tokio/sync/
notify.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
// Allow `unreachable_pub` warnings when sync is not enabled
// due to the usage of `Notify` within the `rt` feature set.
// When this module is compiled with `sync` enabled we will warn on
// this lint. When `rt` is enabled we use `pub(crate)` which
// triggers this warning but it is safe to ignore in this case.
#![cfg_attr(not(feature = "sync"), allow(unreachable_pub, dead_code))]

use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::Mutex;
use crate::util::linked_list::{self, GuardedLinkedList, LinkedList};
use crate::util::WakeList;

use std::future::Future;
use std::marker::PhantomPinned;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::{self, Acquire, Relaxed, Release, SeqCst};
use std::task::{Context, Poll, Waker};

type WaitList = LinkedList<Waiter, <Waiter as linked_list::Link>::Target>;
type GuardedWaitList = GuardedLinkedList<Waiter, <Waiter as linked_list::Link>::Target>;

/// Notifies a single task to wake up.
///
/// `Notify` provides a basic mechanism to notify a single task of an event.
/// `Notify` itself does not carry any data. Instead, it is to be used to signal
/// another task to perform an operation.
///
/// A `Notify` can be thought of as a [`Semaphore`] starting with 0 permits. The
/// [`notified().await`] method waits for a permit to become available, and
/// [`notify_one()`] sets a permit **if there currently are no available
/// permits**.
///
/// The synchronization details of `Notify` are similar to
/// [`thread::park`][park] and [`Thread::unpark`][unpark] from std. A [`Notify`]
/// value contains a single permit. [`notified().await`] waits for the permit to
/// be made available, consumes the permit, and resumes.  [`notify_one()`] sets
/// the permit, waking a pending task if there is one.
///
/// If `notify_one()` is called **before** `notified().await`, then the next
/// call to `notified().await` will complete immediately, consuming the permit.
/// Any subsequent calls to `notified().await` will wait for a new permit.
///
/// If `notify_one()` is called **multiple** times before `notified().await`,
/// only a **single** permit is stored. The next call to `notified().await` will
/// complete immediately, but the one after will wait for a new permit.
///
/// # Examples
///
/// Basic usage.
///
/// ```
/// use tokio::sync::Notify;
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
///     let notify = Arc::new(Notify::new());
///     let notify2 = notify.clone();
///
///     let handle = tokio::spawn(async move {
///         notify2.notified().await;
///         println!("received notification");
///     });
///
///     println!("sending notification");
///     notify.notify_one();
///
///     // Wait for task to receive notification.
///     handle.await.unwrap();
/// }
/// ```
///
/// Unbound multi-producer single-consumer (mpsc) channel.
///
/// No wakeups can be lost when using this channel because the call to
/// `notify_one()` will store a permit in the `Notify`, which the following call
/// to `notified()` will consume.
///
/// ```
/// use tokio::sync::Notify;
///
/// use std::collections::VecDeque;
/// use std::sync::Mutex;
///
/// struct Channel<T> {
///     values: Mutex<VecDeque<T>>,
///     notify: Notify,
/// }
///
/// impl<T> Channel<T> {
///     pub fn send(&self, value: T) {
///         self.values.lock().unwrap()
///             .push_back(value);
///
///         // Notify the consumer a value is available
///         self.notify.notify_one();
///     }
///
///     // This is a single-consumer channel, so several concurrent calls to
///     // `recv` are not allowed.
///     pub async fn recv(&self) -> T {
///         loop {
///             // Drain values
///             if let Some(value) = self.values.lock().unwrap().pop_front() {
///                 return value;
///             }
///
///             // Wait for values to be available
///             self.notify.notified().await;
///         }
///     }
/// }
/// ```
///
/// Unbound multi-producer multi-consumer (mpmc) channel.
///
/// The call to [`enable`] is important because otherwise if you have two
/// calls to `recv` and two calls to `send` in parallel, the following could
/// happen:
///
///  1. Both calls to `try_recv` return `None`.
///  2. Both new elements are added to the vector.
///  3. The `notify_one` method is called twice, adding only a single
///     permit to the `Notify`.
///  4. Both calls to `recv` reach the `Notified` future. One of them
///     consumes the permit, and the other sleeps forever.
///
/// By adding the `Notified` futures to the list by calling `enable` before
/// `try_recv`, the `notify_one` calls in step three would remove the
/// futures from the list and mark them notified instead of adding a permit
/// to the `Notify`. This ensures that both futures are woken.
///
/// Notice that this failure can only happen if there are two concurrent calls
/// to `recv`. This is why the mpsc example above does not require a call to
/// `enable`.
///
/// ```
/// use tokio::sync::Notify;
///
/// use std::collections::VecDeque;
/// use std::sync::Mutex;
///
/// struct Channel<T> {
///     messages: Mutex<VecDeque<T>>,
///     notify_on_sent: Notify,
/// }
///
/// impl<T> Channel<T> {
///     pub fn send(&self, msg: T) {
///         let mut locked_queue = self.messages.lock().unwrap();
///         locked_queue.push_back(msg);
///         drop(locked_queue);
///
///         // Send a notification to one of the calls currently
///         // waiting in a call to `recv`.
///         self.notify_on_sent.notify_one();
///     }
///
///     pub fn try_recv(&self) -> Option<T> {
///         let mut locked_queue = self.messages.lock().unwrap();
///         locked_queue.pop_front()
///     }
///
///     pub async fn recv(&self) -> T {
///         let future = self.notify_on_sent.notified();
///         tokio::pin!(future);
///
///         loop {
///             // Make sure that no wakeup is lost if we get
///             // `None` from `try_recv`.
///             future.as_mut().enable();
///
///             if let Some(msg) = self.try_recv() {
///                 return msg;
///             }
///
///             // Wait for a call to `notify_one`.
///             //
///             // This uses `.as_mut()` to avoid consuming the future,
///             // which lets us call `Pin::set` below.
///             future.as_mut().await;
///
///             // Reset the future in case another call to
///             // `try_recv` got the message before us.
///             future.set(self.notify_on_sent.notified());
///         }
///     }
/// }
/// ```
///
/// [park]: std::thread::park
/// [unpark]: std::thread::Thread::unpark
/// [`notified().await`]: Notify::notified()
/// [`notify_one()`]: Notify::notify_one()
/// [`enable`]: Notified::enable()
/// [`Semaphore`]: crate::sync::Semaphore
#[derive(Debug)]
pub struct Notify {
    // `state` uses 2 bits to store one of `EMPTY`,
    // `WAITING` or `NOTIFIED`. The rest of the bits
    // are used to store the number of times `notify_waiters`
    // was called.
    //
    // Throughout the code there are two assumptions:
    // - state can be transitioned *from* `WAITING` only if
    //   `waiters` lock is held
    // - number of times `notify_waiters` was called can
    //   be modified only if `waiters` lock is held
    state: AtomicUsize,
    waiters: Mutex<WaitList>,
}

