lipsum/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
//! Lorem ipsum generator.
//!
//! This crate contains functions for generating pseudo-Latin lorem
//! ipsum placeholder text. The traditional lorem ipsum text start
//! like this:
//!
//! > Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
//! > eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
//! > enim ad minim veniam, quis nostrud exercitation ullamco laboris
//! > nisi ut aliquip ex ea commodo consequat. [...]
//!
//! This text is in the [`LOREM_IPSUM`] constant. Random text looking
//! like the above can be generated using the [`lipsum`] function.
//! This function allows you to generate as much text as desired and
//! each invocation will generate different text. This is done using a
//! [Markov chain] based on both the [`LOREM_IPSUM`] and
//! [`LIBER_PRIMUS`] texts. The latter constant holds the full text of
//! the first book of a work by Cicero, of which the lorem ipsum text
//! is a scrambled subset.
//!
//! The random looking text is generatd using a Markov chain of order
//! two, which simply means that the next word is based on the
//! previous two words in the input texts. The Markov chain can be
//! used with other input texts by creating an instance of
//! [`MarkovChain`] and calling its [`learn`] method.
//!
//! [`LOREM_IPSUM`]: constant.LOREM_IPSUM.html
//! [`LIBER_PRIMUS`]: constant.LIBER_PRIMUS.html
//! [`lipsum`]: fn.lipsum.html
//! [`MarkovChain`]: struct.MarkovChain.html
//! [`learn`]: struct.MarkovChain.html#method.learn
//! [Markov chain]: https://en.wikipedia.org/wiki/Markov_chain
#![doc(html_root_url = "https://docs.rs/lipsum/0.6.0")]
#![deny(missing_docs)]
extern crate rand;
#[cfg(test)]
extern crate rand_xorshift;
use rand::rngs::ThreadRng;
use rand::seq::SliceRandom;
use rand::Rng;
use std::cell::RefCell;
use std::collections::HashMap;
/// A bigram is simply two consecutive words.
pub type Bigram<'a> = (&'a str, &'a str);
/// Simple order two Markov chain implementation.
///
/// The [Markov chain] is a chain of order two, which means that it
/// will use the previous two words (a bigram) when predicting the
/// next word. This is normally enough to generate random text that
/// looks somewhat plausible. The implementation is based on
/// [Generating arbitrary text with Markov chains in Rust][blog post].
///
/// [Markov chain]: https://en.wikipedia.org/wiki/Markov_chain
/// [blog post]: https://blakewilliams.me/posts/generating-arbitrary-text-with-markov-chains-in-rust
pub struct MarkovChain<'a, R: Rng> {
map: HashMap<Bigram<'a>, Vec<&'a str>>,
keys: Vec<Bigram<'a>>,
rng: R,
}
impl<'a> MarkovChain<'a, ThreadRng> {
/// Create a new empty Markov chain. It will use a default
/// thread-local random number generator.
///
/// # Examples
///
/// ```
/// use lipsum::MarkovChain;
///
/// let chain = MarkovChain::new();
/// assert!(chain.is_empty());
/// ```
pub fn new() -> MarkovChain<'a, ThreadRng> {
MarkovChain::new_with_rng(rand::thread_rng())
}
}
impl<'a> Default for MarkovChain<'a, ThreadRng> {
/// Create a new empty Markov chain. It will use a default
/// thread-local random number generator.
fn default() -> Self {
Self::new()
}
}
impl<'a, R: Rng> MarkovChain<'a, R> {
/// Create a new empty Markov chain that uses the given random
/// number generator.
///
/// # Examples
///
/// ```
/// extern crate rand;
/// extern crate rand_xorshift;
/// # extern crate lipsum;
///
/// # fn main() {
/// use rand::SeedableRng;
/// use rand_xorshift::XorShiftRng;
/// use lipsum::MarkovChain;
///
/// let rng = XorShiftRng::seed_from_u64(0);
/// let mut chain = MarkovChain::new_with_rng(rng);
/// chain.learn("infra-red red orange yellow green blue indigo x-ray");
///
/// // The chain jumps consistently like this:
/// assert_eq!(chain.generate(1), "Yellow.");
/// assert_eq!(chain.generate(1), "Blue.");
/// assert_eq!(chain.generate(1), "Green.");
/// # }
/// ```
pub fn new_with_rng(rng: R) -> MarkovChain<'a, R> {
MarkovChain {
map: HashMap::new(),
keys: Vec::new(),
rng: rng,
}
}
/// Add new text to the Markov chain. This can be called several
/// times to build up the chain.
