euclid/
homogen.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// Copyright 2018 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::point::{Point2D, Point3D};
use crate::vector::{Vector2D, Vector3D};

use crate::num::{One, Zero};

use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::marker::PhantomData;
use core::ops::Div;
#[cfg(feature = "serde")]
use serde;

/// Homogeneous vector in 3D space.
#[repr(C)]
pub struct HomogeneousVector<T, U> {
    pub x: T,
    pub y: T,
    pub z: T,
    pub w: T,
    #[doc(hidden)]
    pub _unit: PhantomData<U>,
}

impl<T: Copy, U> Copy for HomogeneousVector<T, U> {}

impl<T: Clone, U> Clone for HomogeneousVector<T, U> {
    fn clone(&self) -> Self {
        HomogeneousVector {
            x: self.x.clone(),
            y: self.y.clone(),
            z: self.z.clone(),
            w: self.w.clone(),
            _unit: PhantomData,
        }
    }
}

#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for HomogeneousVector<T, U>
where
    T: serde::Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let (x, y, z, w) = serde::Deserialize::deserialize(deserializer)?;
        Ok(HomogeneousVector {
            x,
            y,
            z,
            w,
            _unit: PhantomData,
        })
    }
}

#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for HomogeneousVector<T, U>
where
    T: serde::Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        (&self.x, &self.y, &self.z, &self.w).serialize(serializer)
    }
}

impl<T, U> Eq for HomogeneousVector<T, U> where T: Eq {}

impl<T, U> PartialEq for HomogeneousVector<T, U>
where
    T: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.x == other.x && self.y == other.y && self.z == other.z && self.w == other.w
    }
}

impl<T, U> Hash for HomogeneousVector<T, U>
where
    T: Hash,
{
    fn hash<H: core::hash::Hasher>(&self, h: &mut H) {
        self.x.hash(h);
        self.y.hash(h);
        self.z.hash(h);
        self.w.hash(h);
    }
}

impl<T, U> HomogeneousVector<T, U> {
    /// Constructor taking scalar values directly.
    #[inline]
    pub const fn new(x: T, y: T, z: T, w: T) -> Self {
        HomogeneousVector {
            x,
            y,
            z,
            w,
            _unit: PhantomData,
        }
    }
}

impl<T: Copy + Div<T, Output = T> + Zero + PartialOrd, U> HomogeneousVector<T, U> {
    /// Convert into Cartesian 2D point.
    ///
    /// Returns None if the point is on or behind the W=0 hemisphere.
    #[inline]
    pub fn to_point2d(self) -> Option<Point2D<T, U>> {
        if self.w > T::zero() {
            Some(Point2D::new(self.x / self.w, self.y / self.w))
        } else {
            None
        }
    }

    /// Convert into Cartesian 3D point.
    ///
    /// Returns None if the point is on or behind the W=0 hemisphere.
    #[inline]
    pub fn to_point3d(self) -> Option<Point3D<T, U>> {
        if self.w > T::zero() {
            Some(Point3D::new(
                self.x / self.w,
                self.y / self.w,
                self.z / self.w,
            ))
        } else {
            None
        }
    }
}

impl<T: Zero, U> From<Vector2D<T, U>> for HomogeneousVector<T, U> {
    #[inline]
    fn from(v: Vector2D<T, U>) -> Self {
        HomogeneousVector::new(v.x, v.y, T::zero(), T::zero())
    }
}

impl<T: Zero, U> From<Vector3D<T, U>> for HomogeneousVector<T, U> {
    #[inline]
    fn from(v: Vector3D<T, U>) -> Self {
        HomogeneousVector::new(v.x, v.y, v.z, T::zero())
    }
}

impl<T: Zero + One, U> From<Point2D<T, U>> for HomogeneousVector<T, U> {
    #[inline]
    fn from(p: Point2D<T, U>) -> Self {
        HomogeneousVector::new(p.x, p.y, T::zero(), T::one())
    }
}

impl<T: One, U> From<Point3D<T, U>> for HomogeneousVector<T, U> {
    #[inline]
    fn from(p: Point3D<T, U>) -> Self {
        HomogeneousVector::new(p.x, p.y, p.z, T::one())
    }
}

impl<T: fmt::Debug, U> fmt::Debug for HomogeneousVector<T, U> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("")
            .field(&self.x)
            .field(&self.y)
            .field(&self.z)
            .field(&self.w)
            .finish()
    }
}

#[cfg(test)]
mod homogeneous {
    use super::HomogeneousVector;
    use crate::default::{Point2D, Point3D};

    #[test]
    fn roundtrip() {
        assert_eq!(
            Some(Point2D::new(1.0, 2.0)),
            HomogeneousVector::from(Point2D::new(1.0, 2.0)).to_point2d()
        );
        assert_eq!(
            Some(Point3D::new(1.0, -2.0, 0.1)),
            HomogeneousVector::from(Point3D::new(1.0, -2.0, 0.1)).to_point3d()
        );
    }

    #[test]
    fn negative() {
        assert_eq!(
            None,
            HomogeneousVector::<f32, ()>::new(1.0, 2.0, 3.0, 0.0).to_point2d()
        );
        assert_eq!(
            None,
            HomogeneousVector::<f32, ()>::new(1.0, -2.0, -3.0, -2.0).to_point3d()
        );
    }
}