#[derive(Debug)]
struct Waiter {
    /// Intrusive linked-list pointers.
    pointers: linked_list::Pointers<Waiter>,

    /// Waiting task's waker. Depending on the value of `notification`,
    /// this field is either protected by the `waiters` lock in
    /// `Notify`, or it is exclusively owned by the enclosing `Waiter`.
    waker: UnsafeCell<Option<Waker>>,

    /// Notification for this waiter.
    /// * if it's `None`, then `waker` is protected by the `waiters` lock.
    /// * if it's `Some`, then `waker` is exclusively owned by the
    ///   enclosing `Waiter` and can be accessed without locking.
    notification: AtomicNotification,

    /// Should not be `Unpin`.
    _p: PhantomPinned,
}

impl Waiter {
    fn new() -> Waiter {
        Waiter {
            pointers: linked_list::Pointers::new(),
            waker: UnsafeCell::new(None),
            notification: AtomicNotification::none(),
            _p: PhantomPinned,
        }
    }
}

generate_addr_of_methods! {
    impl<> Waiter {
        unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> {
            &self.pointers
        }
    }
}

// No notification.
const NOTIFICATION_NONE: usize = 0;

// Notification type used by `notify_one`.
const NOTIFICATION_ONE: usize = 1;

// Notification type used by `notify_waiters`.
const NOTIFICATION_ALL: usize = 2;

/// Notification for a `Waiter`.
/// This struct is equivalent to `Option<Notification>`, but uses
/// `AtomicUsize` inside for atomic operations.
#[derive(Debug)]
struct AtomicNotification(AtomicUsize);

impl AtomicNotification {
    fn none() -> Self {
        AtomicNotification(AtomicUsize::new(NOTIFICATION_NONE))
    }

    /// Store-release a notification.
    /// This method should be called exactly once.
    fn store_release(&self, notification: Notification) {
        self.0.store(notification as usize, Release);
    }

    fn load(&self, ordering: Ordering) -> Option<Notification> {
        match self.0.load(ordering) {
            NOTIFICATION_NONE => None,
            NOTIFICATION_ONE => Some(Notification::One),
            NOTIFICATION_ALL => Some(Notification::All),
            _ => unreachable!(),
        }
    }