///
/// # Examples
///
/// ```
/// use lipsum::MarkovChain;
///
/// let mut chain = MarkovChain::new();
/// chain.learn("red green blue");
/// assert_eq!(chain.words(("red", "green")), Some(&vec!["blue"]));
///
/// chain.learn("red green yellow");
/// assert_eq!(chain.words(("red", "green")), Some(&vec!["blue", "yellow"]));
/// ```
pub fn learn(&mut self, sentence: &'a str) {
let words = sentence.split_whitespace().collect::<Vec<&str>>();
for window in words.windows(3) {
let (a, b, c) = (window[0], window[1], window[2]);
self.map.entry((a, b)).or_insert_with(Vec::new).push(c);
}
// Sync the keys with the current map.
self.keys = self.map.keys().cloned().collect();
self.keys.sort();
}
/// Returs the number of states in the Markov chain.
///
/// # Examples
///
/// ```
/// use lipsum::MarkovChain;
///
/// let mut chain = MarkovChain::new();
/// assert_eq!(chain.len(), 0);
///
/// chain.learn("red orange yellow green blue indigo");
/// assert_eq!(chain.len(), 4);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.map.len()
}
/// Returns `true` if the Markov chain has no states.
///
/// # Examples
///
/// ```
/// use lipsum::MarkovChain;
///
/// let mut chain = MarkovChain::new();
/// assert!(chain.is_empty());
///
/// chain.learn("foo bar baz");
/// assert!(!chain.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Get the possible words following the given bigram, or `None`
/// if the state is invalid.
///
/// # Examples
///
/// ```
/// use lipsum::MarkovChain;
///
/// let mut chain = MarkovChain::new();
/// chain.learn("red green blue");
/// assert_eq!(chain.words(("red", "green")), Some(&vec!["blue"]));
/// assert_eq!(chain.words(("foo", "bar")), None);
/// ```
pub fn words(&self, state: Bigram<'a>) -> Option<&Vec<&str>> {
self.map.get(&state)
}
/// Generate a sentence with `n` words of lorem ipsum text. The
/// sentence will start from a random point in the Markov chain
/// and a `.` will be added as necessary to form a full sentence.
///
/// See [`generate_from`] if you want to control the starting
/// point for the generated text and see [`iter`] if you simply
/// want a sequence of words.
///
/// # Examples
///
/// Generating the sounds of a grandfather clock:
///
/// ```
/// use lipsum::MarkovChain;
///
/// let mut chain = MarkovChain::new();
/// chain.learn("Tick, Tock, Tick, Tock, Ding! Tick, Tock, Ding! Ding!");
/// println!("{}", chain.generate(15));
/// ```
///
/// The output looks like this:
///
/// > Ding! Tick, Tock, Tick, Tock, Ding! Ding! Tock, Ding! Tick,
/// > Tock, Tick, Tock, Tick, Tock.
///
/// [`generate_from`]: struct.MarkovChain.html#method.generate_from
/// [`iter`]: struct.MarkovChain.html#method.iter
pub fn generate(&mut self, n: usize) -> String {
join_words(self.iter().take(n))
}
/// Generate a sentence with `n` words of lorem ipsum text. The
/// sentence will start from the given bigram and a `.` will be
/// added as necessary to form a full sentence.
///
/// Use [`generate`] if the starting point is not important. See
/// [`iter_from`] if you want a sequence of words that you can
/// format yourself.
///
/// [`generate`]: struct.MarkovChain.html#method.generate
/// [`iter_from`]: struct.MarkovChain.html#method.iter_from
pub fn generate_from(&mut self, n: usize, from: Bigram<'a>) -> String {
join_words(self.iter_from(from).take(n))
}
/// Make a never-ending iterator over the words in the Markov
/// chain. The iterator starts at a random point in the chain.
pub fn iter(&mut self) -> Words<R> {
let state = if self.is_empty() {
("", "")
} else {
*self.keys.choose(&mut self.rng).unwrap()
};
Words {
map: &self.map,
rng: &mut self.rng,
keys: &self.keys,
state: state,
}
}
/// Make a never-ending iterator over the words in the Markov
/// chain. The iterator starts at the given bigram.
pub fn iter_from(&mut self, from: Bigram<'a>) -> Words<R> {
Words {
map: &self.map,
rng: &mut self.rng,
keys: &self.keys,
state: from,
}
}
}
/// Never-ending iterator over words in the Markov chain.
///
/// Generated with the [`iter`] or [`iter_from`] methods.
