netstack3_ip/icmp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! The Internet Control Message Protocol (ICMP).
use core::convert::TryInto as _;
use core::num::NonZeroU8;
use lock_order::lock::{OrderedLockAccess, OrderedLockRef};
use log::{debug, error, trace};
use net_types::ip::{
GenericOverIp, Ip, IpAddress, IpMarked, Ipv4, Ipv4Addr, Ipv6, Ipv6Addr, Ipv6SourceAddr, Mtu,
SubnetError,
};
use net_types::{
LinkLocalAddress, LinkLocalUnicastAddr, MulticastAddress, SpecifiedAddr, UnicastAddr, Witness,
};
use netstack3_base::socket::{AddrIsMappedError, SocketIpAddr};
use netstack3_base::sync::Mutex;
use netstack3_base::{
AnyDevice, Counter, CounterContext, DeviceIdContext, EitherDeviceId, FrameDestination,
IcmpIpExt, Icmpv4ErrorCode, Icmpv6ErrorCode, InstantBindingsTypes, InstantContext,
IpDeviceAddr, IpExt, RngContext, TokenBucket,
};
use netstack3_filter::{self as filter, TransportPacketSerializer};
use packet::{
BufferMut, InnerPacketBuilder as _, ParsablePacket as _, ParseBuffer, Serializer,
TruncateDirection, TruncatingSerializer,
};
use packet_formats::icmp::ndp::options::{NdpOption, NdpOptionBuilder};
use packet_formats::icmp::ndp::{
NdpPacket, NeighborAdvertisement, NonZeroNdpLifetime, OptionSequenceBuilder,
};
use packet_formats::icmp::{
peek_message_type, IcmpDestUnreachable, IcmpEchoRequest, IcmpMessage, IcmpMessageType,
IcmpPacket, IcmpPacketBuilder, IcmpPacketRaw, IcmpParseArgs, IcmpTimeExceeded, IcmpUnusedCode,
Icmpv4DestUnreachableCode, Icmpv4Packet, Icmpv4ParameterProblem, Icmpv4ParameterProblemCode,
Icmpv4TimeExceededCode, Icmpv6DestUnreachableCode, Icmpv6Packet, Icmpv6PacketTooBig,
Icmpv6ParameterProblem, Icmpv6ParameterProblemCode, Icmpv6TimeExceededCode, MessageBody,
OriginalPacket,
};
use packet_formats::ip::{DscpAndEcn, IpPacket, Ipv4Proto, Ipv6Proto};
use packet_formats::ipv4::{Ipv4FragmentType, Ipv4Header, Ipv4OnlyMeta};
use packet_formats::ipv6::{ExtHdrParseError, Ipv6Header};
use zerocopy::SplitByteSlice;
use crate::internal::base::{
AddressStatus, IpDeviceIngressStateContext, IpLayerHandler, IpPacketDestination,
IpSendFrameError, IpTransportContext, Ipv6PresentAddressStatus, ReceiveIpPacketMeta,
SendIpPacketMeta, TransportReceiveError, IPV6_DEFAULT_SUBNET,
};
use crate::internal::device::nud::{ConfirmationFlags, NudIpHandler};
use crate::internal::device::route_discovery::Ipv6DiscoveredRoute;
use crate::internal::device::{IpAddressState, IpDeviceHandler, Ipv6DeviceHandler};
use crate::internal::path_mtu::PmtuHandler;
use crate::internal::socket::{
DefaultIpSocketOptions, DelegatedRouteResolutionOptions, DelegatedSendOptions, IpSocketHandler,
OptionDelegationMarker,
};
/// The IP packet hop limit for all NDP packets.
///
/// See [RFC 4861 section 4.1], [RFC 4861 section 4.2], [RFC 4861 section 4.2],
/// [RFC 4861 section 4.3], [RFC 4861 section 4.4], and [RFC 4861 section 4.5]
/// for more information.
///
/// [RFC 4861 section 4.1]: https://tools.ietf.org/html/rfc4861#section-4.1
/// [RFC 4861 section 4.2]: https://tools.ietf.org/html/rfc4861#section-4.2
/// [RFC 4861 section 4.3]: https://tools.ietf.org/html/rfc4861#section-4.3
/// [RFC 4861 section 4.4]: https://tools.ietf.org/html/rfc4861#section-4.4
/// [RFC 4861 section 4.5]: https://tools.ietf.org/html/rfc4861#section-4.5
pub const REQUIRED_NDP_IP_PACKET_HOP_LIMIT: u8 = 255;
/// The default number of ICMP error messages to send per second.
///
/// Beyond this rate, error messages will be silently dropped.
pub const DEFAULT_ERRORS_PER_SECOND: u64 = 2 << 16;
/// The IP layer's ICMP state.
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct IcmpState<I: IpExt, BT: IcmpBindingsTypes> {
error_send_bucket: Mutex<IpMarked<I, TokenBucket<BT::Instant>>>,
/// ICMP transmit counters.
pub tx_counters: IcmpTxCounters<I>,
/// ICMP receive counters.
pub rx_counters: IcmpRxCounters<I>,
}
impl<I, BT> OrderedLockAccess<IpMarked<I, TokenBucket<BT::Instant>>> for IcmpState<I, BT>
where
I: IpExt,
BT: IcmpBindingsTypes,
{
type Lock = Mutex<IpMarked<I, TokenBucket<BT::Instant>>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
OrderedLockRef::new(&self.error_send_bucket)
}
}
/// ICMP tx path counters.
pub type IcmpTxCounters<I> = IpMarked<I, IcmpTxCountersInner>;
/// ICMP tx path counters.
#[derive(Default)]
pub struct IcmpTxCountersInner {
/// Count of reply messages sent.
pub reply: Counter,
/// Count of protocol unreachable messages sent.
pub protocol_unreachable: Counter,
/// Count of host/address unreachable messages sent.
pub address_unreachable: Counter,
/// Count of port unreachable messages sent.
pub port_unreachable: Counter,
/// Count of net unreachable messages sent.
pub net_unreachable: Counter,
/// Count of ttl expired messages sent.
pub ttl_expired: Counter,
/// Count of packet too big messages sent.
pub packet_too_big: Counter,
/// Count of parameter problem messages sent.
pub parameter_problem: Counter,
/// Count of destination unreachable messages sent.
pub dest_unreachable: Counter,
/// Count of error messages sent.
pub error: Counter,
}
/// ICMP rx path counters.
pub type IcmpRxCounters<I> = IpMarked<I, IcmpRxCountersInner>;
/// ICMP rx path counters.
#[derive(Default)]
pub struct IcmpRxCountersInner {
/// Count of error messages received.
pub error: Counter,
/// Count of error messages delivered to the transport layer.
pub error_delivered_to_transport_layer: Counter,
/// Count of error messages delivered to a socket.
pub error_delivered_to_socket: Counter,
/// Count of echo request messages received.
pub echo_request: Counter,
/// Count of echo reply messages received.
pub echo_reply: Counter,
/// Count of timestamp request messages received.
pub timestamp_request: Counter,
/// Count of destination unreachable messages received.
pub dest_unreachable: Counter,
/// Count of time exceeded messages received.
pub time_exceeded: Counter,
/// Count of parameter problem messages received.
pub parameter_problem: Counter,
/// Count of packet too big messages received.
pub packet_too_big: Counter,
}
/// Receive NDP counters.
#[derive(Default)]
pub struct NdpRxCounters {
/// Count of neighbor solicitation messages received.
pub neighbor_solicitation: Counter,
/// Count of neighbor advertisement messages received.
pub neighbor_advertisement: Counter,
/// Count of router advertisement messages received.
pub router_advertisement: Counter,
/// Count of router solicitation messages received.
pub router_solicitation: Counter,
}
/// Transmit NDP counters.
#[derive(Default)]
pub struct NdpTxCounters {
/// Count of neighbor advertisement messages sent.
pub neighbor_advertisement: Counter,
/// Count of neighbor solicitation messages sent.
pub neighbor_solicitation: Counter,
}
/// Counters for NDP messages.
#[derive(Default)]
pub struct NdpCounters {
/// Receive counters.
pub rx: NdpRxCounters,
/// Transmit counters.
pub tx: NdpTxCounters,
}
/// A builder for ICMPv4 state.
#[derive(Copy, Clone)]
pub struct Icmpv4StateBuilder {
send_timestamp_reply: bool,
errors_per_second: u64,
}
impl Default for Icmpv4StateBuilder {
fn default() -> Icmpv4StateBuilder {
Icmpv4StateBuilder {
send_timestamp_reply: false,
errors_per_second: DEFAULT_ERRORS_PER_SECOND,
}
}
}
impl Icmpv4StateBuilder {
/// Enable or disable replying to ICMPv4 Timestamp Request messages with
/// Timestamp Reply messages (default: disabled).
///
/// Enabling this can introduce a very minor vulnerability in which an
/// attacker can learn the system clock's time, which in turn can aid in
/// attacks against time-based authentication systems.
pub fn send_timestamp_reply(&mut self, send_timestamp_reply: bool) -> &mut Self {
self.send_timestamp_reply = send_timestamp_reply;
self
}
/// Builds an [`Icmpv4State`].
pub fn build<BT: IcmpBindingsTypes>(self) -> Icmpv4State<BT> {
Icmpv4State {
inner: IcmpState {
error_send_bucket: Mutex::new(IpMarked::new(TokenBucket::new(
self.errors_per_second,
))),
tx_counters: Default::default(),
rx_counters: Default::default(),
},
send_timestamp_reply: self.send_timestamp_reply,
}
}
}
/// The state associated with the ICMPv4 protocol.
pub struct Icmpv4State<BT: IcmpBindingsTypes> {
/// The inner common ICMP state.
pub inner: IcmpState<Ipv4, BT>,
/// Whether the stack is configured to send ICMP timestamp replies.
pub send_timestamp_reply: bool,
}
impl<BT: IcmpBindingsTypes> AsRef<IcmpState<Ipv4, BT>> for Icmpv4State<BT> {
fn as_ref(&self) -> &IcmpState<Ipv4, BT> {
&self.inner
}
}
impl<BT: IcmpBindingsTypes> AsMut<IcmpState<Ipv4, BT>> for Icmpv4State<BT> {
fn as_mut(&mut self) -> &mut IcmpState<Ipv4, BT> {
&mut self.inner
}
}
/// A builder for ICMPv6 state.
#[derive(Copy, Clone)]
pub(crate) struct Icmpv6StateBuilder {
errors_per_second: u64,
}
impl Default for Icmpv6StateBuilder {
fn default() -> Icmpv6StateBuilder {
Icmpv6StateBuilder { errors_per_second: DEFAULT_ERRORS_PER_SECOND }
}
}
impl Icmpv6StateBuilder {
pub(crate) fn build<BT: IcmpBindingsTypes>(self) -> Icmpv6State<BT> {
Icmpv6State {
inner: IcmpState {
error_send_bucket: Mutex::new(IpMarked::new(TokenBucket::new(
self.errors_per_second,
))),
tx_counters: Default::default(),
rx_counters: Default::default(),
},
ndp_counters: Default::default(),
}
}
}
/// The state associated with the ICMPv6 protocol.
pub struct Icmpv6State<BT: IcmpBindingsTypes> {
/// The inner common ICMP state.
pub inner: IcmpState<Ipv6, BT>,
/// Neighbor discovery protocol counters.
pub ndp_counters: NdpCounters,
}
impl<BT: IcmpBindingsTypes> AsRef<IcmpState<Ipv6, BT>> for Icmpv6State<BT> {
fn as_ref(&self) -> &IcmpState<Ipv6, BT> {
&self.inner
}
}
impl<BT: IcmpBindingsTypes> AsMut<IcmpState<Ipv6, BT>> for Icmpv6State<BT> {
fn as_mut(&mut self) -> &mut IcmpState<Ipv6, BT> {
&mut self.inner
}
}
/// An extension trait providing ICMP handler properties.
pub trait IcmpHandlerIpExt: IpExt {
type SourceAddress: Witness<Self::Addr>;
type IcmpError;
/// A try-conversion from [`Self::RecvSrcAddr`] to [`Self::SourceAddress`].
fn received_source_as_icmp_source(src: Self::RecvSrcAddr) -> Option<Self::SourceAddress>;
/// An IP-specific constructor for TtlExpired ICMP errors.
fn new_ttl_expired<B: SplitByteSlice>(
proto: Self::Proto,
header_len: usize,
meta: <Self::Packet<B> as IpPacket<B, Self>>::VersionSpecificMeta,
) -> Self::IcmpError;
/// An IP-specific optional-constructor for MTU Exceeded ICMP errors.
fn new_mtu_exceeded(proto: Self::Proto, header_len: usize, mtu: Mtu)
-> Option<Self::IcmpError>;
}
impl IcmpHandlerIpExt for Ipv4 {
type SourceAddress = SpecifiedAddr<Ipv4Addr>;
type IcmpError = Icmpv4Error;
fn received_source_as_icmp_source(src: Ipv4Addr) -> Option<SpecifiedAddr<Ipv4Addr>> {
SpecifiedAddr::new(src)
}
fn new_ttl_expired<B: SplitByteSlice>(
proto: Ipv4Proto,
header_len: usize,
Ipv4OnlyMeta { id: _, fragment_type }: Ipv4OnlyMeta,
) -> Icmpv4Error {
Icmpv4Error { kind: Icmpv4ErrorKind::TtlExpired { proto, fragment_type }, header_len }
}
fn new_mtu_exceeded(_proto: Ipv4Proto, _header_len: usize, _mtu: Mtu) -> Option<Icmpv4Error> {
// NB: ICMPv4 has no representation of MTU exceeded errors.
None
}
}
impl IcmpHandlerIpExt for Ipv6 {
type SourceAddress = UnicastAddr<Ipv6Addr>;
type IcmpError = Icmpv6ErrorKind;
fn received_source_as_icmp_source(src: Ipv6SourceAddr) -> Option<UnicastAddr<Ipv6Addr>> {
match src {
Ipv6SourceAddr::Unicast(src) => Some(src.get()),
Ipv6SourceAddr::Unspecified => None,
}
}
fn new_ttl_expired<B: SplitByteSlice>(
proto: Ipv6Proto,
header_len: usize,
_meta: (),
) -> Icmpv6ErrorKind {
Icmpv6ErrorKind::TtlExpired { proto, header_len }
}
fn new_mtu_exceeded(proto: Ipv6Proto, header_len: usize, mtu: Mtu) -> Option<Icmpv6ErrorKind> {
Some(Icmpv6ErrorKind::PacketTooBig { proto, header_len, mtu })
}
}
/// A kind of ICMPv4 error.
pub(crate) enum Icmpv4ErrorKind {
ParameterProblem {
code: Icmpv4ParameterProblemCode,
pointer: u8,
fragment_type: Ipv4FragmentType,
},
TtlExpired {
proto: Ipv4Proto,
fragment_type: Ipv4FragmentType,
},
NetUnreachable {
proto: Ipv4Proto,
fragment_type: Ipv4FragmentType,
},
ProtocolUnreachable,
PortUnreachable,
}
/// An ICMPv4 error.
pub struct Icmpv4Error {
pub(super) kind: Icmpv4ErrorKind,
pub(super) header_len: usize,
}
/// A kind of ICMPv6 error.
pub enum Icmpv6ErrorKind {
ParameterProblem { code: Icmpv6ParameterProblemCode, pointer: u32, allow_dst_multicast: bool },
TtlExpired { proto: Ipv6Proto, header_len: usize },
NetUnreachable { proto: Ipv6Proto, header_len: usize },
PacketTooBig { proto: Ipv6Proto, header_len: usize, mtu: Mtu },
ProtocolUnreachable { header_len: usize },
PortUnreachable,
}
/// The handler exposed by ICMP.
pub trait IcmpErrorHandler<I: IcmpHandlerIpExt, BC>: DeviceIdContext<AnyDevice> {
/// Sends an error message in response to an incoming packet.