    /// Clears the notification.
    /// This method is used by a `Notified` future to consume the
    /// notification. It uses relaxed ordering and should be only
    /// used once the atomic notification is no longer shared.
    fn clear(&self) {
        self.0.store(NOTIFICATION_NONE, Relaxed);
    }
}

#[derive(Debug, PartialEq, Eq)]
#[repr(usize)]
enum Notification {
    One = NOTIFICATION_ONE,
    All = NOTIFICATION_ALL,
}

/// List used in `Notify::notify_waiters`. It wraps a guarded linked list
/// and gates the access to it on `notify.waiters` mutex. It also empties
/// the list on drop.
struct NotifyWaitersList<'a> {
    list: GuardedWaitList,
    is_empty: bool,
    notify: &'a Notify,
}

impl<'a> NotifyWaitersList<'a> {
    fn new(
        unguarded_list: WaitList,
        guard: Pin<&'a Waiter>,
        notify: &'a Notify,
    ) -> NotifyWaitersList<'a> {
        let guard_ptr = NonNull::from(guard.get_ref());
        let list = unguarded_list.into_guarded(guard_ptr);
        NotifyWaitersList {
            list,
            is_empty: false,
            notify,
        }
    }

    /// Removes the last element from the guarded list. Modifying this list
    /// requires an exclusive access to the main list in `Notify`.
    fn pop_back_locked(&mut self, _waiters: &mut WaitList) -> Option<NonNull<Waiter>> {
        let result = self.list.pop_back();
        if result.is_none() {
            // Save information about emptiness to avoid waiting for lock
            // in the destructor.
            self.is_empty = true;
        }
        result
    }
}

impl Drop for NotifyWaitersList<'_> {
    fn drop(&mut self) {
        // If the list is not empty, we unlink all waiters from it.
        // We do not wake the waiters to avoid double panics.
        if !self.is_empty {
            let _lock_guard = self.notify.waiters.lock();
            while let Some(waiter) = self.list.pop_back() {
                // Safety: we never make mutable references to waiters.
                let waiter = unsafe { waiter.as_ref() };
                waiter.notification.store_release(Notification::All);
            }
        }
    }
}

/// Future returned from [`Notify::notified()`].
///
/// This future is fused, so once it has completed, any future calls to poll
/// will immediately return `Poll::Ready`.
#[derive(Debug)]
pub struct Notified<'a> {
    /// The `Notify` being received on.
    notify: &'a Notify,

    /// The current state of the receiving process.
    state: State,

    /// Number of calls to `notify_waiters` at the time of creation.
    notify_waiters_calls: usize,

    /// Entry in the waiter `LinkedList`.
    waiter: Waiter,
}

unsafe impl<'a> Send for Notified<'a> {}
unsafe impl<'a> Sync for Notified<'a> {}

#[derive(Debug)]
enum State {
    Init,
    Waiting,
    Done,
}

const NOTIFY_WAITERS_SHIFT: usize = 2;
const STATE_MASK: usize = (1 << NOTIFY_WAITERS_SHIFT) - 1;
const NOTIFY_WAITERS_CALLS_MASK: usize = !STATE_MASK;

/// Initial "idle" state.
const EMPTY: usize = 0;

/// One or more threads are currently waiting to be notified.
const WAITING: usize = 1;

/// Pending notification.
const NOTIFIED: usize = 2;

fn set_state(data: usize, state: usize) -> usize {
    (data & NOTIFY_WAITERS_CALLS_MASK) | (state & STATE_MASK)
}

fn get_state(data: usize) -> usize {
    data & STATE_MASK
}

fn get_num_notify_waiters_calls(data: usize) -> usize {
    (data & NOTIFY_WAITERS_CALLS_MASK) >> NOTIFY_WAITERS_SHIFT
}

fn inc_num_notify_waiters_calls(data: usize) -> usize {
    data + (1 << NOTIFY_WAITERS_SHIFT)
}

fn atomic_inc_num_notify_waiters_calls(data: &AtomicUsize) {
    data.fetch_add(1 << NOTIFY_WAITERS_SHIFT, SeqCst);
}

impl Notify {
    /// Create a new `Notify`, initialized without a permit.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    ///
    /// let notify = Notify::new();
    /// ```
    pub fn new() -> Notify {
        Notify {
            state: AtomicUsize::new(0),
            waiters: Mutex::new(LinkedList::new()),
        }
    }

