zx/
fifo.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Type-safe bindings for Zircon fifo objects.

use crate::{ok, sys, AsHandleRef, Handle, HandleBased, HandleRef, Status};
use std::mem::MaybeUninit;
use zerocopy::{FromBytes, IntoBytes};

/// An object representing a Zircon fifo.
///
/// As essentially a subtype of `Handle`, it can be freely interconverted.
///
/// Encodes the element type in the type. Defaults to `()` for the entry type to allow for untyped
/// IPC. Use `Fifo::cast()` to convert an IPC-transferred fifo to one of the specific type required
/// that will support reads and writes.
#[repr(transparent)]
pub struct Fifo<R = UnspecifiedFifoElement, W = R>(Handle, std::marker::PhantomData<(R, W)>);

impl<R: IntoBytes + FromBytes, W: IntoBytes + FromBytes> Fifo<R, W> {
    /// Create a pair of fifos and return their endpoints. Writing to one endpoint enqueues an
    /// element into the fifo from which the opposing endpoint reads.
    ///
    /// Wraps the
    /// [zx_fifo_create](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_create.md)
    /// syscall.
    pub fn create(elem_count: usize) -> Result<(Self, Fifo<W, R>), Status> {
        if std::mem::size_of::<R>() != std::mem::size_of::<W>() {
            return Err(Status::INVALID_ARGS);
        }
        let mut out0 = 0;
        let mut out1 = 0;
        let options = 0;

        // SAFETY: this is a basic FFI call, and the mutable references are valid pointers.
        let status = unsafe {
            sys::zx_fifo_create(elem_count, std::mem::size_of::<R>(), options, &mut out0, &mut out1)
        };
        ok(status)?;

        // SAFETY: if the above call succeeded, these are valid handle numbers.
        unsafe { Ok((Fifo::from(Handle::from_raw(out0)), Fifo::from(Handle::from_raw(out1)))) }
    }

    /// Attempts to write some number of elements into the fifo. On success, returns the number of
    /// elements actually written.
    ///
    /// Wraps
    /// [zx_fifo_write](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_write.md).
    pub fn write(&self, buf: &[W]) -> Result<usize, Status> {
        // SAFETY: this pointer is valid for the length of the slice
        unsafe { self.write_raw(buf.as_ptr(), buf.len()) }
    }

    /// Attempts to write a single element into the fifo.
    ///
    /// Wraps
    /// [zx_fifo_write](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_write.md).
    pub fn write_one(&self, elem: &W) -> Result<(), Status> {
        // SAFETY: this pointer is valid for a single element
        unsafe { self.write_raw(elem, 1).map(|n| debug_assert_eq!(n, 1)) }
    }

    /// Attempts to write some number of elements into the fifo. On success, returns the number of
    /// elements actually written.
    ///
    /// Wraps
    /// [zx_fifo_write](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_write.md).
    ///
    /// # Safety
    ///
    /// The caller is responsible for ensuring `buf` is valid to write to for `count` elements.
    pub unsafe fn write_raw(&self, buf: *const W, count: usize) -> Result<usize, Status> {
        let mut actual_count = 0;
        // SAFETY: safety requirements for this call are upheld by our caller.
        let status = unsafe {
            sys::zx_fifo_write(
                self.raw_handle(),
                std::mem::size_of::<W>(),
                buf.cast::<u8>(),
                count,
                &mut actual_count,
            )
        };
        ok(status).map(|()| actual_count)
    }

    /// Attempts to read some elements out of the fifo. On success, returns the number of elements
    /// actually read.
    ///
    /// Wraps
    /// [zx_fifo_read](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_read.md).
    pub fn read(&self, buf: &mut [R]) -> Result<usize, Status> {
        // SAFETY: the pointer is valid for the length of the slice
        unsafe { self.read_raw(buf.as_mut_ptr(), buf.len()) }
    }

    /// Attempts to read a single element out of the fifo.
    ///
    /// Wraps
    /// [zx_fifo_read](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_read.md).
    pub fn read_one(&self) -> Result<R, Status> {
        let mut elem = MaybeUninit::uninit();

        // SAFETY: the reference is valid to write to, and this call will not read from the bytes.
        let valid_count = unsafe { self.read_raw(elem.as_mut_ptr(), 1)? };
        debug_assert_eq!(valid_count, 1);

        // SAFETY: if the previous call succeeded, the kernel has initialized this value.
        Ok(unsafe { elem.assume_init() })
    }

    /// Attempts to read some number of elements out of the fifo. On success, returns a slice of
    /// initialized elements.
    ///
    /// Wraps
    /// [zx_fifo_read](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_read.md).
    pub fn read_uninit(&self, bytes: &mut [MaybeUninit<R>]) -> Result<&mut [R], Status> {
        // SAFETY: the slice is valid to write to for its entire length, and this call will not
        // read from the bytes
        let valid_count = unsafe { self.read_raw(bytes.as_mut_ptr().cast::<R>(), bytes.len())? };
        let (valid, _uninit) = bytes.split_at_mut(valid_count);