///
/// `src_ip` and `dst_ip` are the source and destination addresses of the
/// incoming packet.
fn send_icmp_error_message<B: BufferMut>(
&mut self,
bindings_ctx: &mut BC,
device: &Self::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: I::SourceAddress,
dst_ip: SpecifiedAddr<I::Addr>,
original_packet: B,
error: I::IcmpError,
);
}
impl<
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
> IcmpErrorHandler<Ipv4, BC> for CC
{
fn send_icmp_error_message<B: BufferMut>(
&mut self,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SpecifiedAddr<Ipv4Addr>,
dst_ip: SpecifiedAddr<Ipv4Addr>,
original_packet: B,
Icmpv4Error { kind, header_len }: Icmpv4Error,
) {
let src_ip = SocketIpAddr::new_ipv4_specified(src_ip);
let dst_ip = SocketIpAddr::new_ipv4_specified(dst_ip);
match kind {
Icmpv4ErrorKind::ParameterProblem { code, pointer, fragment_type } => {
send_icmpv4_parameter_problem(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
code,
Icmpv4ParameterProblem::new(pointer),
original_packet,
header_len,
fragment_type,
)
}
Icmpv4ErrorKind::TtlExpired { proto, fragment_type } => send_icmpv4_ttl_expired(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
proto,
original_packet,
header_len,
fragment_type,
),
Icmpv4ErrorKind::NetUnreachable { proto, fragment_type } => {
send_icmpv4_net_unreachable(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
proto,
original_packet,
header_len,
fragment_type,
)
}
Icmpv4ErrorKind::ProtocolUnreachable => send_icmpv4_protocol_unreachable(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
original_packet,
header_len,
),
Icmpv4ErrorKind::PortUnreachable => send_icmpv4_port_unreachable(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
original_packet,
header_len,
),
}
}
}
impl<
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
> IcmpErrorHandler<Ipv6, BC> for CC
{
fn send_icmp_error_message<B: BufferMut>(
&mut self,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: UnicastAddr<Ipv6Addr>,
dst_ip: SpecifiedAddr<Ipv6Addr>,
original_packet: B,
error: Icmpv6ErrorKind,
) {
let src_ip: SocketIpAddr<Ipv6Addr> = match src_ip.into_specified().try_into() {
Ok(addr) => addr,
Err(AddrIsMappedError {}) => {
trace!("send_icmpv6_error_message: src_ip is mapped");
return;
}
};
let dst_ip: SocketIpAddr<Ipv6Addr> = match dst_ip.try_into() {
Ok(addr) => addr,
Err(AddrIsMappedError {}) => {
trace!("send_icmpv6_error_message: dst_ip is mapped");
return;
}
};
match error {
Icmpv6ErrorKind::ParameterProblem { code, pointer, allow_dst_multicast } => {
send_icmpv6_parameter_problem(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
code,
Icmpv6ParameterProblem::new(pointer),
original_packet,
allow_dst_multicast,
)
}
Icmpv6ErrorKind::TtlExpired { proto, header_len } => send_icmpv6_ttl_expired(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
proto,
original_packet,
header_len,
),
Icmpv6ErrorKind::NetUnreachable { proto, header_len } => send_icmpv6_net_unreachable(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
proto,
original_packet,
header_len,
),
Icmpv6ErrorKind::PacketTooBig { proto, header_len, mtu } => send_icmpv6_packet_too_big(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
proto,
mtu,
original_packet,
header_len,
),
Icmpv6ErrorKind::ProtocolUnreachable { header_len } => {
send_icmpv6_protocol_unreachable(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
original_packet,
header_len,
)
}
Icmpv6ErrorKind::PortUnreachable => send_icmpv6_port_unreachable(
self,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
original_packet,
),
}
}
}
/// A marker for all the contexts provided by bindings require by the ICMP
/// module.
pub trait IcmpBindingsContext: InstantContext + RngContext {}
impl<BC: InstantContext + RngContext + IcmpBindingsTypes> IcmpBindingsContext for BC {}
/// A marker trait for all bindings types required by the ICMP module.
pub trait IcmpBindingsTypes: InstantBindingsTypes {}
impl<BT: InstantBindingsTypes> IcmpBindingsTypes for BT {}
/// Empty trait to work around coherence issues.
///
/// This serves only to convince the coherence checker that a particular blanket
/// trait implementation could only possibly conflict with other blanket impls
/// in this crate. It can be safely implemented for any type.
/// TODO(https://github.com/rust-lang/rust/issues/97811): Remove this once the
/// coherence checker doesn't require it.
pub trait IcmpStateContext {}
/// A marker trait to prevent integration from creating a recursive loop when
/// handling Echo sockets.
///
/// This is a requirement for [`InnerIcmpContext::EchoTransportContext`] which
/// disallows the integration layer from using [`IcmpIpTransportContext`] as the
/// associated type, which would create a recursive loop.
///
/// By *not implementing* this trait for [`IcmpIpTransporContext`] we prevent
/// the mistake.
pub trait EchoTransportContextMarker {}
/// The execution context shared by ICMP(v4) and ICMPv6 for the internal
/// operations of the IP stack.
pub trait InnerIcmpContext<I: IpExt, BC: IcmpBindingsTypes>: IpSocketHandler<I, BC> {
/// A type implementing [`IpTransportContext`] that handles ICMP Echo
/// replies.
type EchoTransportContext: IpTransportContext<I, BC, Self> + EchoTransportContextMarker;
// TODO(joshlf): If we end up needing to respond to these messages with new
// outbound packets, then perhaps it'd be worth passing the original buffer
// so that it can be reused?
//
// NOTE(joshlf): We don't guarantee the packet body length here for two
// reasons:
// - It's possible that some IPv4 protocol does or will exist for which
// valid packets are less than 8 bytes in length. If we were to reject all
// packets with bodies of less than 8 bytes, we might silently discard
// legitimate error messages for such protocols.
// - Even if we were to guarantee this, there's no good way to encode such a
// guarantee in the type system, and so the caller would have no recourse
// but to panic, and panics have a habit of becoming bugs or DoS
// vulnerabilities when invariants change.
/// Receives an ICMP error message and demultiplexes it to a transport layer
/// protocol.
///
/// All arguments beginning with `original_` are fields from the IP packet
/// that triggered the error. The `original_body` is provided here so that
/// the error can be associated with a transport-layer socket. `device`
/// identifies the device on which the packet was received.
///
/// While ICMPv4 error messages are supposed to contain the first 8 bytes of
/// the body of the offending packet, and ICMPv6 error messages are supposed
/// to contain as much of the offending packet as possible without violating
/// the IPv6 minimum MTU, the caller does NOT guarantee that either of these
/// hold. It is `receive_icmp_error`'s responsibility to handle any length
/// of `original_body`, and to perform any necessary validation.
fn receive_icmp_error(
&mut self,
bindings_ctx: &mut BC,
device: &Self::DeviceId,
original_src_ip: Option<SpecifiedAddr<I::Addr>>,
original_dst_ip: SpecifiedAddr<I::Addr>,
original_proto: I::Proto,
original_body: &[u8],
err: I::ErrorCode,
);
/// Calls the function with a mutable reference to ICMP error send tocket
/// bucket.
fn with_error_send_bucket_mut<O, F: FnOnce(&mut TokenBucket<BC::Instant>) -> O>(
&mut self,
cb: F,
) -> O;
}
/// The execution context for ICMPv4.
///
/// `InnerIcmpv4Context` is a shorthand for a larger collection of traits.
pub trait InnerIcmpv4Context<BC: IcmpBindingsTypes>: InnerIcmpContext<Ipv4, BC> {
/// Returns true if a timestamp reply may be sent.
fn should_send_timestamp_reply(&self) -> bool;
}
/// The execution context for ICMPv6.
///
/// `InnerIcmpv6Context` is a shorthand for a larger collection of traits.
pub trait InnerIcmpv6Context<BC: IcmpBindingsTypes>: InnerIcmpContext<Ipv6, BC> {}
impl<BC: IcmpBindingsTypes, CC: InnerIcmpContext<Ipv6, BC>> InnerIcmpv6Context<BC> for CC {}
/// Attempt to send an ICMP or ICMPv6 error message, applying a rate limit.
///
/// `try_send_error!($core_ctx, $bindings_ctx, $e)` attempts to consume a token from the
/// token bucket at `$core_ctx.get_state_mut().error_send_bucket`. If it
/// succeeds, it invokes the expression `$e`, and otherwise does nothing. It
/// assumes that the type of `$e` is `Result<(), _>` and, in the case that the
/// rate limit is exceeded and it does not invoke `$e`, returns `Ok(())`.
///
/// [RFC 4443 Section 2.4] (f) requires that we MUST limit the rate of outbound
/// ICMPv6 error messages. To our knowledge, there is no similar requirement for
/// ICMPv4, but the same rationale applies, so we do it for ICMPv4 as well.
///
/// [RFC 4443 Section 2.4]: https://tools.ietf.org/html/rfc4443#section-2.4
macro_rules! try_send_error {
($core_ctx:expr, $bindings_ctx:expr, $e:expr) => {{
let send = $core_ctx.with_error_send_bucket_mut(|error_send_bucket| {
error_send_bucket.try_take($bindings_ctx)
});
if send {
$core_ctx.increment(|counters| &counters.error);
$e
} else {
trace!("ip::icmp::try_send_error!: dropping rate-limited ICMP error message");
Ok(())
}
}};
}
/// An implementation of [`IpTransportContext`] for ICMP.
pub enum IcmpIpTransportContext {}
fn receive_ip_transport_icmp_error<
I: IpExt,
CC: InnerIcmpContext<I, BC> + CounterContext<IcmpRxCounters<I>>,
BC: IcmpBindingsContext,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
original_src_ip: Option<SpecifiedAddr<I::Addr>>,
original_dst_ip: SpecifiedAddr<I::Addr>,
original_body: &[u8],
err: I::ErrorCode,
) {
core_ctx.increment(|counters| &counters.error_delivered_to_transport_layer);
trace!("IcmpIpTransportContext::receive_icmp_error({:?})", err);
let mut parse_body = original_body;
match parse_body.parse::<IcmpPacketRaw<I, _, IcmpEchoRequest>>() {
// Only pass things along to the Echo socket layer if this is an echo
// request.
Ok(_echo_request) => (),
Err(_) => {
// NOTE: This might just mean that the error message was in response
// to a packet that we sent that wasn't an echo request, so we just
// silently ignore it.
return;
}
}
<CC::EchoTransportContext as IpTransportContext<I, BC, CC>>::receive_icmp_error(
core_ctx,
bindings_ctx,
device,
original_src_ip,
original_dst_ip,
original_body,
err,
);
}
impl<
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC>
+ PmtuHandler<Ipv4, BC>
+ CounterContext<IcmpRxCounters<Ipv4>>
+ CounterContext<IcmpTxCounters<Ipv4>>,
> IpTransportContext<Ipv4, BC, CC> for IcmpIpTransportContext
{
fn receive_icmp_error(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
original_src_ip: Option<SpecifiedAddr<Ipv4Addr>>,
original_dst_ip: SpecifiedAddr<Ipv4Addr>,
original_body: &[u8],
err: Icmpv4ErrorCode,
) {
receive_ip_transport_icmp_error(
core_ctx,
bindings_ctx,
device,
original_src_ip,
original_dst_ip,
original_body,
err,
)
}
fn receive_ip_packet<B: BufferMut>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
src_ip: Ipv4Addr,
dst_ip: SpecifiedAddr<Ipv4Addr>,
mut buffer: B,
meta: ReceiveIpPacketMeta<Ipv4>,
) -> Result<(), (B, TransportReceiveError)> {
let ReceiveIpPacketMeta { broadcast: _, transparent_override, dscp_and_ecn: _ } = &meta;
if let Some(delivery) = transparent_override {
unreachable!(
"cannot perform transparent local delivery {delivery:?} to an ICMP socket; \
transparent proxy rules can only be configured for TCP and UDP packets"
);
}
trace!(
"<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet({}, {})",
src_ip,
dst_ip
);
let packet =
match buffer.parse_with::<_, Icmpv4Packet<_>>(IcmpParseArgs::new(src_ip, dst_ip)) {
Ok(packet) => packet,
Err(_) => return Ok(()), // TODO(joshlf): Do something else here?
};
match packet {
Icmpv4Packet::EchoRequest(echo_request) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv4>| &counters.echo_request);
if let Some(src_ip) = SpecifiedAddr::new(src_ip) {
let req = *echo_request.message();
let code = echo_request.code();
let (local_ip, remote_ip) = (dst_ip, src_ip);
// TODO(joshlf): Do something if send_icmp_reply returns an
// error?
let _ = send_icmp_reply(
core_ctx,
bindings_ctx,
Some(device),
SocketIpAddr::new_ipv4_specified(remote_ip),
SocketIpAddr::new_ipv4_specified(local_ip),
|src_ip| {
buffer.encapsulate(IcmpPacketBuilder::<Ipv4, _>::new(
src_ip,
remote_ip,
code,
req.reply(),
))
},
);
} else {
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Received echo request with an unspecified source address");
}
}
Icmpv4Packet::EchoReply(echo_reply) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv4>| &counters.echo_reply);
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Received an EchoReply message");
let parse_metadata = echo_reply.parse_metadata();
buffer.undo_parse(parse_metadata);
return <CC::EchoTransportContext
as IpTransportContext<Ipv4, BC, CC>>::receive_ip_packet(
core_ctx,
bindings_ctx,
device,
src_ip,
dst_ip,
buffer,
meta,
);
}
Icmpv4Packet::TimestampRequest(timestamp_request) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv4>| &counters.timestamp_request);
if let Some(src_ip) = SpecifiedAddr::new(src_ip) {
if core_ctx.should_send_timestamp_reply() {
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Responding to Timestamp Request message");
// We're supposed to respond with the time that we
// processed this message as measured in milliseconds
// since midnight UT. However, that would require that
// we knew the local time zone and had a way to convert
// `InstantContext::Instant` to a `u32` value. We can't
// do that, and probably don't want to introduce all of
// the machinery necessary just to support this one use
// case. Luckily, RFC 792 page 17 provides us with an
// out:
//
// If the time is not available in miliseconds [sic]
// or cannot be provided with respect to midnight UT
// then any time can be inserted in a timestamp
// provided the high order bit of the timestamp is
// also set to indicate this non-standard value.
//
// Thus, we provide a zero timestamp with the high order
// bit set.
const NOW: u32 = 0x80000000;
let reply = timestamp_request.message().reply(NOW, NOW);
let (local_ip, remote_ip) = (dst_ip, src_ip);
// We don't actually want to use any of the _contents_
// of the buffer, but we would like to reuse it as
// scratch space. Eventually, `IcmpPacketBuilder` will
// implement `InnerPacketBuilder` for messages without
// bodies, but until that happens, we need to give it an
// empty buffer.
buffer.shrink_front_to(0);
// TODO(joshlf): Do something if send_icmp_reply returns
// an error?
let _ = send_icmp_reply(
core_ctx,
bindings_ctx,
Some(device),
SocketIpAddr::new_ipv4_specified(remote_ip),
SocketIpAddr::new_ipv4_specified(local_ip),
|src_ip| {
buffer.encapsulate(IcmpPacketBuilder::<Ipv4, _>::new(
src_ip,
remote_ip,
IcmpUnusedCode,
reply,
))
},
);
} else {
trace!(
"<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Silently ignoring Timestamp Request message"
);
}
} else {
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Received timestamp request with an unspecified source address");
}
}
Icmpv4Packet::TimestampReply(_) => {
// TODO(joshlf): Support sending Timestamp Requests and
// receiving Timestamp Replies?
debug!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Received unsolicited Timestamp Reply message");
}
Icmpv4Packet::DestUnreachable(dest_unreachable) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv4>| &counters.dest_unreachable);
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Received a Destination Unreachable message");
if dest_unreachable.code() == Icmpv4DestUnreachableCode::FragmentationRequired {
if let Some(next_hop_mtu) = dest_unreachable.message().next_hop_mtu() {
// We are updating the path MTU from the destination
// address of this `packet` (which is an IP address on
// this node) to some remote (identified by the source
// address of this `packet`).
//
// `update_pmtu_if_less` may return an error, but it
// will only happen if the Dest Unreachable message's
// MTU field had a value that was less than the IPv4
// minimum MTU (which as per IPv4 RFC 791, must not
// happen).
core_ctx.update_pmtu_if_less(
bindings_ctx,
dst_ip.get(),
src_ip,
Mtu::new(u32::from(next_hop_mtu.get())),
);
} else {
// If the Next-Hop MTU from an incoming ICMP message is
// `0`, then we assume the source node of the ICMP
// message does not implement RFC 1191 and therefore
// does not actually use the Next-Hop MTU field and
// still considers it as an unused field.