    /// Create a new `Notify`, initialized without a permit.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    ///
    /// static NOTIFY: Notify = Notify::const_new();
    /// ```
    #[cfg(not(all(loom, test)))]
    pub const fn const_new() -> Notify {
        Notify {
            state: AtomicUsize::new(0),
            waiters: Mutex::const_new(LinkedList::new()),
        }
    }

    /// Wait for a notification.
    ///
    /// Equivalent to:
    ///
    /// ```ignore
    /// async fn notified(&self);
    /// ```
    ///
    /// Each `Notify` value holds a single permit. If a permit is available from
    /// an earlier call to [`notify_one()`], then `notified().await` will complete
    /// immediately, consuming that permit. Otherwise, `notified().await` waits
    /// for a permit to be made available by the next call to `notify_one()`.
    ///
    /// The `Notified` future is not guaranteed to receive wakeups from calls to
    /// `notify_one()` if it has not yet been polled. See the documentation for
    /// [`Notified::enable()`] for more details.
    ///
    /// The `Notified` future is guaranteed to receive wakeups from
    /// `notify_waiters()` as soon as it has been created, even if it has not
    /// yet been polled.
    ///
    /// [`notify_one()`]: Notify::notify_one
    /// [`Notified::enable()`]: Notified::enable
    ///
    /// # Cancel safety
    ///
    /// This method uses a queue to fairly distribute notifications in the order
    /// they were requested. Cancelling a call to `notified` makes you lose your
    /// place in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    /// use std::sync::Arc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let notify = Arc::new(Notify::new());
    ///     let notify2 = notify.clone();
    ///
    ///     tokio::spawn(async move {
    ///         notify2.notified().await;
    ///         println!("received notification");
    ///     });
    ///
    ///     println!("sending notification");
    ///     notify.notify_one();
    /// }
    /// ```
    pub fn notified(&self) -> Notified<'_> {
        // we load the number of times notify_waiters
        // was called and store that in the future.
        let state = self.state.load(SeqCst);
        Notified {
            notify: self,
            state: State::Init,
            notify_waiters_calls: get_num_notify_waiters_calls(state),
            waiter: Waiter::new(),
        }
    }

    /// Notifies a waiting task.
    ///
    /// If a task is currently waiting, that task is notified. Otherwise, a
    /// permit is stored in this `Notify` value and the **next** call to
    /// [`notified().await`] will complete immediately consuming the permit made
    /// available by this call to `notify_one()`.
    ///
    /// At most one permit may be stored by `Notify`. Many sequential calls to
    /// `notify_one` will result in a single permit being stored. The next call to
    /// `notified().await` will complete immediately, but the one after that
    /// will wait.
    ///
    /// [`notified().await`]: Notify::notified()
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    /// use std::sync::Arc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let notify = Arc::new(Notify::new());
    ///     let notify2 = notify.clone();
    ///
    ///     tokio::spawn(async move {
    ///         notify2.notified().await;
    ///         println!("received notification");
    ///     });
    ///
    ///     println!("sending notification");
    ///     notify.notify_one();
    /// }
    /// ```
    // Alias for old name in 0.x
    #[cfg_attr(docsrs, doc(alias = "notify"))]
    pub fn notify_one(&self) {
        // Load the current state
        let mut curr = self.state.load(SeqCst);

        // If the state is `EMPTY`, transition to `NOTIFIED` and return.
        while let EMPTY | NOTIFIED = get_state(curr) {
            // The compare-exchange from `NOTIFIED` -> `NOTIFIED` is intended. A
            // happens-before synchronization must happen between this atomic
            // operation and a task calling `notified().await`.
            let new = set_state(curr, NOTIFIED);
            let res = self.state.compare_exchange(curr, new, SeqCst, SeqCst);

            match res {
                // No waiters, no further work to do
                Ok(_) => return,
                Err(actual) => {
                    curr = actual;
                }
            }
        }

        // There are waiters, the lock must be acquired to notify.
        let mut waiters = self.waiters.lock();

        // The state must be reloaded while the lock is held. The state may only
        // transition out of WAITING while the lock is held.
        curr = self.state.load(SeqCst);

        if let Some(waker) = notify_locked(&mut waiters, &self.state, curr) {
            drop(waiters);
            waker.wake();
        }
    }