        // SAFETY: the kernel initialized all bytes, strip out MaybeUninit
        unsafe { Ok(std::slice::from_raw_parts_mut(valid.as_mut_ptr().cast::<R>(), valid.len())) }
    }

    /// Attempts to read some number of elements out of the fifo. On success, returns the number of
    /// elements actually read.
    ///
    /// Wraps
    /// [zx_fifo_read](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_read.md).
    ///
    /// # Safety
    ///
    /// The caller is responsible for ensuring `bytes` points to valid (albeit
    /// not necessarily initialized) memory at least `len` bytes long.
    pub unsafe fn read_raw(&self, buf: *mut R, count: usize) -> Result<usize, Status> {
        let mut actual_count = 0;
        // SAFETY: this call's invariants must be upheld by our caller.
        let status = unsafe {
            sys::zx_fifo_read(
                self.raw_handle(),
                std::mem::size_of::<R>(),
                buf.cast::<u8>(),
                count,
                &mut actual_count,
            )
        };
        ok(status).map(|()| actual_count)
    }
}

impl Fifo<UnspecifiedFifoElement> {
    /// Give a `Fifo` specific read/write types. The size of `R2` and `W2` must match
    /// the element size the underlying handle was created with for reads and writes to succeed.
    pub fn cast<R2, W2>(self) -> Fifo<R2, W2> {
        Fifo::<R2, W2>::from(self.0)
    }
}

impl<R, W> Fifo<R, W> {
    /// Convert a fifo from having a specific element type to a fifo without any element type that
    /// will not support reads or writes.
    pub fn downcast(self) -> Fifo {
        Fifo::from(self.0)
    }
}

impl<R, W> AsHandleRef for Fifo<R, W> {
    fn as_handle_ref(&self) -> HandleRef<'_> {
        self.0.as_handle_ref()
    }
}

impl<R, W> From<Handle> for Fifo<R, W> {
    fn from(handle: Handle) -> Self {
        Self(handle, std::marker::PhantomData)
    }
}

impl<R, W> From<Fifo<R, W>> for Handle {
    fn from(x: Fifo<R, W>) -> Handle {
        x.0
    }
}

impl<R: FromBytes + IntoBytes, W: FromBytes + IntoBytes> From<Fifo> for Fifo<R, W> {
    fn from(untyped: Fifo) -> Self {
        untyped.cast()
    }
}

impl<R, W> HandleBased for Fifo<R, W> {}

impl<R, W> std::fmt::Debug for Fifo<R, W> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let read_name = std::any::type_name::<R>();
        let (_, short_read_name) = read_name.rsplit_once("::").unwrap();
        let write_name = std::any::type_name::<W>();
        let (_, short_write_name) = write_name.rsplit_once("::").unwrap();
        f.debug_tuple(&format!("Fifo<{short_read_name}, {short_write_name}>"))
            .field(&self.0)
            .finish()
    }
}

impl<R, W> std::cmp::PartialEq for Fifo<R, W> {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}
impl<R, W> std::cmp::Eq for Fifo<R, W> {}

impl<R, W> std::cmp::PartialOrd for Fifo<R, W> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.0.partial_cmp(&other.0)
    }
}
impl<R, W> std::cmp::Ord for Fifo<R, W> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.0.cmp(&other.0)
    }
}

impl<R, W> std::hash::Hash for Fifo<R, W> {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.0.hash(state)
    }
}

/// The default element for fifos, does not support reading or writing. Only used for IPC transfer.
#[derive(Copy, Clone, Debug)]
pub struct UnspecifiedFifoElement;

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn fifo_basic() {
        let (fifo1, fifo2) = Fifo::<[u8; 2]>::create(4).unwrap();

        // Trying to write less than one element should fail.
        assert_eq!(fifo1.write(&[]), Err(Status::OUT_OF_RANGE));

        // Should write one element "he"
        fifo1.write_one(b"he").unwrap();

        // Should write three elements "ll" "o " "wo" and drop the rest as it is full.
        assert_eq!(fifo1.write(&[*b"ll", *b"o ", *b"wo", *b"rl", *b"ds"]).unwrap(), 3);

        // Now that the fifo is full any further attempts to write should fail.
        assert_eq!(fifo1.write(&[*b"bl", *b"ah", *b"bl", *b"ah"]), Err(Status::SHOULD_WAIT));

        assert_eq!(fifo2.read_one().unwrap(), *b"he");

        // Read remaining 3 entries from the other end.
        let mut read_vec = vec![[0; 2]; 8];
        assert_eq!(fifo2.read(&mut read_vec).unwrap(), 3);
        assert_eq!(read_vec, &[*b"ll", *b"o ", *b"wo", [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]);

        // Reading again should fail as the fifo is empty.
        assert_eq!(fifo2.read(&mut read_vec), Err(Status::SHOULD_WAIT));
    }
}