//
// In this case, the only information we have is the
// size of the original IP packet that was too big (the
// original packet header should be included in the ICMP
// response). Here we will simply reduce our PMTU
// estimate to a value less than the total length of the
// original packet. See RFC 1191 Section 5.
//
// `update_pmtu_next_lower` may return an error, but it
// will only happen if no valid lower value exists from
// the original packet's length. It is safe to silently
// ignore the error when we have no valid lower PMTU
// value as the node from `src_ip` would not be IP RFC
// compliant and we expect this to be very rare (for
// IPv4, the lowest MTU value for a link can be 68
// bytes).
let (original_packet_buf, inner_body) = dest_unreachable.body().bytes();
// Note: ICMP Dest Unreachable messages don't have a variable size body.
debug_assert!(inner_body.is_none());
if original_packet_buf.len() >= 4 {
// We need the first 4 bytes as the total length
// field is at bytes 2/3 of the original packet
// buffer.
let total_len =
u16::from_be_bytes(original_packet_buf[2..4].try_into().unwrap());
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Next-Hop MTU is 0 so using the next best PMTU value from {}", total_len);
core_ctx.update_pmtu_next_lower(
bindings_ctx,
dst_ip.get(),
src_ip,
Mtu::new(u32::from(total_len)),
);
} else {
// Ok to silently ignore as RFC 792 requires nodes
// to send the original IP packet header + 64 bytes
// of the original IP packet's body so the node
// itself is already violating the RFC.
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Original packet buf is too small to get original packet len so ignoring");
}
}
}
receive_icmpv4_error(
core_ctx,
bindings_ctx,
device,
&dest_unreachable,
Icmpv4ErrorCode::DestUnreachable(dest_unreachable.code()),
);
}
Icmpv4Packet::TimeExceeded(time_exceeded) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv4>| &counters.time_exceeded);
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Received a Time Exceeded message");
receive_icmpv4_error(
core_ctx,
bindings_ctx,
device,
&time_exceeded,
Icmpv4ErrorCode::TimeExceeded(time_exceeded.code()),
);
}
// TODO(https://fxbug.dev/323400954): Support ICMP Redirect.
Icmpv4Packet::Redirect(_) => debug!(
"Unimplemented: <IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet::redirect"
),
Icmpv4Packet::ParameterProblem(parameter_problem) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv4>| &counters.parameter_problem);
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv4>>::receive_ip_packet: Received a Parameter Problem message");
receive_icmpv4_error(
core_ctx,
bindings_ctx,
device,
¶meter_problem,
Icmpv4ErrorCode::ParameterProblem(parameter_problem.code()),
);
}
}
Ok(())
}
}
/// Sends an NDP packet from `device_id` with the provided parameters.
pub fn send_ndp_packet<BC, CC, S, M>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device_id: &CC::DeviceId,
src_ip: Option<SpecifiedAddr<Ipv6Addr>>,
dst_ip: SpecifiedAddr<Ipv6Addr>,
body: S,
code: M::Code,
message: M,
) -> Result<(), IpSendFrameError<S>>
where
CC: IpLayerHandler<Ipv6, BC>,
S: Serializer,
S::Buffer: BufferMut,
M: filter::IcmpMessage<Ipv6>,
{
// TODO(https://fxbug.dev/42177356): Send through ICMPv6 send path.
IpLayerHandler::<Ipv6, _>::send_ip_packet_from_device(
core_ctx,
bindings_ctx,
SendIpPacketMeta {
device: device_id,
src_ip,
dst_ip,
destination: IpPacketDestination::from_addr(dst_ip),
ttl: NonZeroU8::new(REQUIRED_NDP_IP_PACKET_HOP_LIMIT),
proto: Ipv6Proto::Icmpv6,
mtu: Mtu::no_limit(),
dscp_and_ecn: DscpAndEcn::default(),
},
body.encapsulate(IcmpPacketBuilder::<Ipv6, _>::new(
src_ip.map_or(Ipv6::UNSPECIFIED_ADDRESS, |a| a.get()),
dst_ip.get(),
code,
message,
)),
)
.map_err(|s| s.into_inner())
}
fn send_neighbor_advertisement<
BC,
CC: Ipv6DeviceHandler<BC>
+ IpDeviceHandler<Ipv6, BC>
+ IpLayerHandler<Ipv6, BC>
+ CounterContext<NdpCounters>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device_id: &CC::DeviceId,
solicited: bool,
device_addr: UnicastAddr<Ipv6Addr>,
dst_ip: SpecifiedAddr<Ipv6Addr>,
) {
core_ctx.increment(|counters| &counters.tx.neighbor_advertisement);
debug!("send_neighbor_advertisement from {:?} to {:?}", device_addr, dst_ip);
// We currently only allow the destination address to be:
// 1) a unicast address.
// 2) a multicast destination but the message should be an unsolicited
// neighbor advertisement.
// NOTE: this assertion may need change if more messages are to be allowed
// in the future.
debug_assert!(dst_ip.is_valid_unicast() || (!solicited && dst_ip.is_multicast()));
// We must call into the higher level send_ip_packet_from_device function
// because it is not guaranteed that we actually know the link-layer
// address of the destination IP. Typically, the solicitation request will
// carry that information, but it is not necessary. So it is perfectly valid
// that trying to send this advertisement will end up triggering a neighbor
// solicitation to be sent.
let src_ll = core_ctx.get_link_layer_addr_bytes(&device_id);
// Nothing reasonable to do with the error.
let advertisement = NeighborAdvertisement::new(
core_ctx.is_router_device(&device_id),
solicited,
false,
device_addr.get(),
);
let _: Result<(), _> = send_ndp_packet(
core_ctx,
bindings_ctx,
&device_id,
Some(device_addr.into_specified()),
dst_ip,
OptionSequenceBuilder::new(
src_ll.as_ref().map(AsRef::as_ref).map(NdpOptionBuilder::TargetLinkLayerAddress).iter(),
)
.into_serializer(),
IcmpUnusedCode,
advertisement,
);
}
fn receive_ndp_packet<
B: SplitByteSlice,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC>
+ Ipv6DeviceHandler<BC>
+ IpDeviceHandler<Ipv6, BC>
+ IpDeviceIngressStateContext<Ipv6>
+ NudIpHandler<Ipv6, BC>
+ IpLayerHandler<Ipv6, BC>
+ CounterContext<NdpCounters>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device_id: &CC::DeviceId,
src_ip: Ipv6SourceAddr,
packet: NdpPacket<B>,
) {
// TODO(https://fxbug.dev/42179534): Make sure IP's hop limit is set to 255 as
// per RFC 4861 section 6.1.2.
match packet {
NdpPacket::RouterSolicitation(_) | NdpPacket::Redirect(_) => {}
NdpPacket::NeighborSolicitation(ref p) => {
let target_address = p.message().target_address();
let target_address = match UnicastAddr::new(*target_address) {
Some(a) => a,
None => {
trace!(
"dropping NS from {} with non-unicast target={:?}",
src_ip,
target_address
);
return;
}
};
core_ctx.increment(|counters| &counters.rx.neighbor_solicitation);
match src_ip {
Ipv6SourceAddr::Unspecified => {
// The neighbor is performing Duplicate address detection.
//
// As per RFC 4861 section 4.3,
//
// Source Address
// Either an address assigned to the interface from
// which this message is sent or (if Duplicate Address
// Detection is in progress [ADDRCONF]) the
// unspecified address.
match Ipv6DeviceHandler::handle_received_dad_neighbor_solicitation(
core_ctx,
bindings_ctx,
&device_id,
target_address,
p.body().iter().find_map(|option| option.nonce()),
) {
IpAddressState::Assigned => {
// Address is assigned to us to we let the
// remote node performing DAD that we own the
// address.
send_neighbor_advertisement(
core_ctx,
bindings_ctx,
&device_id,
false,
target_address,
Ipv6::ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS.into_specified(),
);
}
IpAddressState::Tentative => {
// Nothing further to do in response to DAD
// messages.
}
IpAddressState::Unavailable => {
// Nothing further to do for unassigned target
// addresses.
}
}
return;
}
Ipv6SourceAddr::Unicast(src_ip) => {
// Neighbor is performing link address resolution.
match core_ctx
.address_status_for_device(target_address.into_specified(), device_id)
{
AddressStatus::Present(Ipv6PresentAddressStatus::UnicastAssigned) => {}
AddressStatus::Present(
Ipv6PresentAddressStatus::UnicastTentative
| Ipv6PresentAddressStatus::Multicast,
)
| AddressStatus::Unassigned => {
// Address is not considered assigned to us as a
// unicast so don't send a neighbor advertisement
// reply.
return;
}
}
let link_addr = p.body().iter().find_map(|o| o.source_link_layer_address());
if let Some(link_addr) = link_addr {
NudIpHandler::handle_neighbor_probe(
core_ctx,
bindings_ctx,
&device_id,
src_ip.into_specified(),
link_addr,
);
}
send_neighbor_advertisement(
core_ctx,
bindings_ctx,
&device_id,
true,
target_address,
src_ip.into_specified(),
);
}
}
}
NdpPacket::NeighborAdvertisement(ref p) => {
// TODO(https://fxbug.dev/42179526): Invalidate discovered routers when
// neighbor entry's IsRouter field transitions to false.
let target_address = p.message().target_address();
let src_ip = match src_ip {
Ipv6SourceAddr::Unicast(src_ip) => src_ip,
Ipv6SourceAddr::Unspecified => {
trace!("dropping NA with unspecified source and target = {:?}", target_address);
return;
}
};
let target_address = match UnicastAddr::new(*target_address) {
Some(a) => a,
None => {
trace!(
"dropping NA from {} with non-unicast target={:?}",
src_ip,
target_address
);
return;
}
};
core_ctx.increment(|counters| &counters.rx.neighbor_advertisement);
match Ipv6DeviceHandler::handle_received_neighbor_advertisement(
core_ctx,
bindings_ctx,
&device_id,
target_address,
) {
IpAddressState::Assigned => {
// A neighbor is advertising that it owns an address
// that we also have assigned. This is out of scope
// for DAD.
//
// As per RFC 4862 section 5.4.4,
//
// 2. If the target address matches a unicast address
// assigned to the receiving interface, it would
// possibly indicate that the address is a
// duplicate but it has not been detected by the
// Duplicate Address Detection procedure (recall
// that Duplicate Address Detection is not
// completely reliable). How to handle such a case
// is beyond the scope of this document.
//
// TODO(https://fxbug.dev/42111744): Signal to bindings
// that a duplicate address is detected.
error!(
"NA from {src_ip} with target address {target_address} that is also \
assigned on device {device_id:?}",
);
}
IpAddressState::Tentative => {
// Nothing further to do for an NA from a neighbor that
// targets an address we also have assigned.
return;
}
IpAddressState::Unavailable => {
// Address not targeting us so we know its for a neighbor.
//
// TODO(https://fxbug.dev/42182317): Move NUD to IP.
}
}
let link_addr = p.body().iter().find_map(|o| o.target_link_layer_address());
let link_addr = match link_addr {
Some(a) => a,
None => {
trace!(
"dropping NA from {} targetting {} with no TLL option",
src_ip,
target_address
);
return;
}
};
NudIpHandler::handle_neighbor_confirmation(
core_ctx,
bindings_ctx,
&device_id,
target_address.into_specified(),
link_addr,
ConfirmationFlags {
solicited_flag: p.message().solicited_flag(),
override_flag: p.message().override_flag(),
},
);
}
NdpPacket::RouterAdvertisement(ref p) => {
// As per RFC 4861 section 6.1.2,
//
// A node MUST silently discard any received Router Advertisement
// messages that do not satisfy all of the following validity
// checks:
//
// - IP Source Address is a link-local address. Routers must
// use their link-local address as the source for Router
// Advertisement and Redirect messages so that hosts can
// uniquely identify routers.
//
// ...
let src_ip = match src_ip {
Ipv6SourceAddr::Unicast(ip) => match LinkLocalUnicastAddr::new(*ip) {
Some(ip) => ip,
None => return,
},
Ipv6SourceAddr::Unspecified => return,
};
let ra = p.message();
debug!("received router advertisement from {:?}: {:?}", src_ip, ra);
core_ctx.increment(|counters| &counters.rx.router_advertisement);
// As per RFC 4861 section 6.3.4,
// The RetransTimer variable SHOULD be copied from the Retrans
// Timer field, if it is specified.
//
// TODO(https://fxbug.dev/42052173): Control whether or not we should
// update the retransmit timer.
if let Some(retransmit_timer) = ra.retransmit_timer() {
Ipv6DeviceHandler::set_discovered_retrans_timer(
core_ctx,
bindings_ctx,
&device_id,
retransmit_timer,
);
}
// As per RFC 4861 section 6.3.4:
// If the received Cur Hop Limit value is specified, the host
// SHOULD set its CurHopLimit variable to the received value.
//
// TODO(https://fxbug.dev/42052173): Control whether or not we should
// update the default hop limit.
if let Some(hop_limit) = ra.current_hop_limit() {
trace!("receive_ndp_packet: NDP RA: updating device's hop limit to {:?} for router: {:?}", ra.current_hop_limit(), src_ip);
IpDeviceHandler::set_default_hop_limit(core_ctx, &device_id, hop_limit);
}
// TODO(https://fxbug.dev/42077316): Support default router preference.
Ipv6DeviceHandler::update_discovered_ipv6_route(
core_ctx,
bindings_ctx,
&device_id,
Ipv6DiscoveredRoute { subnet: IPV6_DEFAULT_SUBNET, gateway: Some(src_ip) },
p.message().router_lifetime().map(NonZeroNdpLifetime::Finite),
);
for option in p.body().iter() {
match option {
NdpOption::TargetLinkLayerAddress(_)
| NdpOption::RedirectedHeader { .. }
| NdpOption::RecursiveDnsServer(_)
| NdpOption::Nonce(_) => {}
NdpOption::SourceLinkLayerAddress(addr) => {
debug!("processing SourceLinkLayerAddress option in RA: {:?}", addr);
// As per RFC 4861 section 6.3.4,
//
// If the advertisement contains a Source Link-Layer
// Address option, the link-layer address SHOULD be
// recorded in the Neighbor Cache entry for the router
// (creating an entry if necessary) and the IsRouter
// flag in the Neighbor Cache entry MUST be set to
// TRUE. If no Source Link-Layer Address is included,
// but a corresponding Neighbor Cache entry exists,
// its IsRouter flag MUST be set to TRUE. The IsRouter
// flag is used by Neighbor Unreachability Detection
// to determine when a router changes to being a host
// (i.e., no longer capable of forwarding packets).
// If a Neighbor Cache entry is created for the
// router, its reachability state MUST be set to STALE
// as specified in Section 7.3.3. If a cache entry
// already exists and is updated with a different
// link-layer address, the reachability state MUST
// also be set to STALE.if a Neighbor Cache entry
//
// We do not yet support NUD as described in RFC 4861
// so for now we just record the link-layer address in
// our neighbor table.
//
// TODO(https://fxbug.dev/42083367): Add support for routers in NUD.
NudIpHandler::handle_neighbor_probe(
core_ctx,
bindings_ctx,
&device_id,
{
let src_ip: UnicastAddr<_> = src_ip.into_addr();
src_ip.into_specified()
},
addr,
);
}
NdpOption::PrefixInformation(prefix_info) => {
debug!("processing Prefix Information option in RA: {:?}", prefix_info);
// As per RFC 4861 section 6.3.4,
//
// For each Prefix Information option with the on-link
// flag set, a host does the following:
//
// - If the prefix is the link-local prefix,
// silently ignore the Prefix Information option.
//
// Also as per RFC 4862 section 5.5.3,
//
// For each Prefix-Information option in the Router
// Advertisement:
//
// ..
//
// b) If the prefix is the link-local prefix,
// silently ignore the Prefix Information option.
if prefix_info.prefix().is_link_local() {
continue;
}
let subnet = match prefix_info.subnet() {
Ok(subnet) => subnet,
Err(err) => match err {
SubnetError::PrefixTooLong | SubnetError::HostBitsSet => continue,
},
};
match UnicastAddr::new(subnet.network()) {
Some(UnicastAddr { .. }) => {}
None => continue,
}
let valid_lifetime = prefix_info.valid_lifetime();
if prefix_info.on_link_flag() {
// TODO(https://fxbug.dev/42077316): Support route preference.