    /// Notifies all waiting tasks.
    ///
    /// If a task is currently waiting, that task is notified. Unlike with
    /// `notify_one()`, no permit is stored to be used by the next call to
    /// `notified().await`. The purpose of this method is to notify all
    /// already registered waiters. Registering for notification is done by
    /// acquiring an instance of the `Notified` future via calling `notified()`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Notify;
    /// use std::sync::Arc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let notify = Arc::new(Notify::new());
    ///     let notify2 = notify.clone();
    ///
    ///     let notified1 = notify.notified();
    ///     let notified2 = notify.notified();
    ///
    ///     let handle = tokio::spawn(async move {
    ///         println!("sending notifications");
    ///         notify2.notify_waiters();
    ///     });
    ///
    ///     notified1.await;
    ///     notified2.await;
    ///     println!("received notifications");
    /// }
    /// ```
    pub fn notify_waiters(&self) {
        let mut waiters = self.waiters.lock();

        // The state must be loaded while the lock is held. The state may only
        // transition out of WAITING while the lock is held.
        let curr = self.state.load(SeqCst);

        if matches!(get_state(curr), EMPTY | NOTIFIED) {
            // There are no waiting tasks. All we need to do is increment the
            // number of times this method was called.
            atomic_inc_num_notify_waiters_calls(&self.state);
            return;
        }

        // Increment the number of times this method was called
        // and transition to empty.
        let new_state = set_state(inc_num_notify_waiters_calls(curr), EMPTY);
        self.state.store(new_state, SeqCst);

        // It is critical for `GuardedLinkedList` safety that the guard node is
        // pinned in memory and is not dropped until the guarded list is dropped.
        let guard = Waiter::new();
        pin!(guard);

        // We move all waiters to a secondary list. It uses a `GuardedLinkedList`
        // underneath to allow every waiter to safely remove itself from it.
        //
        // * This list will be still guarded by the `waiters` lock.
        //   `NotifyWaitersList` wrapper makes sure we hold the lock to modify it.
        // * This wrapper will empty the list on drop. It is critical for safety
        //   that we will not leave any list entry with a pointer to the local
        //   guard node after this function returns / panics.
        let mut list = NotifyWaitersList::new(std::mem::take(&mut *waiters), guard.as_ref(), self);

        let mut wakers = WakeList::new();
        'outer: loop {
            while wakers.can_push() {
                match list.pop_back_locked(&mut waiters) {
                    Some(waiter) => {
                        // Safety: we never make mutable references to waiters.
                        let waiter = unsafe { waiter.as_ref() };

                        // Safety: we hold the lock, so we can access the waker.
                        if let Some(waker) =
                            unsafe { waiter.waker.with_mut(|waker| (*waker).take()) }
                        {
                            wakers.push(waker);
                        }

                        // This waiter is unlinked and will not be shared ever again, release it.
                        waiter.notification.store_release(Notification::All);
                    }
                    None => {
                        break 'outer;
                    }
                }
            }

            // Release the lock before notifying.
            drop(waiters);

            // One of the wakers may panic, but the remaining waiters will still
            // be unlinked from the list in `NotifyWaitersList` destructor.
            wakers.wake_all();

            // Acquire the lock again.
            waiters = self.waiters.lock();
        }

        // Release the lock before notifying
        drop(waiters);

        wakers.wake_all();
    }
}

impl Default for Notify {
    fn default() -> Notify {
        Notify::new()
    }
}

impl UnwindSafe for Notify {}
impl RefUnwindSafe for Notify {}

fn notify_locked(waiters: &mut WaitList, state: &AtomicUsize, curr: usize) -> Option<Waker> {
    loop {
        match get_state(curr) {
            EMPTY | NOTIFIED => {
                let res = state.compare_exchange(curr, set_state(curr, NOTIFIED), SeqCst, SeqCst);

                match res {
                    Ok(_) => return None,
                    Err(actual) => {
                        let actual_state = get_state(actual);
                        assert!(actual_state == EMPTY || actual_state == NOTIFIED);
                        state.store(set_state(actual, NOTIFIED), SeqCst);
                        return None;
                    }
                }
            }
            WAITING => {
                // At this point, it is guaranteed that the state will not
                // concurrently change as holding the lock is required to
                // transition **out** of `WAITING`.
                //
                // Get a pending waiter
                let waiter = waiters.pop_back().unwrap();

                // Safety: we never make mutable references to waiters.
                let waiter = unsafe { waiter.as_ref() };

                // Safety: we hold the lock, so we can access the waker.
                let waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) };

