splice(indices_to_replace, vec![char_range_to_insert]);
    }

    fn find_containing_range(&self, query: &char) -> Result<(usize, CharRange), usize> {
        let result = self.ranges.binary_search_by(|range| range.cmp_char(query.clone()));
        match result {
            Ok(index) => Ok((index, self.ranges[index])),
            Err(index) => Err(index),
        }
    }
}

impl MultiCharRange for CharCollection {
    fn iter_ranges<'a>(&'a self) -> Box<dyn Iterator<Item = CharRange> + 'a> {
        Box::new(self.ranges.iter().map(|range| range.clone()))
    }

    fn range_count(&self) -> usize {
        self.ranges.len()
    }
}

#[allow(clippy::derived_hash_with_manual_eq)] // TODO(https://fxbug.dev/42177010)
impl Hash for CharCollection {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.ranges.iter().for_each(|range| hash_char_range(range, state));
    }
}

fn hash_char_range<H: Hasher>(range: &CharRange, state: &mut H) {
    range.low.hash(state);
    range.high.hash(state);
}

fn are_chars_adjacent(left: &char, right: &char) -> bool {
    let mut iter: CharIter = CharRange::open_right(left.clone(), right.clone()).iter();
    match iter.next_back() {
        None => false,
        Some(next_right) => left == &next_right,
    }
}

fn format_range(range: &CharRange) -> String {
    format!("{}..={}", range.low, range.high)
}

#[cfg(test)]
mod tests {
    use super::{are_chars_adjacent, CharCollection};
    use anyhow::Error;
    use std::char;
    use unic_char_range::{chars, CharRange};

    #[test]
    fn test_from_sorted_ranges() -> Result<(), Error> {
        let expected = char_collect!('a'..='d', 'g'..='l', 'z');
        let actual = CharCollection::from_sorted_ranges(vec![
            chars!('a'..='d'),
            chars!('g'..='l'),
            chars!('z'..='z'),
        ])?;
        assert_eq!(actual, expected);
        Ok(())
    }

    #[test]
    fn test_from_sorted_ranges_out_of_order() {
        assert!(CharCollection::from_sorted_ranges(vec![
            chars!('g'..='l'),
            chars!('a'..='d'),
            chars!('z'..='z'),
        ])
        .is_err());
    }

    #[test]
    fn test_from_sorted_ranges_overlap() {
        assert!(CharCollection::from_sorted_ranges(vec![
            chars!('a'..='d'),
            chars!('c'..='l'),
            chars!('z'..='z'),
        ])
        .is_err());
    }

    #[test]
    fn test_from_sorted_ranges_adjacent() {
        assert!(
            CharCollection::from_sorted_ranges(vec![chars!('a'..='d'), chars!('e'..='g')]).is_err()
        );
    }

    #[test]
    fn test_from_sorted_chars() -> Result<(), Error> {
        let chars = vec!['a', 'b', 'c', 'd', 'g', 'h', 'i', 'j', 'k', 'l', 'z'];
        let expected = char_collect!('a'..='d', 'g'..='l', 'z');
        let actual = CharCollection::from_sorted_chars(chars)?;
        assert_eq!(actual, expected);
        Ok(())
    }

    #[test]
    fn test_from_sorted_chars_out_of_order() {
        let chars = vec!['a', 'b', 'c', 'd', 'g', 'h', 'i', 'j', 'k', 'l', 'e'];
        assert!(CharCollection::from_sorted_chars(chars).is_err());
    }

    #[test]
    fn test_find_containing_range() {
        let collection = char_collect!({ ('a'..='d') + ('g'..='j') + ('l'..='o') + 'z' });
        assert_eq!(collection.find_containing_range(&'0'), Err(0));
        assert_eq!(collection.find_containing_range(&'c'), Ok((0, chars!('a'..='d'))));
        assert_eq!(collection.find_containing_range(&'e'), Err(1));
    }