Ipv6DeviceHandler::update_discovered_ipv6_route(
core_ctx,
bindings_ctx,
&device_id,
Ipv6DiscoveredRoute { subnet, gateway: None },
valid_lifetime,
)
}
if prefix_info.autonomous_address_configuration_flag() {
Ipv6DeviceHandler::apply_slaac_update(
core_ctx,
bindings_ctx,
&device_id,
subnet,
prefix_info.preferred_lifetime(),
valid_lifetime,
);
}
}
NdpOption::RouteInformation(rio) => {
debug!("processing Route Information option in RA: {:?}", rio);
// TODO(https://fxbug.dev/42077316): Support route preference.
Ipv6DeviceHandler::update_discovered_ipv6_route(
core_ctx,
bindings_ctx,
&device_id,
Ipv6DiscoveredRoute {
subnet: rio.prefix().clone(),
gateway: Some(src_ip),
},
rio.route_lifetime(),
)
}
NdpOption::Mtu(mtu) => {
debug!("processing MTU option in RA: {:?}", mtu);
// TODO(https://fxbug.dev/42052173): Control whether or
// not we should update the link's MTU in response to
// RAs.
Ipv6DeviceHandler::set_link_mtu(core_ctx, &device_id, Mtu::new(mtu));
}
}
}
}
}
}
impl<
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC>
+ InnerIcmpContext<Ipv6, BC>
+ Ipv6DeviceHandler<BC>
+ IpDeviceHandler<Ipv6, BC>
+ IpDeviceIngressStateContext<Ipv6>
+ PmtuHandler<Ipv6, BC>
+ NudIpHandler<Ipv6, BC>
+ IpLayerHandler<Ipv6, BC>
+ CounterContext<IcmpRxCounters<Ipv6>>
+ CounterContext<IcmpTxCounters<Ipv6>>
+ CounterContext<NdpCounters>,
> IpTransportContext<Ipv6, BC, CC> for IcmpIpTransportContext
{
fn receive_icmp_error(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
original_src_ip: Option<SpecifiedAddr<Ipv6Addr>>,
original_dst_ip: SpecifiedAddr<Ipv6Addr>,
original_body: &[u8],
err: Icmpv6ErrorCode,
) {
receive_ip_transport_icmp_error(
core_ctx,
bindings_ctx,
device,
original_src_ip,
original_dst_ip,
original_body,
err,
)
}
fn receive_ip_packet<B: BufferMut>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
src_ip: Ipv6SourceAddr,
dst_ip: SpecifiedAddr<Ipv6Addr>,
mut buffer: B,
meta: ReceiveIpPacketMeta<Ipv6>,
) -> Result<(), (B, TransportReceiveError)> {
let ReceiveIpPacketMeta { broadcast: _, transparent_override, dscp_and_ecn: _ } = &meta;
if let Some(delivery) = transparent_override {
unreachable!(
"cannot perform transparent local delivery {delivery:?} to an ICMP socket; \
transparent proxy rules can only be configured for TCP and UDP packets"
);
}
trace!(
"<IcmpIpTransportContext as IpTransportContext<Ipv6>>::receive_ip_packet({:?}, {})",
src_ip,
dst_ip
);
let packet = match buffer
.parse_with::<_, Icmpv6Packet<_>>(IcmpParseArgs::new(src_ip.get(), dst_ip))
{
Ok(packet) => packet,
Err(_) => return Ok(()), // TODO(joshlf): Do something else here?
};
match packet {
Icmpv6Packet::EchoRequest(echo_request) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv6>| &counters.echo_request);
if let Some(src_ip) = SocketIpAddr::new_from_ipv6_source(src_ip) {
match SocketIpAddr::try_from(dst_ip) {
Ok(dst_ip) => {
let req = *echo_request.message();
let code = echo_request.code();
let (local_ip, remote_ip) = (dst_ip, src_ip);
// TODO(joshlf): Do something if send_icmp_reply returns an
// error?
let _ = send_icmp_reply(
core_ctx,
bindings_ctx,
Some(device),
remote_ip,
local_ip,
|src_ip| {
buffer.encapsulate(IcmpPacketBuilder::<Ipv6, _>::new(
src_ip,
remote_ip.addr(),
code,
req.reply(),
))
},
);
}
Err(AddrIsMappedError {}) => {
trace!("IpTransportContext<Ipv6>::receive_ip_packet: Received echo request with an ipv4-mapped-ipv6 destination address");
}
}
} else {
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv6>>::receive_ip_packet: Received echo request with an unspecified source address");
}
}
Icmpv6Packet::EchoReply(echo_reply) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv6>| &counters.echo_reply);
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv6>>::receive_ip_packet: Received an EchoReply message");
let parse_metadata = echo_reply.parse_metadata();
buffer.undo_parse(parse_metadata);
return <CC::EchoTransportContext
as IpTransportContext<Ipv6, BC, CC>>::receive_ip_packet(
core_ctx,
bindings_ctx,
device,
src_ip,
dst_ip,
buffer,
meta
);
}
Icmpv6Packet::Ndp(packet) => {
receive_ndp_packet(core_ctx, bindings_ctx, device, src_ip, packet)
}
Icmpv6Packet::PacketTooBig(packet_too_big) => {
core_ctx.increment(|counters: &IcmpRxCounters<Ipv6>| &counters.packet_too_big);
trace!("<IcmpIpTransportContext as IpTransportContext<Ipv6>>::receive_ip_packet: Received a Packet Too Big message");
if let Ipv6SourceAddr::Unicast(src_ip) = src_ip {
// We are updating the path MTU from the destination address
// of this `packet` (which is an IP address on this node) to
// some remote (identified by the source address of this
// `packet`).
//
// `update_pmtu_if_less` may return an error, but it will
// only happen if the Packet Too Big message's MTU field had
// a value that was less than the IPv6 minimum MTU (which as
// per IPv6 RFC 8200, must not happen).
core_ctx.update_pmtu_if_less(
bindings_ctx,
dst_ip.get(),
src_ip.get(),
Mtu::new(packet_too_big.message().mtu()),
);
}
receive_icmpv6_error(
core_ctx,
bindings_ctx,
device,
&packet_too_big,
Icmpv6ErrorCode::PacketTooBig,
);
}
Icmpv6Packet::Mld(packet) => {
core_ctx.receive_mld_packet(bindings_ctx, &device, src_ip, dst_ip, packet);
}
Icmpv6Packet::DestUnreachable(dest_unreachable) => receive_icmpv6_error(
core_ctx,
bindings_ctx,
device,
&dest_unreachable,
Icmpv6ErrorCode::DestUnreachable(dest_unreachable.code()),
),
Icmpv6Packet::TimeExceeded(time_exceeded) => receive_icmpv6_error(
core_ctx,
bindings_ctx,
device,
&time_exceeded,
Icmpv6ErrorCode::TimeExceeded(time_exceeded.code()),
),
Icmpv6Packet::ParameterProblem(parameter_problem) => receive_icmpv6_error(
core_ctx,
bindings_ctx,
device,
¶meter_problem,
Icmpv6ErrorCode::ParameterProblem(parameter_problem.code()),
),
}
Ok(())
}
}
/// Sends an ICMP reply to a remote host.
///
/// `send_icmp_reply` sends a reply to a non-error message (e.g., "echo request"
/// or "timestamp request" messages). It takes the ingress device, source IP,
/// and destination IP of the packet *being responded to*. It uses ICMP-specific
/// logic to figure out whether and how to send an ICMP reply.
///
/// `get_body_from_src_ip` returns a `Serializer` with the bytes of the ICMP
/// packet, and, when called, is given the source IP address chosen for the
/// outbound packet. This allows `get_body_from_src_ip` to properly compute the
/// ICMP checksum, which relies on both the source and destination IP addresses
/// of the IP packet it's encapsulated in.
fn send_icmp_reply<I, BC, CC, S, F>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: Option<&CC::DeviceId>,
original_src_ip: SocketIpAddr<I::Addr>,
original_dst_ip: SocketIpAddr<I::Addr>,
get_body_from_src_ip: F,
) where
I: IpExt,
CC: IpSocketHandler<I, BC> + DeviceIdContext<AnyDevice> + CounterContext<IcmpTxCounters<I>>,
S: TransportPacketSerializer<I>,
S::Buffer: BufferMut,
F: FnOnce(SpecifiedAddr<I::Addr>) -> S,
{
trace!("send_icmp_reply({:?}, {}, {})", device, original_src_ip, original_dst_ip);
core_ctx.increment(|counters| &counters.reply);
core_ctx
.send_oneshot_ip_packet(
bindings_ctx,
None,
IpDeviceAddr::new_from_socket_ip_addr(original_dst_ip),
original_src_ip,
I::ICMP_IP_PROTO,
&DefaultIpSocketOptions,
|src_ip| get_body_from_src_ip(src_ip.into()),
)
.unwrap_or_else(|err| {
debug!("failed to send ICMP reply: {}", err);
})
}
/// Receive an ICMP(v4) error message.
///
/// `receive_icmpv4_error` handles an incoming ICMP error message by parsing the
/// original IPv4 packet and then delegating to the context.
fn receive_icmpv4_error<
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC>,
B: SplitByteSlice,
M: IcmpMessage<Ipv4, Body<B> = OriginalPacket<B>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
packet: &IcmpPacket<Ipv4, B, M>,
err: Icmpv4ErrorCode,
) {
packet.with_original_packet(|res| match res {
Ok(original_packet) => {
let dst_ip = match SpecifiedAddr::new(original_packet.dst_ip()) {
Some(ip) => ip,
None => {
trace!("receive_icmpv4_error: Got ICMP error message whose original IPv4 packet contains an unspecified destination address; discarding");
return;
},
};
InnerIcmpContext::receive_icmp_error(
core_ctx,
bindings_ctx,
device,
SpecifiedAddr::new(original_packet.src_ip()),
dst_ip,
original_packet.proto(),
original_packet.body().into_inner(),
err,
);
}
Err(_) => debug!(
"receive_icmpv4_error: Got ICMP error message with unparsable original IPv4 packet"
),
})
}
/// Receive an ICMPv6 error message.
///
/// `receive_icmpv6_error` handles an incoming ICMPv6 error message by parsing
/// the original IPv6 packet and then delegating to the context.
fn receive_icmpv6_error<
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC>,
B: SplitByteSlice,
M: IcmpMessage<Ipv6, Body<B> = OriginalPacket<B>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
packet: &IcmpPacket<Ipv6, B, M>,
err: Icmpv6ErrorCode,
) {
packet.with_original_packet(|res| match res {
Ok(original_packet) => {
let dst_ip = match SpecifiedAddr::new(original_packet.dst_ip()) {
Some(ip)=>ip,
None => {
trace!("receive_icmpv6_error: Got ICMP error message whose original IPv6 packet contains an unspecified destination address; discarding");
return;
},
};
match original_packet.body_proto() {
Ok((body, proto)) => {
InnerIcmpContext::receive_icmp_error(
core_ctx,
bindings_ctx,
device,
SpecifiedAddr::new(original_packet.src_ip()),
dst_ip,
proto,
body.into_inner(),
err,
);
}
Err(ExtHdrParseError) => {
trace!("receive_icmpv6_error: We could not parse the original packet's extension headers, and so we don't know where the original packet's body begins; discarding");
// There's nothing we can do in this case, so we just
// return.
return;
}
}
}
Err(_body) => debug!(
"receive_icmpv6_error: Got ICMPv6 error message with unparsable original IPv6 packet"
),
})
}
/// Send an ICMP(v4) message in response to receiving a packet destined for an
/// unreachable address.
///
/// `send_icmpv4_host_unreachable` sends the appropriate ICMP message in
/// response to receiving an IP packet from `src_ip` to `dst_ip`, where
/// `dst_ip` is unreachable. In particular, this is an ICMP
/// "destination unreachable" message with a "host unreachable" code.
///
/// `original_packet` must be an initial fragment or a complete IP
/// packet, per [RFC 792 Introduction]:
///
/// Also ICMP messages are only sent about errors in handling fragment zero of
/// fragemented [sic] datagrams.
///
/// `header_len` is the length of the header including all options.
///
/// [RFC 792 Introduction]: https://datatracker.ietf.org/doc/html/rfc792
pub fn send_icmpv4_host_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: Option<&CC::DeviceId>,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv4Addr>,
dst_ip: SocketIpAddr<Ipv4Addr>,
original_packet: B,
header_len: usize,
fragment_type: Ipv4FragmentType,
) {
core_ctx.with_counters(|counters| {
counters.address_unreachable.increment();
});
send_icmpv4_dest_unreachable(
core_ctx,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
Icmpv4DestUnreachableCode::DestHostUnreachable,
original_packet,
header_len,
fragment_type,
);
}
/// Send an ICMPv6 message in response to receiving a packet destined for an
/// unreachable address.
///
/// `send_icmpv6_address_unreachable` sends the appropriate ICMP message in
/// response to receiving an IP packet from `src_ip` to `dst_ip`, where
/// `dst_ip` is unreachable. In particular, this is an ICMP
/// "destination unreachable" message with an "address unreachable" code.
///
/// `original_packet` contains the contents of the entire original packet,
/// including extension headers.
pub fn send_icmpv6_address_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: Option<&CC::DeviceId>,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv6Addr>,
dst_ip: SocketIpAddr<Ipv6Addr>,
original_packet: B,
) {
core_ctx.with_counters(|counters| {
counters.address_unreachable.increment();
});
send_icmpv6_dest_unreachable(
core_ctx,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
Icmpv6DestUnreachableCode::AddrUnreachable,
original_packet,
);
}
/// Send an ICMP(v4) message in response to receiving a packet destined for an
/// unsupported IPv4 protocol.
///
/// `send_icmpv4_protocol_unreachable` sends the appropriate ICMP message in
/// response to receiving an IP packet from `src_ip` to `dst_ip` identifying an
/// unsupported protocol - in particular, a "destination unreachable" message
/// with a "protocol unreachable" code.
///
/// `original_packet` contains the contents of the entire original packet,
/// including the IP header. This must be a whole packet, not a packet fragment.
/// `header_len` is the length of the header including all options.
pub(crate) fn send_icmpv4_protocol_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv4Addr>,
dst_ip: SocketIpAddr<Ipv4Addr>,
original_packet: B,
header_len: usize,
) {
core_ctx.increment(|counters| &counters.protocol_unreachable);
send_icmpv4_dest_unreachable(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
Icmpv4DestUnreachableCode::DestProtocolUnreachable,
original_packet,
header_len,
// If we are sending a protocol unreachable error it is correct to assume that, if the
// packet was initially fragmented, it has been successfully reassembled by now. It
// guarantees that we won't send more than one ICMP Destination Unreachable message for
// different fragments of the same original packet, so we should behave as if we are
// handling an initial fragment.
Ipv4FragmentType::InitialFragment,
);
}
/// Send an ICMPv6 message in response to receiving a packet destined for an
/// unsupported Next Header.
///
/// `send_icmpv6_protocol_unreachable` is like
/// [`send_icmpv4_protocol_unreachable`], but for ICMPv6. It sends an ICMPv6
/// "parameter problem" message with an "unrecognized next header type" code.
///
/// `header_len` is the length of all IPv6 headers (including extension headers)
/// *before* the payload with the problematic Next Header type.
pub(crate) fn send_icmpv6_protocol_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv6Addr>,
dst_ip: SocketIpAddr<Ipv6Addr>,
original_packet: B,
header_len: usize,
) {
core_ctx.increment(|counters| &counters.protocol_unreachable);
send_icmpv6_parameter_problem(
core_ctx,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
Icmpv6ParameterProblemCode::UnrecognizedNextHeaderType,
// Per RFC 4443, the pointer refers to the first byte of the packet
// whose Next Header field was unrecognized. It is measured as an offset
// from the beginning of the first IPv6 header. E.g., a pointer of 40
// (the length of a single IPv6 header) would indicate that the Next
// Header field from that header - and hence of the first encapsulated
// packet - was unrecognized.
//
// NOTE: Since header_len is a usize, this could theoretically be a
// lossy conversion. However, all that means in practice is that, if a
// remote host somehow managed to get us to process a frame with a 4GB
// IP header and send an ICMP response, the pointer value would be
// wrong. It's not worth wasting special logic to avoid generating a
// malformed packet in a case that will almost certainly never happen.
Icmpv6ParameterProblem::new(header_len as u32),
original_packet,
false,
);
}
/// Send an ICMP(v4) message in response to receiving a packet destined for an
/// unreachable local transport-layer port.