                // This waiter is unlinked and will not be shared ever again, release it.
                waiter.notification.store_release(Notification::One);

                if waiters.is_empty() {
                    // As this the **final** waiter in the list, the state
                    // must be transitioned to `EMPTY`. As transitioning
                    // **from** `WAITING` requires the lock to be held, a
                    // `store` is sufficient.
                    state.store(set_state(curr, EMPTY), SeqCst);
                }

                return waker;
            }
            _ => unreachable!(),
        }
    }
}

// ===== impl Notified =====

impl Notified<'_> {
    /// Adds this future to the list of futures that are ready to receive
    /// wakeups from calls to [`notify_one`].
    ///
    /// Polling the future also adds it to the list, so this method should only
    /// be used if you want to add the future to the list before the first call
    /// to `poll`. (In fact, this method is equivalent to calling `poll` except
    /// that no `Waker` is registered.)
    ///
    /// This has no effect on notifications sent using [`notify_waiters`], which
    /// are received as long as they happen after the creation of the `Notified`
    /// regardless of whether `enable` or `poll` has been called.
    ///
    /// This method returns true if the `Notified` is ready. This happens in the
    /// following situations:
    ///
    ///  1. The `notify_waiters` method was called between the creation of the
    ///     `Notified` and the call to this method.
    ///  2. This is the first call to `enable` or `poll` on this future, and the
    ///     `Notify` was holding a permit from a previous call to `notify_one`.
    ///     The call consumes the permit in that case.
    ///  3. The future has previously been enabled or polled, and it has since
    ///     then been marked ready by either consuming a permit from the
    ///     `Notify`, or by a call to `notify_one` or `notify_waiters` that
    ///     removed it from the list of futures ready to receive wakeups.
    ///
    /// If this method returns true, any future calls to poll on the same future
    /// will immediately return `Poll::Ready`.
    ///
    /// # Examples
    ///
    /// Unbound multi-producer multi-consumer (mpmc) channel.
    ///
    /// The call to `enable` is important because otherwise if you have two
    /// calls to `recv` and two calls to `send` in parallel, the following could
    /// happen:
    ///
    ///  1. Both calls to `try_recv` return `None`.
    ///  2. Both new elements are added to the vector.
    ///  3. The `notify_one` method is called twice, adding only a single
    ///     permit to the `Notify`.
    ///  4. Both calls to `recv` reach the `Notified` future. One of them
    ///     consumes the permit, and the other sleeps forever.
    ///
    /// By adding the `Notified` futures to the list by calling `enable` before
    /// `try_recv`, the `notify_one` calls in step three would remove the
    /// futures from the list and mark them notified instead of adding a permit
    /// to the `Notify`. This ensures that both futures are woken.
    ///
    /// ```
    /// use tokio::sync::Notify;
    ///
    /// use std::collections::VecDeque;
    /// use std::sync::Mutex;
    ///
    /// struct Channel<T> {
    ///     messages: Mutex<VecDeque<T>>,
    ///     notify_on_sent: Notify,
    /// }
    ///
    /// impl<T> Channel<T> {
    ///     pub fn send(&self, msg: T) {
    ///         let mut locked_queue = self.messages.lock().unwrap();
    ///         locked_queue.push_back(msg);
    ///         drop(locked_queue);
    ///
    ///         // Send a notification to one of the calls currently
    ///         // waiting in a call to `recv`.
    ///         self.notify_on_sent.notify_one();
    ///     }
    ///
    ///     pub fn try_recv(&self) -> Option<T> {
    ///         let mut locked_queue = self.messages.lock().unwrap();
    ///         locked_queue.pop_front()
    ///     }
    ///
    ///     pub async fn recv(&self) -> T {
    ///         let future = self.notify_on_sent.notified();
    ///         tokio::pin!(future);
    ///
    ///         loop {
    ///             // Make sure that no wakeup is lost if we get
    ///             // `None` from `try_recv`.
    ///             future.as_mut().enable();
    ///
    ///             if let Some(msg) = self.try_recv() {
    ///                 return msg;
    ///             }
    ///
    ///             // Wait for a call to `notify_one`.
    ///             //
    ///             // This uses `.as_mut()` to avoid consuming the future,
    ///             // which lets us call `Pin::set` below.
    ///             future.as_mut().await;
    ///
    ///             // Reset the future in case another call to
    ///             // `try_recv` got the message before us.
    ///             future.set(self.notify_on_sent.notified());
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// [`notify_one`]: Notify::notify_one()
    /// [`notify_waiters`]: Notify::notify_waiters()
    pub fn enable(self: Pin<&mut Self>) -> bool {
        self.poll_notified(None).is_ready()
    }