///
/// [`iter`]: struct.MarkovChain.html#method.iter
/// [`iter_from`]: struct.MarkovChain.html#method.iter_from
pub struct Words<'a, R: 'a + Rng> {
map: &'a HashMap<Bigram<'a>, Vec<&'a str>>,
rng: &'a mut R,
keys: &'a Vec<Bigram<'a>>,
state: Bigram<'a>,
}
impl<'a, R: Rng> Iterator for Words<'a, R> {
type Item = &'a str;
fn next(&mut self) -> Option<&'a str> {
if self.map.is_empty() {
return None;
}
let result = Some(self.state.0);
while !self.map.contains_key(&self.state) {
self.state = *self.keys.choose(self.rng).unwrap();
}
let next_words = &self.map[&self.state];
let next = next_words.choose(self.rng).unwrap();
self.state = (self.state.1, next);
result
}
}
/// Check if `c` is an ASCII punctuation character.
fn is_ascii_punctuation(c: char) -> bool {
// We use the table from the unstable
// AsciiExt::is_ascii_punctuation function:
//
// U+0021 ... U+002F `! " # $ % & ' ( ) * + , - . /`
// U+003A ... U+0040 `: ; < = > ? @`
// U+005B ... U+0060 `[ \\ ] ^ _ \``
// U+007B ... U+007E `{ | } ~`
match c {
'\x21'...'\x2F' | '\x3A'...'\x40' | '\x5B'...'\x60' | '\x7B'...'\x7E' => true,
_ => false,
}
}
/// Capitalize the first character in a string.
fn capitalize<'a>(word: &'a str) -> String {
let idx = match word.chars().next() {
Some(c) => c.len_utf8(),
None => 0,
};
let mut result = String::with_capacity(word.len());
result.push_str(&word[..idx].to_uppercase());
result.push_str(&word[idx..]);
result
}
/// Join words from an iterator. The first word is always capitalized
/// and the generated sentence will end with `'.'` if it doesn't
/// already end with some other ASCII punctuation character.
fn join_words<'a, I: Iterator<Item = &'a str>>(mut words: I) -> String {
match words.next() {
None => String::new(),
Some(word) => {
let mut sentence = capitalize(word);
// Add remaining words.
for word in words {
sentence.push(' ');
sentence.push_str(word);
}
// Ensure the sentence ends with either one of ".!?".
if !sentence.ends_with(|c: char| c == '.' || c == '!' || c == '?') {
// Trim all trailing punctuation characters to avoid
// adding '.' after a ',' or similar.
let idx = sentence.trim_right_matches(is_ascii_punctuation).len();
sentence.truncate(idx);
sentence.push('.');
}
sentence
}
}
}
/// The traditional lorem ipsum text as given in [Wikipedia]. Using
/// this text alone for a Markov chain of order two doesn't work very
/// well since each bigram (two consequtive words) is followed by just
/// one other word. In other words, the Markov chain will always
/// produce the same output and recreate the lorem ipsum text
/// precisely. However, combining it with the full text in
/// [`LIBER_PRIMUS`] works well.
///
/// [Wikipedia]: https://en.wikipedia.org/wiki/Lorem_ipsum
/// [`LIBER_PRIMUS`]: constant.LIBER_PRIMUS.html
pub const LOREM_IPSUM: &'static str = include_str!("lorem-ipsum.txt");
/// The first book in Cicero's work De finibus bonorum et malorum ("On
/// the ends of good and evil"). The lorem ipsum text in
/// [`LOREM_IPSUM`] is derived from part of this text.
///
/// [`LOREM_IPSUM`]: constant.LOREM_IPSUM.html
pub const LIBER_PRIMUS: &'static str = include_str!("liber-primus.txt");
thread_local! {
// Markov chain generating lorem ipsum text.
static LOREM_IPSUM_CHAIN: RefCell<MarkovChain<'static, ThreadRng>> = {
let mut chain = MarkovChain::new();
// The cost of learning increases as more and more text is
// added, so we start with the smallest text.
chain.learn(LOREM_IPSUM);
chain.learn(LIBER_PRIMUS);
RefCell::new(chain)
}
}
/// Generate `n` words of lorem ipsum text. The output will always
/// start with "Lorem ipsum".
///
/// The text continues with the standard lorem ipsum text from
/// [`LOREM_IPSUM`] and becomes random if more than 18 words is
/// requested. See [`lipsum_words`] if fully random text is needed.
///
/// # Examples
///
/// ```
/// use lipsum::lipsum;
///
/// assert_eq!(lipsum(7), "Lorem ipsum dolor sit amet, consectetur adipiscing.");
/// ```
///
/// [`LOREM_IPSUM`]: constant.LOREM_IPSUM.html
/// [`lipsum_words`]: fn.lipsum_words.html
pub fn lipsum(n: usize) -> String {
LOREM_IPSUM_CHAIN.with(|cell| {
let mut chain = cell.borrow_mut();
chain.generate_from(n, ("Lorem", "ipsum"))
})
}
/// Generate `n` words of random lorem ipsum text.