///
/// `send_icmpv4_port_unreachable` sends the appropriate ICMP message in
/// response to receiving an IP packet from `src_ip` to `dst_ip` with an
/// unreachable local transport-layer port. In particular, this is an ICMP
/// "destination unreachable" message with a "port unreachable" code.
///
/// `original_packet` contains the contents of the entire original packet,
/// including the IP header. This must be a whole packet, not a packet fragment.
/// `header_len` is the length of the header including all options.
pub(crate) fn send_icmpv4_port_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv4Addr>,
dst_ip: SocketIpAddr<Ipv4Addr>,
original_packet: B,
header_len: usize,
) {
core_ctx.increment(|counters| &counters.port_unreachable);
send_icmpv4_dest_unreachable(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
Icmpv4DestUnreachableCode::DestPortUnreachable,
original_packet,
header_len,
// If we are sending a port unreachable error it is correct to assume that, if the packet
// was initially fragmented, it has been successfully reassembled by now. It guarantees that
// we won't send more than one ICMP Destination Unreachable message for different fragments
// of the same original packet, so we should behave as if we are handling an initial
// fragment.
Ipv4FragmentType::InitialFragment,
);
}
/// Send an ICMPv6 message in response to receiving a packet destined for an
/// unreachable local transport-layer port.
///
/// `send_icmpv6_port_unreachable` is like [`send_icmpv4_port_unreachable`], but
/// for ICMPv6.
///
/// `original_packet` contains the contents of the entire original packet,
/// including extension headers.
pub(crate) fn send_icmpv6_port_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv6Addr>,
dst_ip: SocketIpAddr<Ipv6Addr>,
original_packet: B,
) {
core_ctx.increment(|counters| &counters.port_unreachable);
send_icmpv6_dest_unreachable(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
Icmpv6DestUnreachableCode::PortUnreachable,
original_packet,
);
}
/// Send an ICMP(v4) message in response to receiving a packet destined for an
/// unreachable network.
///
/// `send_icmpv4_net_unreachable` sends the appropriate ICMP message in response
/// to receiving an IP packet from `src_ip` to an unreachable `dst_ip`. In
/// particular, this is an ICMP "destination unreachable" message with a "net
/// unreachable" code.
///
/// `original_packet` contains the contents of the entire original packet -
/// including all IP headers. `header_len` is the length of the IPv4 header. It
/// is ignored for IPv6.
pub(crate) fn send_icmpv4_net_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv4Addr>,
dst_ip: SocketIpAddr<Ipv4Addr>,
proto: Ipv4Proto,
original_packet: B,
header_len: usize,
fragment_type: Ipv4FragmentType,
) {
core_ctx.increment(|counters| &counters.net_unreachable);
// Check whether we MUST NOT send an ICMP error message
// because the original packet was itself an ICMP error message.
if is_icmp_error_message::<Ipv4>(proto, &original_packet.as_ref()[header_len..]) {
return;
}
send_icmpv4_dest_unreachable(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
Icmpv4DestUnreachableCode::DestNetworkUnreachable,
original_packet,
header_len,
fragment_type,
);
}
/// Send an ICMPv6 message in response to receiving a packet destined for an
/// unreachable network.
///
/// `send_icmpv6_net_unreachable` is like [`send_icmpv4_net_unreachable`], but
/// for ICMPv6. It sends an ICMPv6 "destination unreachable" message with a "no
/// route to destination" code.
///
/// `original_packet` contains the contents of the entire original packet
/// including extension headers. `header_len` is the length of the IP header and
/// all extension headers.
pub(crate) fn send_icmpv6_net_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv6Addr>,
dst_ip: SocketIpAddr<Ipv6Addr>,
proto: Ipv6Proto,
original_packet: B,
header_len: usize,
) {
core_ctx.increment(|counters| &counters.net_unreachable);
// Check whether we MUST NOT send an ICMP error message
// because the original packet was itself an ICMP error message.
if is_icmp_error_message::<Ipv6>(proto, &original_packet.as_ref()[header_len..]) {
return;
}
send_icmpv6_dest_unreachable(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
Icmpv6DestUnreachableCode::NoRoute,
original_packet,
);
}
/// Send an ICMP(v4) message in response to receiving a packet whose TTL has
/// expired.
///
/// `send_icmpv4_ttl_expired` sends the appropriate ICMP in response to
/// receiving an IP packet from `src_ip` to `dst_ip` whose TTL has expired. In
/// particular, this is an ICMP "time exceeded" message with a "time to live
/// exceeded in transit" code.
///
/// `original_packet` contains the contents of the entire original packet,
/// including the header. `header_len` is the length of the IP header including
/// options.
pub(crate) fn send_icmpv4_ttl_expired<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv4Addr>,
dst_ip: SocketIpAddr<Ipv4Addr>,
proto: Ipv4Proto,
original_packet: B,
header_len: usize,
fragment_type: Ipv4FragmentType,
) {
core_ctx.increment(|counters| &counters.ttl_expired);
// Check whether we MUST NOT send an ICMP error message because the original
// packet was itself an ICMP error message.
if is_icmp_error_message::<Ipv4>(proto, &original_packet.as_ref()[header_len..]) {
return;
}
send_icmpv4_error_message(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
Icmpv4TimeExceededCode::TtlExpired,
IcmpTimeExceeded::default(),
original_packet,
header_len,
fragment_type,
)
}
/// Send an ICMPv6 message in response to receiving a packet whose hop limit has
/// expired.
///
/// `send_icmpv6_ttl_expired` is like [`send_icmpv4_ttl_expired`], but for
/// ICMPv6. It sends an ICMPv6 "time exceeded" message with a "hop limit
/// exceeded in transit" code.
///
/// `original_packet` contains the contents of the entire original packet
/// including extension headers. `header_len` is the length of the IP header and
/// all extension headers.
pub(crate) fn send_icmpv6_ttl_expired<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv6Addr>,
dst_ip: SocketIpAddr<Ipv6Addr>,
proto: Ipv6Proto,
original_packet: B,
header_len: usize,
) {
core_ctx.increment(|counters| &counters.ttl_expired);
// Check whether we MUST NOT send an ICMP error message because the
// original packet was itself an ICMP error message.
if is_icmp_error_message::<Ipv6>(proto, &original_packet.as_ref()[header_len..]) {
return;
}
send_icmpv6_error_message(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
Icmpv6TimeExceededCode::HopLimitExceeded,
IcmpTimeExceeded::default(),
original_packet,
false, /* allow_dst_multicast */
)
}
// TODO(joshlf): Test send_icmpv6_packet_too_big once we support fake IPv6 test
// setups.
/// Send an ICMPv6 message in response to receiving a packet whose size exceeds
/// the MTU of the next hop interface.
///
/// `send_icmpv6_packet_too_big` sends an ICMPv6 "packet too big" message in
/// response to receiving an IP packet from `src_ip` to `dst_ip` whose size
/// exceeds the `mtu` of the next hop interface.
pub(crate) fn send_icmpv6_packet_too_big<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv6Addr>,
dst_ip: SocketIpAddr<Ipv6Addr>,
proto: Ipv6Proto,
mtu: Mtu,
original_packet: B,
header_len: usize,
) {
core_ctx.increment(|counters| &counters.packet_too_big);
// Check whether we MUST NOT send an ICMP error message because the
// original packet was itself an ICMP error message.
if is_icmp_error_message::<Ipv6>(proto, &original_packet.as_ref()[header_len..]) {
return;
}
send_icmpv6_error_message(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
IcmpUnusedCode,
Icmpv6PacketTooBig::new(mtu.into()),
original_packet,
// As per RFC 4443 section 2.4.e,
//
// An ICMPv6 error message MUST NOT be originated as a result of
// receiving the following:
//
// (e.3) A packet destined to an IPv6 multicast address. (There are
// two exceptions to this rule: (1) the Packet Too Big Message
// (Section 3.2) to allow Path MTU discovery to work for IPv6
// multicast, and (2) the Parameter Problem Message, Code 2
// (Section 3.4) reporting an unrecognized IPv6 option (see
// Section 4.2 of [IPv6]) that has the Option Type highest-
// order two bits set to 10).
//
// (e.4) A packet sent as a link-layer multicast (the exceptions
// from e.3 apply to this case, too).
//
// Thus, we explicitly allow sending a Packet Too Big error if the
// destination was a multicast packet.
true, /* allow_dst_multicast */
)
}
pub(crate) fn send_icmpv4_parameter_problem<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv4Addr>,
dst_ip: SocketIpAddr<Ipv4Addr>,
code: Icmpv4ParameterProblemCode,
parameter_problem: Icmpv4ParameterProblem,
original_packet: B,
header_len: usize,
fragment_type: Ipv4FragmentType,
) {
core_ctx.increment(|counters| &counters.parameter_problem);
send_icmpv4_error_message(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
code,
parameter_problem,
original_packet,
header_len,
fragment_type,
)
}
/// Send an ICMPv6 Parameter Problem error message.
///
/// If the error message is Code 2 reporting an unrecognized IPv6 option that
/// has the Option Type highest-order two bits set to 10, `allow_dst_multicast`
/// must be set to `true`. See [`should_send_icmpv6_error`] for more details.
///
/// # Panics
///
/// Panics if `allow_multicast_addr` is set to `true`, but this Parameter
/// Problem's code is not 2 (Unrecognized IPv6 Option).
pub(crate) fn send_icmpv6_parameter_problem<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv6Addr>,
dst_ip: SocketIpAddr<Ipv6Addr>,
code: Icmpv6ParameterProblemCode,
parameter_problem: Icmpv6ParameterProblem,
original_packet: B,
allow_dst_multicast: bool,
) {
// Only allow the `allow_dst_multicast` parameter to be set if the code is
// the unrecognized IPv6 option as that is one of the few exceptions where
// we can send an ICMP packet in response to a packet that was destined for
// a multicast address.
assert!(!allow_dst_multicast || code == Icmpv6ParameterProblemCode::UnrecognizedIpv6Option);
core_ctx.increment(|counters| &counters.parameter_problem);
send_icmpv6_error_message(
core_ctx,
bindings_ctx,
Some(device),
frame_dst,
src_ip,
dst_ip,
code,
parameter_problem,
original_packet,
allow_dst_multicast,
)
}
fn send_icmpv4_dest_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: Option<&CC::DeviceId>,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv4Addr>,
dst_ip: SocketIpAddr<Ipv4Addr>,
code: Icmpv4DestUnreachableCode,
original_packet: B,
header_len: usize,
fragment_type: Ipv4FragmentType,
) {
core_ctx.increment(|counters| &counters.dest_unreachable);
send_icmpv4_error_message(
core_ctx,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
code,
IcmpDestUnreachable::default(),
original_packet,
header_len,
fragment_type,
)
}
fn send_icmpv6_dest_unreachable<
B: BufferMut,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: Option<&CC::DeviceId>,
frame_dst: Option<FrameDestination>,
src_ip: SocketIpAddr<Ipv6Addr>,
dst_ip: SocketIpAddr<Ipv6Addr>,
code: Icmpv6DestUnreachableCode,
original_packet: B,
) {
send_icmpv6_error_message(
core_ctx,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
code,
IcmpDestUnreachable::default(),
original_packet,
false, /* allow_dst_multicast */
)
}
fn send_icmpv4_error_message<
B: BufferMut,
M: filter::IcmpMessage<Ipv4>,
BC: IcmpBindingsContext,
CC: InnerIcmpv4Context<BC> + CounterContext<IcmpTxCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: Option<&CC::DeviceId>,
frame_dst: Option<FrameDestination>,
original_src_ip: SocketIpAddr<Ipv4Addr>,
original_dst_ip: SocketIpAddr<Ipv4Addr>,
code: M::Code,
message: M,
mut original_packet: B,
header_len: usize,
fragment_type: Ipv4FragmentType,
) {
// TODO(https://fxbug.dev/42177876): Come up with rules for when to send ICMP
// error messages.
if !should_send_icmpv4_error(
frame_dst,
original_src_ip.into(),
original_dst_ip.into(),
fragment_type,
) {
return;
}
// Per RFC 792, body contains entire IPv4 header + 64 bytes of original
// body.
original_packet.shrink_back_to(header_len + 64);
// TODO(https://fxbug.dev/42177877): Improve source address selection for ICMP
// errors sent from unnumbered/router interfaces.
let _ = try_send_error!(
core_ctx,
bindings_ctx,
core_ctx.send_oneshot_ip_packet(
bindings_ctx,
device.map(EitherDeviceId::Strong),
None,
original_src_ip,
Ipv4Proto::Icmp,
&DefaultIpSocketOptions,
|local_ip| {
original_packet.encapsulate(IcmpPacketBuilder::<Ipv4, _>::new(
local_ip.addr(),
original_src_ip.addr(),
code,
message,
))
},
)
);
}
fn send_icmpv6_error_message<
B: BufferMut,
M: filter::IcmpMessage<Ipv6>,
BC: IcmpBindingsContext,
CC: InnerIcmpv6Context<BC> + CounterContext<IcmpTxCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: Option<&CC::DeviceId>,
frame_dst: Option<FrameDestination>,
original_src_ip: SocketIpAddr<Ipv6Addr>,
original_dst_ip: SocketIpAddr<Ipv6Addr>,
code: M::Code,
message: M,
original_packet: B,
allow_dst_multicast: bool,
) {
// TODO(https://fxbug.dev/42177876): Come up with rules for when to send ICMP
// error messages.
if !should_send_icmpv6_error(
frame_dst,
original_src_ip.into(),
original_dst_ip.into(),
allow_dst_multicast,
) {
return;
}
struct RestrictMtu;
impl OptionDelegationMarker for RestrictMtu {}
impl DelegatedSendOptions<Ipv6> for RestrictMtu {
fn mtu(&self) -> Mtu {
Ipv6::MINIMUM_LINK_MTU
}
}
impl DelegatedRouteResolutionOptions<Ipv6> for RestrictMtu {}
// TODO(https://fxbug.dev/42177877): Improve source address selection for ICMP
// errors sent from unnumbered/router interfaces.
let _ = try_send_error!(
core_ctx,
bindings_ctx,
core_ctx.send_oneshot_ip_packet(
bindings_ctx,
device.map(EitherDeviceId::Strong),
None,
original_src_ip,
Ipv6Proto::Icmpv6,
&RestrictMtu,
|local_ip| {
let icmp_builder = IcmpPacketBuilder::<Ipv6, _>::new(
local_ip.addr(),
original_src_ip.addr(),
code,
message,
);
// Per RFC 4443, body contains as much of the original body as
// possible without exceeding IPv6 minimum MTU.
TruncatingSerializer::new(original_packet, TruncateDirection::DiscardBack)
.encapsulate(icmp_builder)
},
)
);
}
/// Should we send an ICMP(v4) response?
///
/// `should_send_icmpv4_error` implements the logic described in RFC 1122
/// Section 3.2.2. It decides whether, upon receiving an incoming packet with
/// the given parameters, we should send an ICMP response or not. In particular,
/// we do not send an ICMP response if we've received:
/// - a packet destined to a broadcast or multicast address
/// - a packet sent in a link-layer broadcast
/// - a non-initial fragment
/// - a packet whose source address does not define a single host (a
/// zero/unspecified address, a loopback address, a broadcast address, a
/// multicast address, or a Class E address)
///
/// Note that `should_send_icmpv4_error` does NOT check whether the incoming
/// packet contained an ICMP error message. This is because that check is
/// unnecessary for some ICMP error conditions. The ICMP error message check can
/// be performed separately with `is_icmp_error_message`.
fn should_send_icmpv4_error(
frame_dst: Option<FrameDestination>,
src_ip: SpecifiedAddr<Ipv4Addr>,
dst_ip: SpecifiedAddr<Ipv4Addr>,
fragment_type: Ipv4FragmentType,
) -> bool {
// NOTE: We do not explicitly implement the "unspecified address" check, as
// it is enforced by the types of the arguments.
// TODO(joshlf): Implement the rest of the rules:
// - a packet destined to a subnet broadcast address
// - a packet whose source address is a subnet broadcast address
// NOTE: The FrameDestination type has variants for unicast, multicast, and
// broadcast. One implication of the fact that we only check for broadcast
// here (in compliance with the RFC) is that we could, in one very unlikely
// edge case, respond with an ICMP error message to an IP packet which was
// sent in a link-layer multicast frame. In particular, that can happen if
// we subscribe to a multicast IP group and, as a result, subscribe to the
// corresponding multicast MAC address, and we receive a unicast IP packet
// in a multicast link-layer frame destined to that MAC address.