    /// A custom `project` implementation is used in place of `pin-project-lite`
    /// as a custom drop implementation is needed.
    fn project(self: Pin<&mut Self>) -> (&Notify, &mut State, &usize, &Waiter) {
        unsafe {
            // Safety: `notify`, `state` and `notify_waiters_calls` are `Unpin`.

            is_unpin::<&Notify>();
            is_unpin::<State>();
            is_unpin::<usize>();

            let me = self.get_unchecked_mut();
            (
                me.notify,
                &mut me.state,
                &me.notify_waiters_calls,
                &me.waiter,
            )
        }
    }

    fn poll_notified(self: Pin<&mut Self>, waker: Option<&Waker>) -> Poll<()> {
        use State::*;

        let (notify, state, notify_waiters_calls, waiter) = self.project();

        'outer_loop: loop {
            match *state {
                Init => {
                    let curr = notify.state.load(SeqCst);

                    // Optimistically try acquiring a pending notification
                    let res = notify.state.compare_exchange(
                        set_state(curr, NOTIFIED),
                        set_state(curr, EMPTY),
                        SeqCst,
                        SeqCst,
                    );

                    if res.is_ok() {
                        // Acquired the notification
                        *state = Done;
                        continue 'outer_loop;
                    }

                    // Clone the waker before locking, a waker clone can be
                    // triggering arbitrary code.
                    let waker = waker.cloned();

                    // Acquire the lock and attempt to transition to the waiting
                    // state.
                    let mut waiters = notify.waiters.lock();

                    // Reload the state with the lock held
                    let mut curr = notify.state.load(SeqCst);

                    // if notify_waiters has been called after the future
                    // was created, then we are done
                    if get_num_notify_waiters_calls(curr) != *notify_waiters_calls {
                        *state = Done;
                        continue 'outer_loop;
                    }

                    // Transition the state to WAITING.
                    loop {
                        match get_state(curr) {
                            EMPTY => {
                                // Transition to WAITING
                                let res = notify.state.compare_exchange(
                                    set_state(curr, EMPTY),
                                    set_state(curr, WAITING),
                                    SeqCst,
                                    SeqCst,
                                );

                                if let Err(actual) = res {
                                    assert_eq!(get_state(actual), NOTIFIED);
                                    curr = actual;
                                } else {
                                    break;
                                }
                            }
                            WAITING => break,
                            NOTIFIED => {
                                // Try consuming the notification
                                let res = notify.state.compare_exchange(
                                    set_state(curr, NOTIFIED),
                                    set_state(curr, EMPTY),
                                    SeqCst,
                                    SeqCst,
                                );

                                match res {
                                    Ok(_) => {
                                        // Acquired the notification
                                        *state = Done;
                                        continue 'outer_loop;
                                    }
                                    Err(actual) => {
                                        assert_eq!(get_state(actual), EMPTY);
                                        curr = actual;
                                    }
                                }
                            }
                            _ => unreachable!(),
                        }
                    }

                    let mut old_waker = None;
                    if waker.is_some() {
                        // Safety: called while locked.
                        //
                        // The use of `old_waiter` here is not necessary, as the field is always
                        // None when we reach this line.
                        unsafe {
                            old_waker =
                                waiter.waker.with_mut(|v| std::mem::replace(&mut *v, waker));
                        }
                    }

                    // Insert the waiter into the linked list
                    waiters.push_front(NonNull::from(waiter));

                    *state = Waiting;

                    drop(waiters);
                    drop(old_waker);

                    return Poll::Pending;
                }
                Waiting => {
                    #[cfg(tokio_taskdump)]
                    if let Some(waker) = waker {
                        let mut ctx = Context::from_waker(waker);
                        ready!(crate::trace::trace_leaf(&mut ctx));
                    }

                    if waiter.notification.load(Acquire).is_some() {
                        // Safety: waiter is already unlinked and will not be shared again,
                        // so we have an exclusive access to `waker`.
                        drop(unsafe { waiter.waker.with_mut(|waker| (*waker).take()) });

                        waiter.notification.clear();
                        *state = Done;
                        return Poll::Ready(());
                    }

                    // Our waiter was not notified, implying it is still stored in a waiter
                    // list (guarded by `notify.waiters`). In order to access the waker
                    // fields, we must acquire the lock.

                    let mut old_waker = None;
                    let mut waiters = notify.waiters.lock();

                    // We hold the lock and notifications are set only with the lock held,
                    // so this can be relaxed, because the happens-before relationship is
                    // established through the mutex.
                    if waiter.notification.load(Relaxed).is_some() {
                        // Safety: waiter is already unlinked and will not be shared again,
                        // so we have an exclusive access to `waker`.
                        old_waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) };