    #[test]
    fn test_insert_initial() {
        let collection = char_collect!('a'..='d');
        assert_eq!(collection.ranges, vec![chars!('a'..='d')])
    }

    #[test]
    fn test_insert_exact_match() {
        let mut collection = char_collect!('a'..='d', 'g'..='l');
        collection += 'a'..='d';
        assert_eq!(collection.ranges, vec![chars!('a'..='d'), chars!('g'..='l')]);
    }

    #[test]
    fn test_insert_non_overlapping_sorted() {
        let collection = char_collect!('a'..='d', 'g'..='j', 'l'..='o');
        assert_eq!(
            collection.ranges,
            vec![chars!('a'..='d'), chars!('g'..='j'), chars!('l'..='o')]
        );
    }

    #[test]
    fn test_insert_non_overlapping_unsorted() {
        let collection = char_collect!('l'..='o', 'a'..='d', 'l'..='o', 'a'..='d', 'g'..='j');
        assert_eq!(
            collection.ranges,
            vec![chars!('a'..='d'), chars!('g'..='j'), chars!('l'..='o')]
        );
    }

    #[test]
    fn test_insert_overlapping_all_existent() {
        let mut collection = char_collect!('l'..='o', 'a'..='d');

        collection += 'a'..='o';
        assert_eq!(collection.ranges, vec![chars!('a'..='o')]);
    }

    #[test]
    fn test_insert_overlapping_some_existent() {
        let mut collection = char_collect!('c'..='e', 'j'..='m', 'p'..='s');

        collection += 'i'..='n';
        assert_eq!(
            collection.ranges,
            vec![chars!('c'..='e'), chars!('i'..='n'), chars!('p'..='s')]
        );
    }

    #[test]
    fn test_insert_overlapping_with_intersections() {
        let mut collection = char_collect!('c'..='e', 'j'..='m', 'p'..='s');

        collection += 'd'..='k';
        assert_eq!(collection.ranges, vec![chars!('c'..='m'), chars!('p'..='s')]);
    }

    #[test]
    fn test_insert_coalesce_adjacent_ranges() {
        let mut collection = char_collect!('a'..='c', 'j'..='m');

        collection += 'd'..='i';
        assert_eq!(collection.ranges, vec![chars!('a'..='m')]);
    }

    #[test]
    fn test_append() -> Result<(), Error> {
        let mut collection = char_collect!('a'..='c');

        collection.append('d')?.append('g')?.append('h')?.append('i')?.append('z')?;
        assert_eq!(collection, char_collect!('a'..='d', 'g'..='i', 'z'));
        Ok(())
    }

    #[test]
    fn test_append_out_of_order() -> Result<(), Error> {
        let mut collection = char_collect!('a'..='c');
        assert!(collection
            .append('d')?
            .append('g')?
            .append('h')?
            .append('i')?
            .append('e')
            .is_err());
        Ok(())
    }

    #[test]
    fn test_append_range() -> Result<(), Error> {
        let mut collection = char_collect!('a'..='c');
        collection.append_range(chars!('g'..='i'))?.append_range(chars!('j'..='m'))?;
        assert_eq!(collection, char_collect!('a'..='c', 'g'..='m'));
        Ok(())
    }

    #[test]
    fn test_append_range_out_of_order() -> Result<(), Error> {
        let mut collection = char_collect!('a'..='c');
        assert!(collection
            .append_range(chars!('g'..='i'))?
            .append_range(chars!('j'..='m'))?
            .append_range(chars!('k'..='m'))
            .is_err());
        Ok(())
    }

    #[test]
    fn test_remove_exact_range() {
        let mut collection = char_collect!('c'..='e', 'j'..='m', 'p'..='s');

        collection -= 'j'..='m';
        assert_eq!(collection.ranges, vec![chars!('c'..='e'), chars!['p'..='s']]);
    }