//
// TODO(joshlf): Should we filter incoming multicast IP traffic to make sure
// that it matches the multicast MAC address of the frame it was
// encapsulated in?
fragment_type == Ipv4FragmentType::InitialFragment
&& !(dst_ip.is_multicast()
|| dst_ip.is_limited_broadcast()
|| frame_dst.is_some_and(|dst| dst.is_broadcast())
|| src_ip.is_loopback()
|| src_ip.is_limited_broadcast()
|| src_ip.is_multicast()
|| src_ip.is_class_e())
}
/// Should we send an ICMPv6 response?
///
/// `should_send_icmpv6_error` implements the logic described in RFC 4443
/// Section 2.4.e. It decides whether, upon receiving an incoming packet with
/// the given parameters, we should send an ICMP response or not. In particular,
/// we do not send an ICMP response if we've received:
/// - a packet destined to a multicast address
/// - Two exceptions to this rules:
/// 1) the Packet Too Big Message to allow Path MTU discovery to work for
/// IPv6 multicast
/// 2) the Parameter Problem Message, Code 2 reporting an unrecognized IPv6
/// option that has the Option Type highest-order two bits set to 10
/// - a packet sent as a link-layer multicast or broadcast
/// - same exceptions apply here as well.
/// - a packet whose source address does not define a single host (a
/// zero/unspecified address, a loopback address, or a multicast address)
///
/// If an ICMP response will be a Packet Too Big Message or a Parameter Problem
/// Message, Code 2 reporting an unrecognized IPv6 option that has the Option
/// Type highest-order two bits set to 10, `info.allow_dst_multicast` must be
/// set to `true` so this function will allow the exception mentioned above.
///
/// Note that `should_send_icmpv6_error` does NOT check whether the incoming
/// packet contained an ICMP error message. This is because that check is
/// unnecessary for some ICMP error conditions. The ICMP error message check can
/// be performed separately with `is_icmp_error_message`.
fn should_send_icmpv6_error(
frame_dst: Option<FrameDestination>,
src_ip: SpecifiedAddr<Ipv6Addr>,
dst_ip: SpecifiedAddr<Ipv6Addr>,
allow_dst_multicast: bool,
) -> bool {
// NOTE: We do not explicitly implement the "unspecified address" check, as
// it is enforced by the types of the arguments.
let multicast_frame_dst = match frame_dst {
Some(FrameDestination::Individual { local: _ }) | None => false,
Some(FrameDestination::Broadcast) | Some(FrameDestination::Multicast) => true,
};
if (dst_ip.is_multicast() || multicast_frame_dst) && !allow_dst_multicast {
return false;
}
if src_ip.is_loopback() || src_ip.is_multicast() {
return false;
}
true
}
/// Determine whether or not an IP packet body contains an ICMP error message
/// for the purposes of determining whether or not to send an ICMP response.
///
/// `is_icmp_error_message` checks whether `proto` is ICMP(v4) for IPv4 or
/// ICMPv6 for IPv6 and, if so, attempts to parse `buf` as an ICMP packet in
/// order to determine whether it is an error message or not. If parsing fails,
/// it conservatively assumes that it is an error packet in order to avoid
/// violating the MUST NOT directives of RFC 1122 Section 3.2.2 and [RFC 4443
/// Section 2.4.e].
///
/// [RFC 4443 Section 2.4.e]: https://tools.ietf.org/html/rfc4443#section-2.4
fn is_icmp_error_message<I: IcmpIpExt>(proto: I::Proto, buf: &[u8]) -> bool {
proto == I::ICMP_IP_PROTO
&& peek_message_type::<I::IcmpMessageType>(buf).map(IcmpMessageType::is_err).unwrap_or(true)
}
/// Test utilities for ICMP.
#[cfg(any(test, feature = "testutils"))]
pub(crate) mod testutil {
use alloc::vec::Vec;
use net_types::ethernet::Mac;
use net_types::ip::{Ipv6, Ipv6Addr};
use packet::{Buf, InnerPacketBuilder as _, Serializer as _};
use packet_formats::icmp::ndp::options::NdpOptionBuilder;
use packet_formats::icmp::ndp::{
NeighborAdvertisement, NeighborSolicitation, OptionSequenceBuilder,
};
use packet_formats::icmp::{IcmpPacketBuilder, IcmpUnusedCode};
use packet_formats::ip::Ipv6Proto;
use packet_formats::ipv6::Ipv6PacketBuilder;
use super::REQUIRED_NDP_IP_PACKET_HOP_LIMIT;
/// Serialize an IP packet containing a neighbor advertisement with the
/// provided parameters.
pub fn neighbor_advertisement_ip_packet(
src_ip: Ipv6Addr,
dst_ip: Ipv6Addr,
router_flag: bool,
solicited_flag: bool,
override_flag: bool,
mac: Mac,
) -> Buf<Vec<u8>> {
OptionSequenceBuilder::new([NdpOptionBuilder::TargetLinkLayerAddress(&mac.bytes())].iter())
.into_serializer()
.encapsulate(IcmpPacketBuilder::<Ipv6, _>::new(
src_ip,
dst_ip,
IcmpUnusedCode,
NeighborAdvertisement::new(router_flag, solicited_flag, override_flag, src_ip),
))
.encapsulate(Ipv6PacketBuilder::new(
src_ip,
dst_ip,
REQUIRED_NDP_IP_PACKET_HOP_LIMIT,
Ipv6Proto::Icmpv6,
))
.serialize_vec_outer()
.unwrap()
.unwrap_b()
}
/// Serialize an IP packet containing a neighbor solicitation with the
/// provided parameters.
pub fn neighbor_solicitation_ip_packet(
src_ip: Ipv6Addr,
dst_ip: Ipv6Addr,
target_addr: Ipv6Addr,
mac: Mac,
) -> Buf<Vec<u8>> {
OptionSequenceBuilder::new([NdpOptionBuilder::SourceLinkLayerAddress(&mac.bytes())].iter())
.into_serializer()
.encapsulate(IcmpPacketBuilder::<Ipv6, _>::new(
src_ip,
dst_ip,
IcmpUnusedCode,
NeighborSolicitation::new(target_addr),
))
.encapsulate(Ipv6PacketBuilder::new(
src_ip,
dst_ip,
REQUIRED_NDP_IP_PACKET_HOP_LIMIT,
Ipv6Proto::Icmpv6,
))
.serialize_vec_outer()
.unwrap()
.unwrap_b()
}
}
#[cfg(test)]
mod tests {
use alloc::vec;
use alloc::vec::Vec;
use packet_formats::icmp::ndp::options::NdpNonce;
use core::fmt::Debug;
use core::time::Duration;
use net_types::ip::Subnet;
use netstack3_base::testutil::{
set_logger_for_test, FakeBindingsCtx, FakeCoreCtx, FakeDeviceId, FakeInstant,
FakeWeakDeviceId, TestIpExt, TEST_ADDRS_V4, TEST_ADDRS_V6,
};
use netstack3_base::CtxPair;
use packet::Buf;
use packet_formats::icmp::mld::MldPacket;
use packet_formats::ip::IpProto;
use packet_formats::utils::NonZeroDuration;
use super::*;
use crate::internal::base::IpDeviceEgressStateContext;
use crate::internal::socket::testutil::{FakeDeviceConfig, FakeIpSocketCtx};
use crate::internal::socket::{
IpSock, IpSockCreationError, IpSockSendError, IpSocketHandler, SendOptions,
};
use crate::socket::RouteResolutionOptions;
/// The FakeCoreCtx held as the inner state of [`FakeIcmpCoreCtx`].
type InnerIpSocketCtx<I> = FakeCoreCtx<
FakeIpSocketCtx<I, FakeDeviceId>,
SendIpPacketMeta<I, FakeDeviceId, SpecifiedAddr<<I as Ip>::Addr>>,
FakeDeviceId,
>;
/// `FakeCoreCtx` specialized for ICMP.
pub(super) struct FakeIcmpCoreCtx<I: IpExt> {
ip_socket_ctx: InnerIpSocketCtx<I>,
icmp: FakeIcmpCoreCtxState<I>,
}
/// `FakeBindingsCtx` specialized for ICMP.
type FakeIcmpBindingsCtx<I> = FakeBindingsCtx<(), (), FakeIcmpBindingsCtxState<I>, ()>;
/// A fake ICMP bindings and core contexts.
///
/// This is exposed to super so it can be shared with the socket tests.
pub(super) type FakeIcmpCtx<I> = CtxPair<FakeIcmpCoreCtx<I>, FakeIcmpBindingsCtx<I>>;
pub(super) struct FakeIcmpCoreCtxState<I: IpExt> {
error_send_bucket: TokenBucket<FakeInstant>,
receive_icmp_error: Vec<I::ErrorCode>,
rx_counters: IcmpRxCounters<I>,
tx_counters: IcmpTxCounters<I>,
ndp_counters: NdpCounters,
}
impl<I: TestIpExt + IpExt> FakeIcmpCoreCtx<I> {
fn with_errors_per_second(errors_per_second: u64) -> Self {
Self {
icmp: FakeIcmpCoreCtxState {
error_send_bucket: TokenBucket::new(errors_per_second),
receive_icmp_error: Default::default(),
rx_counters: Default::default(),
tx_counters: Default::default(),
ndp_counters: Default::default(),
},
ip_socket_ctx: InnerIpSocketCtx::with_state(FakeIpSocketCtx::new(
core::iter::once(FakeDeviceConfig {
device: FakeDeviceId,
local_ips: vec![I::TEST_ADDRS.local_ip],
remote_ips: vec![I::TEST_ADDRS.remote_ip],
}),
)),
}
}
}
impl<I: TestIpExt + IpExt> Default for FakeIcmpCoreCtx<I> {
fn default() -> Self {
Self::with_errors_per_second(DEFAULT_ERRORS_PER_SECOND)
}
}
impl<I: IpExt> DeviceIdContext<AnyDevice> for FakeIcmpCoreCtx<I> {
type DeviceId = FakeDeviceId;
type WeakDeviceId = FakeWeakDeviceId<FakeDeviceId>;
}
impl<I: IpExt> IcmpStateContext for FakeIcmpCoreCtx<I> {}
impl<I: IpExt> IcmpStateContext for InnerIpSocketCtx<I> {}
impl<I: IpExt> CounterContext<IcmpRxCounters<I>> for FakeIcmpCoreCtx<I> {
fn with_counters<O, F: FnOnce(&IcmpRxCounters<I>) -> O>(&self, cb: F) -> O {
cb(&self.icmp.rx_counters)
}
}
impl<I: IpExt> CounterContext<IcmpTxCounters<I>> for FakeIcmpCoreCtx<I> {
fn with_counters<O, F: FnOnce(&IcmpTxCounters<I>) -> O>(&self, cb: F) -> O {
cb(&self.icmp.tx_counters)
}
}
impl<I: IpExt> CounterContext<NdpCounters> for FakeIcmpCoreCtx<I> {
fn with_counters<O, F: FnOnce(&NdpCounters) -> O>(&self, cb: F) -> O {
cb(&self.icmp.ndp_counters)
}
}
pub enum FakeEchoIpTransportContext {}
impl EchoTransportContextMarker for FakeEchoIpTransportContext {}
impl<I: IpExt> IpTransportContext<I, FakeIcmpBindingsCtx<I>, FakeIcmpCoreCtx<I>>
for FakeEchoIpTransportContext
{
fn receive_icmp_error(
core_ctx: &mut FakeIcmpCoreCtx<I>,
_bindings_ctx: &mut FakeIcmpBindingsCtx<I>,
_device: &FakeDeviceId,
_original_src_ip: Option<SpecifiedAddr<I::Addr>>,
_original_dst_ip: SpecifiedAddr<I::Addr>,
_original_body: &[u8],
_err: I::ErrorCode,
) {
core_ctx.icmp.rx_counters.error_delivered_to_socket.increment()
}
fn receive_ip_packet<B: BufferMut>(
_core_ctx: &mut FakeIcmpCoreCtx<I>,
_bindings_ctx: &mut FakeIcmpBindingsCtx<I>,
_device: &FakeDeviceId,
_src_ip: I::RecvSrcAddr,
_dst_ip: SpecifiedAddr<I::Addr>,
_buffer: B,
_meta: ReceiveIpPacketMeta<I>,
) -> Result<(), (B, TransportReceiveError)> {
unimplemented!()
}
}
impl<I: IpExt> InnerIcmpContext<I, FakeIcmpBindingsCtx<I>> for FakeIcmpCoreCtx<I> {
type EchoTransportContext = FakeEchoIpTransportContext;
fn receive_icmp_error(
&mut self,
bindings_ctx: &mut FakeIcmpBindingsCtx<I>,
device: &Self::DeviceId,
original_src_ip: Option<SpecifiedAddr<I::Addr>>,
original_dst_ip: SpecifiedAddr<I::Addr>,
original_proto: I::Proto,
original_body: &[u8],
err: I::ErrorCode,
) {
self.increment(|counters: &IcmpRxCounters<I>| &counters.error);
self.icmp.receive_icmp_error.push(err);
if original_proto == I::ICMP_IP_PROTO {
receive_ip_transport_icmp_error(
self,
bindings_ctx,
device,
original_src_ip,
original_dst_ip,
original_body,
err,
)
}
}
fn with_error_send_bucket_mut<O, F: FnOnce(&mut TokenBucket<FakeInstant>) -> O>(
&mut self,
cb: F,
) -> O {
cb(&mut self.icmp.error_send_bucket)
}
}
#[test]
fn test_should_send_icmpv4_error() {
let src_ip = TEST_ADDRS_V4.local_ip;
let dst_ip = TEST_ADDRS_V4.remote_ip;
let frame_dst = FrameDestination::Individual { local: true };
let multicast_ip_1 = SpecifiedAddr::new(Ipv4Addr::new([224, 0, 0, 1])).unwrap();
let multicast_ip_2 = SpecifiedAddr::new(Ipv4Addr::new([224, 0, 0, 2])).unwrap();
// Should Send, unless non initial fragment.
assert!(should_send_icmpv4_error(
Some(frame_dst),
src_ip,
dst_ip,
Ipv4FragmentType::InitialFragment
));
assert!(should_send_icmpv4_error(None, src_ip, dst_ip, Ipv4FragmentType::InitialFragment));
assert!(!should_send_icmpv4_error(
Some(frame_dst),
src_ip,
dst_ip,
Ipv4FragmentType::NonInitialFragment
));
// Should not send because destined for IP broadcast addr
assert!(!should_send_icmpv4_error(
Some(frame_dst),
src_ip,
Ipv4::LIMITED_BROADCAST_ADDRESS,
Ipv4FragmentType::InitialFragment
));
assert!(!should_send_icmpv4_error(
Some(frame_dst),
src_ip,
Ipv4::LIMITED_BROADCAST_ADDRESS,
Ipv4FragmentType::NonInitialFragment
));
// Should not send because destined for multicast addr
assert!(!should_send_icmpv4_error(
Some(frame_dst),
src_ip,
multicast_ip_1,
Ipv4FragmentType::InitialFragment
));
assert!(!should_send_icmpv4_error(
Some(frame_dst),
src_ip,
multicast_ip_1,
Ipv4FragmentType::NonInitialFragment
));
// Should not send because Link Layer Broadcast.