                        waiter.notification.clear();

                        // Drop the old waker after releasing the lock.
                        drop(waiters);
                        drop(old_waker);

                        *state = Done;
                        return Poll::Ready(());
                    }

                    // Load the state with the lock held.
                    let curr = notify.state.load(SeqCst);

                    if get_num_notify_waiters_calls(curr) != *notify_waiters_calls {
                        // Before we add a waiter to the list we check if these numbers are
                        // different while holding the lock. If these numbers are different now,
                        // it means that there is a call to `notify_waiters` in progress and this
                        // waiter must be contained by a guarded list used in `notify_waiters`.
                        // We can treat the waiter as notified and remove it from the list, as
                        // it would have been notified in the `notify_waiters` call anyways.

                        // Safety: we hold the lock, so we can modify the waker.
                        old_waker = unsafe { waiter.waker.with_mut(|waker| (*waker).take()) };

                        // Safety: we hold the lock, so we have an exclusive access to the list.
                        // The list is used in `notify_waiters`, so it must be guarded.
                        unsafe { waiters.remove(NonNull::from(waiter)) };

                        *state = Done;
                    } else {
                        // Safety: we hold the lock, so we can modify the waker.
                        unsafe {
                            waiter.waker.with_mut(|v| {
                                if let Some(waker) = waker {
                                    let should_update = match &*v {
                                        Some(current_waker) => !current_waker.will_wake(waker),
                                        None => true,
                                    };
                                    if should_update {
                                        old_waker = std::mem::replace(&mut *v, Some(waker.clone()));
                                    }
                                }
                            });
                        }

                        // Drop the old waker after releasing the lock.
                        drop(waiters);
                        drop(old_waker);

                        return Poll::Pending;
                    }

                    // Explicit drop of the lock to indicate the scope that the
                    // lock is held. Because holding the lock is required to
                    // ensure safe access to fields not held within the lock, it
                    // is helpful to visualize the scope of the critical
                    // section.
                    drop(waiters);

                    // Drop the old waker after releasing the lock.
                    drop(old_waker);
                }
                Done => {
                    #[cfg(tokio_taskdump)]
                    if let Some(waker) = waker {
                        let mut ctx = Context::from_waker(waker);
                        ready!(crate::trace::trace_leaf(&mut ctx));
                    }
                    return Poll::Ready(());
                }
            }
        }
    }
}

impl Future for Notified<'_> {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
        self.poll_notified(Some(cx.waker()))
    }
}

impl Drop for Notified<'_> {
    fn drop(&mut self) {
        use State::*;

        // Safety: The type only transitions to a "Waiting" state when pinned.
        let (notify, state, _, waiter) = unsafe { Pin::new_unchecked(self).project() };

        // This is where we ensure safety. The `Notified` value is being
        // dropped, which means we must ensure that the waiter entry is no
        // longer stored in the linked list.
        if matches!(*state, Waiting) {
            let mut waiters = notify.waiters.lock();
            let mut notify_state = notify.state.load(SeqCst);

            // We hold the lock, so this field is not concurrently accessed by
            // `notify_*` functions and we can use the relaxed ordering.
            let notification = waiter.notification.load(Relaxed);

            // remove the entry from the list (if not already removed)
            //
            // Safety: we hold the lock, so we have an exclusive access to every list the
            // waiter may be contained in. If the node is not contained in the `waiters`
            // list, then it is contained by a guarded list used by `notify_waiters`.
            unsafe { waiters.remove(NonNull::from(waiter)) };

            if waiters.is_empty() && get_state(notify_state) == WAITING {
                notify_state = set_state(notify_state, EMPTY);
                notify.state.store(notify_state, SeqCst);
            }

            // See if the node was notified but not received. In this case, if
            // the notification was triggered via `notify_one`, it must be sent
            // to the next waiter.
            if notification == Some(Notification::One) {
                if let Some(waker) = notify_locked(&mut waiters, &notify.state, notify_state) {
                    drop(waiters);
                    waker.wake();
                }
            }
        }
    }
}

/// # Safety
///
/// `Waiter` is forced to be !Unpin.
unsafe impl linked_list::Link for Waiter {
    type Handle = NonNull<Waiter>;
    type Target = Waiter;

    fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> {
        *handle
    }

    unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
        ptr
    }

    unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
        Waiter::addr_of_pointers(target)
    }
}

fn is_unpin<T: Unpin>() {}