    #[test]
    fn test_remove_overlapping_all_existent() {
        let mut collection = char_collect!('c'..='e', 'j'..='m', 'p'..='s');

        collection -= 'c'..='s';
        assert_eq!(collection.ranges, vec![]);
    }

    #[test]
    fn test_remove_overlapping_all_existent_superset() {
        let mut collection = char_collect!('c'..='e', 'j'..='m', 'p'..='s');

        collection -= 'a'..='z';
        assert_eq!(collection.ranges, vec![]);
    }

    #[test]
    fn test_remove_one_subrange() {
        let mut collection = char_collect!('c'..='e', 'j'..='m', 'p'..='s');

        collection -= 'k'..='l';
        assert_eq!(
            collection.ranges,
            vec![chars!('c'..='e'), chars!('j'..='j'), chars!('m'..='m'), chars!('p'..='s')]
        );
    }

    #[test]
    fn test_remove_intersection() {
        let mut collection = char_collect!('c'..='e', 'j'..='m', 'p'..='s');

        collection -= 'd'..='q';
        assert_eq!(collection.ranges, vec![chars!('c'..='c'), chars!('r'..='s')]);
    }

    #[test]
    fn test_complement_simple() {
        let collection = char_collect!(0x10..=0x50, 0x70..=0x70, 0x99..=0x640);
        assert_eq!(
            collection.complement(),
            char_collect!(0x00..=0x0F, 0x51..=0x6F, 0x71..=0x98, 0x641..=(char::MAX as u32))
        );
    }

    #[test]
    fn test_complement_all() {
        let collection = char_collect!(CharRange::all());
        assert_eq!(collection.complement(), char_collect!());
    }

    #[test]
    fn test_complement_none() {
        let collection = char_collect!();
        assert_eq!(collection.complement(), char_collect!(CharRange::all()));
    }

    #[test]
    fn test_complement_includes_min_and_max() {
        let collection = char_collect!(0x0..=0x10, 0x40..=0x50, 0xCCCC..=(char::MAX as u32));
        assert_eq!(collection.complement(), char_collect!(0x11..=0x3F, 0x51..=0xCCCB));
    }

    #[test]
    fn test_union() {
        let collection_a = char_collect!('a'..='g', 'm'..='z', 'B'..='R');
        let collection_b = char_collect!('e'..='q', 'W'..='Y');

        let expected = char_collect!('a'..='z', 'B'..='R', 'W'..='Y');
        assert_eq!(collection_a.union(&collection_b), expected);
        assert_eq!(collection_b.union(&collection_a), expected);
    }

    #[test]
    fn test_intersection() {
        let collection_a = char_collect!('a'..='g', 'm'..='z');
        let collection_b = char_collect!('e'..='q');

        let expected = char_collect!('e'..='g', 'm'..='q');
        assert_eq!(collection_a.intersection(&collection_b), expected);
        assert_eq!(collection_b.intersection(&collection_a), expected);
    }

    #[test]
    fn test_macro_expressions() {
        use unicode_blocks::UnicodeBlockId::Arabic;

        let collection =
            char_collect!({ ('c'..='e') + ('f'..='h') - ('a'..='d') + Arabic + (0x5..=0x42) });
        assert_eq!(collection, char_collect!(0x5..=0x42, 'e'..='h', Arabic));
    }

    #[test]
    fn test_iter() {
        let collection = char_collect!('a'..='c', 'j'..='l', 'x'..='z');

        let v = collection.iter().collect::<Vec<char>>();
        assert_eq!(v, vec!['a', 'b', 'c', 'j', 'k', 'l', 'x', 'y', 'z']);
    }

    #[test]
    fn test_are_chars_adjacent() {
        assert!(are_chars_adjacent(&'a', &'b'));
        assert!(!are_chars_adjacent(&'b', &'a'));
        assert!(!are_chars_adjacent(&'a', &'c'));
    }
}