assert!(!should_send_icmpv4_error(
Some(FrameDestination::Broadcast),
src_ip,
dst_ip,
Ipv4FragmentType::InitialFragment
));
assert!(!should_send_icmpv4_error(
Some(FrameDestination::Broadcast),
src_ip,
dst_ip,
Ipv4FragmentType::NonInitialFragment
));
// Should not send because from loopback addr
assert!(!should_send_icmpv4_error(
Some(frame_dst),
Ipv4::LOOPBACK_ADDRESS,
dst_ip,
Ipv4FragmentType::InitialFragment
));
assert!(!should_send_icmpv4_error(
Some(frame_dst),
Ipv4::LOOPBACK_ADDRESS,
dst_ip,
Ipv4FragmentType::NonInitialFragment
));
// Should not send because from limited broadcast addr
assert!(!should_send_icmpv4_error(
Some(frame_dst),
Ipv4::LIMITED_BROADCAST_ADDRESS,
dst_ip,
Ipv4FragmentType::InitialFragment
));
assert!(!should_send_icmpv4_error(
Some(frame_dst),
Ipv4::LIMITED_BROADCAST_ADDRESS,
dst_ip,
Ipv4FragmentType::NonInitialFragment
));
// Should not send because from multicast addr
assert!(!should_send_icmpv4_error(
Some(frame_dst),
multicast_ip_2,
dst_ip,
Ipv4FragmentType::InitialFragment
));
assert!(!should_send_icmpv4_error(
Some(frame_dst),
multicast_ip_2,
dst_ip,
Ipv4FragmentType::NonInitialFragment
));
// Should not send because from class E addr
assert!(!should_send_icmpv4_error(
Some(frame_dst),
SpecifiedAddr::new(Ipv4Addr::new([240, 0, 0, 1])).unwrap(),
dst_ip,
Ipv4FragmentType::InitialFragment
));
assert!(!should_send_icmpv4_error(
Some(frame_dst),
SpecifiedAddr::new(Ipv4Addr::new([240, 0, 0, 1])).unwrap(),
dst_ip,
Ipv4FragmentType::NonInitialFragment
));
}
#[test]
fn test_should_send_icmpv6_error() {
let src_ip = TEST_ADDRS_V6.local_ip;
let dst_ip = TEST_ADDRS_V6.remote_ip;
let frame_dst = FrameDestination::Individual { local: true };
let multicast_ip_1 =
SpecifiedAddr::new(Ipv6Addr::new([0xff00, 0, 0, 0, 0, 0, 0, 1])).unwrap();
let multicast_ip_2 =
SpecifiedAddr::new(Ipv6Addr::new([0xff00, 0, 0, 0, 0, 0, 0, 2])).unwrap();
// Should Send.
assert!(should_send_icmpv6_error(
Some(frame_dst),
src_ip,
dst_ip,
false /* allow_dst_multicast */
));
assert!(should_send_icmpv6_error(None, src_ip, dst_ip, false /* allow_dst_multicast */));
assert!(should_send_icmpv6_error(
Some(frame_dst),
src_ip,
dst_ip,
true /* allow_dst_multicast */
));
// Should not send because destined for multicast addr, unless exception
// applies.
assert!(!should_send_icmpv6_error(
Some(frame_dst),
src_ip,
multicast_ip_1,
false /* allow_dst_multicast */
));
assert!(should_send_icmpv6_error(
Some(frame_dst),
src_ip,
multicast_ip_1,
true /* allow_dst_multicast */
));
// Should not send because Link Layer Broadcast, unless exception
// applies.
assert!(!should_send_icmpv6_error(
Some(FrameDestination::Broadcast),
src_ip,
dst_ip,
false /* allow_dst_multicast */
));
assert!(should_send_icmpv6_error(
Some(FrameDestination::Broadcast),
src_ip,
dst_ip,
true /* allow_dst_multicast */
));
// Should not send because from loopback addr.
assert!(!should_send_icmpv6_error(
Some(frame_dst),
Ipv6::LOOPBACK_ADDRESS,
dst_ip,
false /* allow_dst_multicast */
));
assert!(!should_send_icmpv6_error(
Some(frame_dst),
Ipv6::LOOPBACK_ADDRESS,
dst_ip,
true /* allow_dst_multicast */
));
// Should not send because from multicast addr.
assert!(!should_send_icmpv6_error(
Some(frame_dst),
multicast_ip_2,
dst_ip,
false /* allow_dst_multicast */
));
assert!(!should_send_icmpv6_error(
Some(frame_dst),
multicast_ip_2,
dst_ip,
true /* allow_dst_multicast */
));
// Should not send because from multicast addr, even though dest
// multicast exception applies.
assert!(!should_send_icmpv6_error(
Some(FrameDestination::Broadcast),
multicast_ip_2,
dst_ip,
false /* allow_dst_multicast */
));
assert!(!should_send_icmpv6_error(
Some(FrameDestination::Broadcast),
multicast_ip_2,
dst_ip,
true /* allow_dst_multicast */
));
assert!(!should_send_icmpv6_error(
Some(frame_dst),
multicast_ip_2,
multicast_ip_1,
false /* allow_dst_multicast */
));
assert!(!should_send_icmpv6_error(
Some(frame_dst),
multicast_ip_2,
multicast_ip_1,
true /* allow_dst_multicast */
));
}
// Tests that only require an ICMP stack. Unlike the preceding tests, these
// only test the ICMP stack and state, and fake everything else. We define
// the `FakeIcmpv4Ctx` and `FakeIcmpv6Ctx` types, which we wrap in a
// `FakeCtx` to provide automatic implementations of a number of required
// traits. The rest we implement manually.
#[derive(Default)]
pub(super) struct FakeIcmpBindingsCtxState<I: IpExt> {
_marker: core::marker::PhantomData<I>,
}
impl InnerIcmpv4Context<FakeIcmpBindingsCtx<Ipv4>> for FakeIcmpCoreCtx<Ipv4> {
fn should_send_timestamp_reply(&self) -> bool {
false
}
}
impl_pmtu_handler!(FakeIcmpCoreCtx<Ipv4>, FakeIcmpBindingsCtx<Ipv4>, Ipv4);
impl_pmtu_handler!(FakeIcmpCoreCtx<Ipv6>, FakeIcmpBindingsCtx<Ipv6>, Ipv6);
impl<I: IpExt> IpSocketHandler<I, FakeIcmpBindingsCtx<I>> for FakeIcmpCoreCtx<I> {
fn new_ip_socket<O>(
&mut self,
bindings_ctx: &mut FakeIcmpBindingsCtx<I>,
device: Option<EitherDeviceId<&Self::DeviceId, &Self::WeakDeviceId>>,
local_ip: Option<IpDeviceAddr<I::Addr>>,
remote_ip: SocketIpAddr<I::Addr>,
proto: I::Proto,
options: &O,
) -> Result<IpSock<I, Self::WeakDeviceId>, IpSockCreationError>
where
O: RouteResolutionOptions<I>,
{
self.ip_socket_ctx.new_ip_socket(
bindings_ctx,
device,
local_ip,
remote_ip,
proto,
options,
)
}
fn send_ip_packet<S, O>(
&mut self,
bindings_ctx: &mut FakeIcmpBindingsCtx<I>,
socket: &IpSock<I, Self::WeakDeviceId>,
body: S,
options: &O,
) -> Result<(), IpSockSendError>
where
S: TransportPacketSerializer<I>,
S::Buffer: BufferMut,
O: SendOptions<I> + RouteResolutionOptions<I>,
{
self.ip_socket_ctx.send_ip_packet(bindings_ctx, socket, body, options)
}
fn confirm_reachable<O>(
&mut self,
bindings_ctx: &mut FakeIcmpBindingsCtx<I>,
socket: &IpSock<I, Self::WeakDeviceId>,
options: &O,
) where
O: RouteResolutionOptions<I>,
{
self.ip_socket_ctx.confirm_reachable(bindings_ctx, socket, options)
}
}
impl IpDeviceHandler<Ipv6, FakeIcmpBindingsCtx<Ipv6>> for FakeIcmpCoreCtx<Ipv6> {
fn is_router_device(&mut self, _device_id: &Self::DeviceId) -> bool {
unimplemented!()
}
fn set_default_hop_limit(&mut self, _device_id: &Self::DeviceId, _hop_limit: NonZeroU8) {
unreachable!()
}
}
impl IpDeviceEgressStateContext<Ipv6> for FakeIcmpCoreCtx<Ipv6> {
fn with_next_packet_id<O, F: FnOnce(&()) -> O>(&self, cb: F) -> O {
cb(&())
}
fn get_local_addr_for_remote(
&mut self,
_device_id: &Self::DeviceId,
_remote: Option<SpecifiedAddr<Ipv6Addr>>,
) -> Option<IpDeviceAddr<Ipv6Addr>> {
unimplemented!()
}
fn get_hop_limit(&mut self, _device_id: &Self::DeviceId) -> NonZeroU8 {
unimplemented!()
}
}
impl IpDeviceIngressStateContext<Ipv6> for FakeIcmpCoreCtx<Ipv6> {
fn address_status_for_device(
&mut self,
_addr: SpecifiedAddr<Ipv6Addr>,
_device_id: &Self::DeviceId,
) -> AddressStatus<Ipv6PresentAddressStatus> {
unimplemented!()
}
}
impl Ipv6DeviceHandler<FakeIcmpBindingsCtx<Ipv6>> for FakeIcmpCoreCtx<Ipv6> {
type LinkLayerAddr = [u8; 0];
fn get_link_layer_addr_bytes(&mut self, _device_id: &Self::DeviceId) -> Option<[u8; 0]> {
unimplemented!()
}
fn set_discovered_retrans_timer(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device_id: &Self::DeviceId,
_retrans_timer: NonZeroDuration,
) {
unimplemented!()
}
fn handle_received_dad_neighbor_solicitation(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device_id: &Self::DeviceId,
_addr: UnicastAddr<Ipv6Addr>,
_nonce: Option<NdpNonce<&'_ [u8]>>,
) -> IpAddressState {
unimplemented!()
}
fn handle_received_neighbor_advertisement(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device_id: &Self::DeviceId,
_addr: UnicastAddr<Ipv6Addr>,
) -> IpAddressState {
unimplemented!()
}
fn set_link_mtu(&mut self, _device_id: &Self::DeviceId, _mtu: Mtu) {
unimplemented!()
}
fn update_discovered_ipv6_route(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device_id: &Self::DeviceId,
_route: Ipv6DiscoveredRoute,
_lifetime: Option<NonZeroNdpLifetime>,
) {
unimplemented!()
}
fn apply_slaac_update(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device_id: &Self::DeviceId,
_subnet: Subnet<Ipv6Addr>,
_preferred_lifetime: Option<NonZeroNdpLifetime>,
_valid_lifetime: Option<NonZeroNdpLifetime>,
) {
unimplemented!()
}
fn receive_mld_packet<B: SplitByteSlice>(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device: &FakeDeviceId,
_src_ip: Ipv6SourceAddr,
_dst_ip: SpecifiedAddr<Ipv6Addr>,
_packet: MldPacket<B>,
) {
unimplemented!()
}
}
impl IpLayerHandler<Ipv6, FakeIcmpBindingsCtx<Ipv6>> for FakeIcmpCoreCtx<Ipv6> {
fn send_ip_packet_from_device<S>(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_meta: SendIpPacketMeta<Ipv6, &Self::DeviceId, Option<SpecifiedAddr<Ipv6Addr>>>,
_body: S,
) -> Result<(), IpSendFrameError<S>> {
unimplemented!()
}
fn send_ip_frame<S>(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device: &Self::DeviceId,
_destination: IpPacketDestination<Ipv6, &Self::DeviceId>,
_body: S,
) -> Result<(), IpSendFrameError<S>>
where
S: Serializer,
S::Buffer: BufferMut,
{
unimplemented!()
}
}
impl NudIpHandler<Ipv6, FakeIcmpBindingsCtx<Ipv6>> for FakeIcmpCoreCtx<Ipv6> {
fn handle_neighbor_probe(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device_id: &Self::DeviceId,
_neighbor: SpecifiedAddr<Ipv6Addr>,
_link_addr: &[u8],
) {
unimplemented!()
}
fn handle_neighbor_confirmation(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device_id: &Self::DeviceId,
_neighbor: SpecifiedAddr<Ipv6Addr>,
_link_addr: &[u8],
_flags: ConfirmationFlags,
) {
unimplemented!()
}
fn flush_neighbor_table(
&mut self,
_bindings_ctx: &mut FakeIcmpBindingsCtx<Ipv6>,
_device_id: &Self::DeviceId,
) {
unimplemented!()
}
}
#[test]
fn test_receive_icmpv4_error() {
// Chosen arbitrarily to be a) non-zero (it's easy to accidentally get
// the value 0) and, b) different from each other.
const ICMP_ID: u16 = 0x0F;
const SEQ_NUM: u16 = 0xF0;
/// Test receiving an ICMP error message.
///
/// Test that receiving an ICMP error message with the given code and
/// message contents, and containing the given original IPv4 packet,
/// results in the counter values in `assert_counters`. After that
/// assertion passes, `f` is called on the context so that the caller
/// can perform whatever extra validation they want.
///
/// The error message will be sent from `TEST_ADDRS_V4.remote_ip` to
/// `TEST_ADDRS_V4.local_ip`. Before the message is sent, an ICMP
/// socket will be established with the ID `ICMP_ID`, and
/// `test_receive_icmpv4_error_helper` will assert that its `SocketId`
/// is 0. This allows the caller to craft the `original_packet` so that
/// it should be delivered to this socket.
fn test_receive_icmpv4_error_helper<
C: Debug,
M: IcmpMessage<Ipv4, Code = C> + Debug,
F: Fn(&FakeIcmpCtx<Ipv4>),
>(
original_packet: &mut [u8],
code: C,
msg: M,
f: F,
) {
set_logger_for_test();
let mut ctx: FakeIcmpCtx<Ipv4> = FakeIcmpCtx::default();
let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
<IcmpIpTransportContext as IpTransportContext<Ipv4, _, _>>::receive_ip_packet(
core_ctx,
bindings_ctx,
&FakeDeviceId,
TEST_ADDRS_V4.remote_ip.get(),
TEST_ADDRS_V4.local_ip,
Buf::new(original_packet, ..)
.encapsulate(IcmpPacketBuilder::new(
TEST_ADDRS_V4.remote_ip,
TEST_ADDRS_V4.local_ip,
code,
msg,
))
.serialize_vec_outer()
.unwrap(),
ReceiveIpPacketMeta::default(),
)
.unwrap();
f(&ctx);
}
// Test that, when we receive various ICMPv4 error messages, we properly
// pass them up to the IP layer and, sometimes, to the transport layer.
// First, test with an original packet containing an ICMP message. Since
// this test fake supports ICMP sockets, this error can be delivered all
// the way up the stack.
// A buffer containing an ICMP echo request with ID `ICMP_ID` and
// sequence number `SEQ_NUM` from the local IP to the remote IP. Any
// ICMP error message which contains this as its original packet should
// be delivered to the socket created in
// `test_receive_icmpv4_error_helper`.
let mut buffer = Buf::new(&mut [], ..)
.encapsulate(IcmpPacketBuilder::<Ipv4, _>::new(
TEST_ADDRS_V4.local_ip,
TEST_ADDRS_V4.remote_ip,
IcmpUnusedCode,
IcmpEchoRequest::new(ICMP_ID, SEQ_NUM),
))
.encapsulate(<Ipv4 as packet_formats::ip::IpExt>::PacketBuilder::new(
TEST_ADDRS_V4.local_ip,
TEST_ADDRS_V4.remote_ip,
64,
Ipv4Proto::Icmp,
))
.serialize_vec_outer()
.unwrap();
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4DestUnreachableCode::DestNetworkUnreachable,
IcmpDestUnreachable::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 1);
let err = Icmpv4ErrorCode::DestUnreachable(
Icmpv4DestUnreachableCode::DestNetworkUnreachable,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4TimeExceededCode::TtlExpired,
IcmpTimeExceeded::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 1);
let err = Icmpv4ErrorCode::TimeExceeded(Icmpv4TimeExceededCode::TtlExpired);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4ParameterProblemCode::PointerIndicatesError,
Icmpv4ParameterProblem::new(0),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 1);
let err = Icmpv4ErrorCode::ParameterProblem(
Icmpv4ParameterProblemCode::PointerIndicatesError,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
// Second, test with an original packet containing a malformed ICMP
// packet (we accomplish this by leaving the IP packet's body empty). We
// should process this packet in
// `IcmpIpTransportContext::receive_icmp_error`, but we should go no
// further - in particular, we should not dispatch to the Echo sockets.
let mut buffer = Buf::new(&mut [], ..)
.encapsulate(<Ipv4 as packet_formats::ip::IpExt>::PacketBuilder::new(
TEST_ADDRS_V4.local_ip,
TEST_ADDRS_V4.remote_ip,
64,
Ipv4Proto::Icmp,
))
.serialize_vec_outer()
.unwrap();
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4DestUnreachableCode::DestNetworkUnreachable,
IcmpDestUnreachable::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv4ErrorCode::DestUnreachable(
Icmpv4DestUnreachableCode::DestNetworkUnreachable,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4TimeExceededCode::TtlExpired,
IcmpTimeExceeded::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv4ErrorCode::TimeExceeded(Icmpv4TimeExceededCode::TtlExpired);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4ParameterProblemCode::PointerIndicatesError,
Icmpv4ParameterProblem::new(0),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv4ErrorCode::ParameterProblem(
Icmpv4ParameterProblemCode::PointerIndicatesError,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
// Third, test with an original packet containing a UDP packet. This
// allows us to verify that protocol numbers are handled properly by
// checking that `IcmpIpTransportContext::receive_icmp_error` was NOT
// called.
let mut buffer = Buf::new(&mut [], ..)
.encapsulate(<Ipv4 as packet_formats::ip::IpExt>::PacketBuilder::new(
TEST_ADDRS_V4.local_ip,
TEST_ADDRS_V4.remote_ip,
64,
IpProto::Udp.into(),
))
.serialize_vec_outer()
.unwrap();
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4DestUnreachableCode::DestNetworkUnreachable,
IcmpDestUnreachable::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 0);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv4ErrorCode::DestUnreachable(
Icmpv4DestUnreachableCode::DestNetworkUnreachable,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4TimeExceededCode::TtlExpired,
IcmpTimeExceeded::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 0);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv4ErrorCode::TimeExceeded(Icmpv4TimeExceededCode::TtlExpired);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv4_error_helper(
buffer.as_mut(),
Icmpv4ParameterProblemCode::PointerIndicatesError,
Icmpv4ParameterProblem::new(0),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 0);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv4ErrorCode::ParameterProblem(
Icmpv4ParameterProblemCode::PointerIndicatesError,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
}
#[test]
fn test_receive_icmpv6_error() {
// Chosen arbitrarily to be a) non-zero (it's easy to accidentally get
// the value 0) and, b) different from each other.
const ICMP_ID: u16 = 0x0F;
const SEQ_NUM: u16 = 0xF0;
/// Test receiving an ICMPv6 error message.
///
/// Test that receiving an ICMP error message with the given code and
/// message contents, and containing the given original IPv4 packet,
/// results in the counter values in `assert_counters`. After that
/// assertion passes, `f` is called on the context so that the caller
/// can perform whatever extra validation they want.
///
/// The error message will be sent from `TEST_ADDRS_V6.remote_ip` to
/// `TEST_ADDRS_V6.local_ip`. Before the message is sent, an ICMP
/// socket will be established with the ID `ICMP_ID`, and
/// `test_receive_icmpv6_error_helper` will assert that its `SocketId`
/// is 0. This allows the caller to craft the `original_packet` so that
/// it should be delivered to this socket.
fn test_receive_icmpv6_error_helper<
C: Debug,
M: IcmpMessage<Ipv6, Code = C> + Debug,
F: Fn(&FakeIcmpCtx<Ipv6>),
>(
original_packet: &mut [u8],
code: C,
msg: M,
f: F,
) {
set_logger_for_test();
let mut ctx = FakeIcmpCtx::<Ipv6>::default();
let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
<IcmpIpTransportContext as IpTransportContext<Ipv6, _, _>>::receive_ip_packet(
core_ctx,
bindings_ctx,
&FakeDeviceId,
TEST_ADDRS_V6.remote_ip.get().try_into().unwrap(),
TEST_ADDRS_V6.local_ip,
Buf::new(original_packet, ..)
.encapsulate(IcmpPacketBuilder::new(
TEST_ADDRS_V6.remote_ip,
TEST_ADDRS_V6.local_ip,
code,
msg,
))
.serialize_vec_outer()
.unwrap(),
ReceiveIpPacketMeta::default(),
)
.unwrap();
f(&ctx);
}
// Test that, when we receive various ICMPv6 error messages, we properly
// pass them up to the IP layer and, sometimes, to the transport layer.
// First, test with an original packet containing an ICMPv6 message.
// Since this test fake supports ICMPv6 sockets, this error can be
// delivered all the way up the stack.
// A buffer containing an ICMPv6 echo request with ID `ICMP_ID` and
// sequence number `SEQ_NUM` from the local IP to the remote IP. Any
// ICMPv6 error message which contains this as its original packet
// should be delivered to the socket created in
// `test_receive_icmpv6_error_helper`.
let mut buffer = Buf::new(&mut [], ..)
.encapsulate(IcmpPacketBuilder::<Ipv6, _>::new(
TEST_ADDRS_V6.local_ip,
TEST_ADDRS_V6.remote_ip,
IcmpUnusedCode,
IcmpEchoRequest::new(ICMP_ID, SEQ_NUM),
))
.encapsulate(<Ipv6 as packet_formats::ip::IpExt>::PacketBuilder::new(
TEST_ADDRS_V6.local_ip,
TEST_ADDRS_V6.remote_ip,
64,
Ipv6Proto::Icmpv6,
))
.serialize_vec_outer()
.unwrap();
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6DestUnreachableCode::NoRoute,
IcmpDestUnreachable::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 1);
let err = Icmpv6ErrorCode::DestUnreachable(Icmpv6DestUnreachableCode::NoRoute);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6TimeExceededCode::HopLimitExceeded,
IcmpTimeExceeded::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 1);
let err = Icmpv6ErrorCode::TimeExceeded(Icmpv6TimeExceededCode::HopLimitExceeded);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6ParameterProblemCode::UnrecognizedNextHeaderType,
Icmpv6ParameterProblem::new(0),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 1);
let err = Icmpv6ErrorCode::ParameterProblem(
Icmpv6ParameterProblemCode::UnrecognizedNextHeaderType,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
// Second, test with an original packet containing a malformed ICMPv6
// packet (we accomplish this by leaving the IP packet's body empty). We
// should process this packet in
// `IcmpIpTransportContext::receive_icmp_error`, but we should go no
// further - in particular, we should not call into Echo sockets.
let mut buffer = Buf::new(&mut [], ..)
.encapsulate(<Ipv6 as packet_formats::ip::IpExt>::PacketBuilder::new(
TEST_ADDRS_V6.local_ip,
TEST_ADDRS_V6.remote_ip,
64,
Ipv6Proto::Icmpv6,
))
.serialize_vec_outer()
.unwrap();
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6DestUnreachableCode::NoRoute,
IcmpDestUnreachable::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv6ErrorCode::DestUnreachable(Icmpv6DestUnreachableCode::NoRoute);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6TimeExceededCode::HopLimitExceeded,
IcmpTimeExceeded::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv6ErrorCode::TimeExceeded(Icmpv6TimeExceededCode::HopLimitExceeded);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6ParameterProblemCode::UnrecognizedNextHeaderType,
Icmpv6ParameterProblem::new(0),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv6ErrorCode::ParameterProblem(
Icmpv6ParameterProblemCode::UnrecognizedNextHeaderType,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
// Third, test with an original packet containing a UDP packet. This
// allows us to verify that protocol numbers are handled properly by
// checking that `IcmpIpTransportContext::receive_icmp_error` was NOT
// called.
let mut buffer = Buf::new(&mut [], ..)
.encapsulate(<Ipv6 as packet_formats::ip::IpExt>::PacketBuilder::new(
TEST_ADDRS_V6.local_ip,
TEST_ADDRS_V6.remote_ip,
64,
IpProto::Udp.into(),
))
.serialize_vec_outer()
.unwrap();
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6DestUnreachableCode::NoRoute,
IcmpDestUnreachable::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 0);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv6ErrorCode::DestUnreachable(Icmpv6DestUnreachableCode::NoRoute);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6TimeExceededCode::HopLimitExceeded,
IcmpTimeExceeded::default(),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 0);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv6ErrorCode::TimeExceeded(Icmpv6TimeExceededCode::HopLimitExceeded);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
test_receive_icmpv6_error_helper(
buffer.as_mut(),
Icmpv6ParameterProblemCode::UnrecognizedNextHeaderType,
Icmpv6ParameterProblem::new(0),
|CtxPair { core_ctx, bindings_ctx: _ }| {
assert_eq!(core_ctx.icmp.rx_counters.error.get(), 1);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_transport_layer.get(), 0);
assert_eq!(core_ctx.icmp.rx_counters.error_delivered_to_socket.get(), 0);
let err = Icmpv6ErrorCode::ParameterProblem(
Icmpv6ParameterProblemCode::UnrecognizedNextHeaderType,
);
assert_eq!(core_ctx.icmp.receive_icmp_error, [err]);
},
);
}
#[test]
fn test_error_rate_limit() {
set_logger_for_test();
/// Call `send_icmpv4_ttl_expired` with fake values.
fn send_icmpv4_ttl_expired_helper(
CtxPair { core_ctx, bindings_ctx }: &mut FakeIcmpCtx<Ipv4>,
) {
send_icmpv4_ttl_expired(
core_ctx,
bindings_ctx,
&FakeDeviceId,
Some(FrameDestination::Individual { local: true }),
TEST_ADDRS_V4.remote_ip.try_into().unwrap(),
TEST_ADDRS_V4.local_ip.try_into().unwrap(),
IpProto::Udp.into(),
Buf::new(&mut [], ..),
0,
Ipv4FragmentType::InitialFragment,
);
}
/// Call `send_icmpv4_parameter_problem` with fake values.
fn send_icmpv4_parameter_problem_helper(
CtxPair { core_ctx, bindings_ctx }: &mut FakeIcmpCtx<Ipv4>,
) {
send_icmpv4_parameter_problem(
core_ctx,
bindings_ctx,
&FakeDeviceId,
Some(FrameDestination::Individual { local: true }),
TEST_ADDRS_V4.remote_ip.try_into().unwrap(),
TEST_ADDRS_V4.local_ip.try_into().unwrap(),
Icmpv4ParameterProblemCode::PointerIndicatesError,
Icmpv4ParameterProblem::new(0),
Buf::new(&mut [], ..),
0,
Ipv4FragmentType::InitialFragment,
);
}
/// Call `send_icmpv4_dest_unreachable` with fake values.
fn send_icmpv4_dest_unreachable_helper(
CtxPair { core_ctx, bindings_ctx }: &mut FakeIcmpCtx<Ipv4>,
) {
send_icmpv4_dest_unreachable(
core_ctx,
bindings_ctx,
Some(&FakeDeviceId),
Some(FrameDestination::Individual { local: true }),
TEST_ADDRS_V4.remote_ip.try_into().unwrap(),
TEST_ADDRS_V4.local_ip.try_into().unwrap(),
Icmpv4DestUnreachableCode::DestNetworkUnreachable,
Buf::new(&mut [], ..),
0,
Ipv4FragmentType::InitialFragment,
);
}
/// Call `send_icmpv6_ttl_expired` with fake values.
fn send_icmpv6_ttl_expired_helper(
CtxPair { core_ctx, bindings_ctx }: &mut FakeIcmpCtx<Ipv6>,
) {
send_icmpv6_ttl_expired(
core_ctx,
bindings_ctx,
&FakeDeviceId,
Some(FrameDestination::Individual { local: true }),
TEST_ADDRS_V6.remote_ip.try_into().unwrap(),
TEST_ADDRS_V6.local_ip.try_into().unwrap(),
IpProto::Udp.into(),
Buf::new(&mut [], ..),
0,
);
}
/// Call `send_icmpv6_packet_too_big` with fake values.
fn send_icmpv6_packet_too_big_helper(
CtxPair { core_ctx, bindings_ctx }: &mut FakeIcmpCtx<Ipv6>,
) {
send_icmpv6_packet_too_big(
core_ctx,
bindings_ctx,
&FakeDeviceId,
Some(FrameDestination::Individual { local: true }),
TEST_ADDRS_V6.remote_ip.try_into().unwrap(),
TEST_ADDRS_V6.local_ip.try_into().unwrap(),
IpProto::Udp.into(),
Mtu::new(0),
Buf::new(&mut [], ..),
0,
);
}
/// Call `send_icmpv6_parameter_problem` with fake values.
fn send_icmpv6_parameter_problem_helper(
CtxPair { core_ctx, bindings_ctx }: &mut FakeIcmpCtx<Ipv6>,
) {
send_icmpv6_parameter_problem(
core_ctx,
bindings_ctx,
&FakeDeviceId,
Some(FrameDestination::Individual { local: true }),
TEST_ADDRS_V6.remote_ip.try_into().unwrap(),
TEST_ADDRS_V6.local_ip.try_into().unwrap(),
Icmpv6ParameterProblemCode::ErroneousHeaderField,
Icmpv6ParameterProblem::new(0),
Buf::new(&mut [], ..),
false,
);
}
/// Call `send_icmpv6_dest_unreachable` with fake values.
fn send_icmpv6_dest_unreachable_helper(
CtxPair { core_ctx, bindings_ctx }: &mut FakeIcmpCtx<Ipv6>,
) {
send_icmpv6_dest_unreachable(
core_ctx,
bindings_ctx,
Some(&FakeDeviceId),
Some(FrameDestination::Individual { local: true }),
TEST_ADDRS_V6.remote_ip.try_into().unwrap(),
TEST_ADDRS_V6.local_ip.try_into().unwrap(),
Icmpv6DestUnreachableCode::NoRoute,
Buf::new(&mut [], ..),
);
}
// Run tests for each function that sends error messages to make sure
// they're all properly rate limited.
fn run_test<I: IpExt, W: Fn(u64) -> FakeIcmpCtx<I>, S: Fn(&mut FakeIcmpCtx<I>)>(
with_errors_per_second: W,
send: S,
) {
// Note that we could theoretically have more precise tests here
// (e.g., a test that we send at the correct rate over the long
// term), but those would amount to testing the `TokenBucket`
// implementation, which has its own exhaustive tests. Instead, we
// just have a few sanity checks to make sure that we're actually
// invoking it when we expect to (as opposed to bypassing it
// entirely or something).
// Test that, if no time has elapsed, we can successfully send up to
// `ERRORS_PER_SECOND` error messages, but no more.
// Don't use `DEFAULT_ERRORS_PER_SECOND` because it's 2^16 and it
// makes this test take a long time.
const ERRORS_PER_SECOND: u64 = 64;
let mut ctx = with_errors_per_second(ERRORS_PER_SECOND);
for i in 0..ERRORS_PER_SECOND {
send(&mut ctx);
assert_eq!(ctx.core_ctx.icmp.tx_counters.error.get(), i + 1);
}
assert_eq!(ctx.core_ctx.icmp.tx_counters.error.get(), ERRORS_PER_SECOND);
send(&mut ctx);
assert_eq!(ctx.core_ctx.icmp.tx_counters.error.get(), ERRORS_PER_SECOND);
// Test that, if we set a rate of 0, we are not able to send any
// error messages regardless of how much time has elapsed.
let mut ctx = with_errors_per_second(0);
send(&mut ctx);
assert_eq!(ctx.core_ctx.icmp.tx_counters.error.get(), 0);
ctx.bindings_ctx.timers.instant.sleep(Duration::from_secs(1));
send(&mut ctx);
assert_eq!(ctx.core_ctx.icmp.tx_counters.error.get(), 0);
ctx.bindings_ctx.timers.instant.sleep(Duration::from_secs(1));
send(&mut ctx);
assert_eq!(ctx.core_ctx.icmp.tx_counters.error.get(), 0);
}
fn with_errors_per_second_v4(errors_per_second: u64) -> FakeIcmpCtx<Ipv4> {
CtxPair::with_core_ctx(FakeIcmpCoreCtx::with_errors_per_second(errors_per_second))
}
run_test::<Ipv4, _, _>(with_errors_per_second_v4, send_icmpv4_ttl_expired_helper);
run_test::<Ipv4, _, _>(with_errors_per_second_v4, send_icmpv4_parameter_problem_helper);
run_test::<Ipv4, _, _>(with_errors_per_second_v4, send_icmpv4_dest_unreachable_helper);
fn with_errors_per_second_v6(errors_per_second: u64) -> FakeIcmpCtx<Ipv6> {
CtxPair::with_core_ctx(FakeIcmpCoreCtx::with_errors_per_second(errors_per_second))
}
run_test::<Ipv6, _, _>(with_errors_per_second_v6, send_icmpv6_ttl_expired_helper);
run_test::<Ipv6, _, _>(with_errors_per_second_v6, send_icmpv6_packet_too_big_helper);
run_test::<Ipv6, _, _>(with_errors_per_second_v6, send_icmpv6_parameter_problem_helper);
run_test::<Ipv6, _, _>(with_errors_per_second_v6, send_icmpv6_dest_unreachable_helper);
}
}