///
/// The text starts with a random word from [`LOREM_IPSUM`]. Multiple
/// sentences may be generated, depending on the punctuation of the
/// words being random selected.
///
/// # Examples
///
/// ```
/// use lipsum::lipsum_words;
///
/// println!("{}", lipsum_words(6));
/// // -> "Propter soliditatem, censet in infinito inani."
/// ```
///
/// [`LOREM_IPSUM`]: constant.LOREM_IPSUM.html
pub fn lipsum_words(n: usize) -> String {
LOREM_IPSUM_CHAIN.with(|cell| {
let mut chain = cell.borrow_mut();
chain.generate(n)
})
}
/// Minimum number of words to include in a title.
const TITLE_MIN_WORDS: usize = 3;
/// Maximum number of words to include in a title.
const TITLE_MAX_WORDS: usize = 8;
/// Words shorter than this size are not capitalized.
const TITLE_SMALL_WORD: usize = 3;
/// Generate a short lorem ipsum text with words in title case.
///
/// The words are capitalized and stripped for punctuation characters.
///
/// # Examples
///
/// ```
/// use lipsum::lipsum_title;
///
/// println!("{}", lipsum_title());
/// ```
///
/// This will generate a string like
///
/// > Grate Meminit et Praesentibus
///
/// which should be suitable for use in a document title for section
/// heading.
pub fn lipsum_title() -> String {
LOREM_IPSUM_CHAIN.with(|cell| {
let n = rand::thread_rng().gen_range(TITLE_MIN_WORDS, TITLE_MAX_WORDS);
let mut chain = cell.borrow_mut();
// The average word length with our corpus is 7.6 bytes so
// this capacity will avoid most allocations.
let mut title = String::with_capacity(8 * n);
let words = chain
.iter()
.map(|word| word.trim_matches(is_ascii_punctuation))
.filter(|word| !word.is_empty())
.take(n);
for (i, word) in words.enumerate() {
if i > 0 {
title.push(' ');
}
// Capitalize the first word and all long words.
if i == 0 || word.len() > TITLE_SMALL_WORD {
title.push_str(&capitalize(word));
} else {
title.push_str(word);
}
}
title
})
}
#[cfg(test)]
mod tests {
use super::rand::SeedableRng;
use super::rand_xorshift::XorShiftRng;
use super::*;
#[test]
fn starts_with_lorem_ipsum() {
assert_eq!(&lipsum(10)[..11], "Lorem ipsum");
}
#[test]
fn generate_zero_words() {
assert_eq!(lipsum(0).split_whitespace().count(), 0);
}
#[test]
fn generate_one_word() {
assert_eq!(lipsum(1).split_whitespace().count(), 1);
}
#[test]
fn generate_two_words() {
assert_eq!(lipsum(2).split_whitespace().count(), 2);
}
#[test]
fn starts_differently() {
// Check that calls to lipsum_words don't always start with
// "Lorem ipsum".
let idx = "Lorem ipsum".len();
assert_ne!(&lipsum_words(5)[..idx], &lipsum_words(5)[..idx]);
}
#[test]
fn generate_title() {
for word in lipsum_title().split_whitespace() {
assert!(
!word.starts_with(is_ascii_punctuation) && !word.ends_with(is_ascii_punctuation),
"Unexpected punctuation: {:?}",
word
);
if word.len() > TITLE_SMALL_WORD {
assert!(
word.starts_with(char::is_uppercase),
"Expected small word to be capitalized: {:?}",
word
);
}
}
}
#[test]
fn empty_chain() {
let mut chain = MarkovChain::new();
assert_eq!(chain.generate(10), "");
}
#[test]
fn generate_from() {
let mut chain = MarkovChain::new();
chain.learn("red orange yellow green blue indigo violet");
assert_eq!(
chain.generate_from(5, ("orange", "yellow")),
"Orange yellow green blue indigo."
);
}
#[test]
fn generate_last_bigram() {
// The bigram "yyy zzz" will not be present in the Markov
// chain's map, and so we will not generate "xxx yyy zzz" as
// one would expect. The chain moves from state "xxx yyy" to
// "yyy zzz", but sees that as invalid state and resets itself
// back to "xxx yyy".
let mut chain = MarkovChain::new();
chain.learn("xxx yyy zzz");
assert_ne!(chain.generate_from(3, ("xxx", "yyy")), "xxx yyy zzz");
}
#[test]
fn generate_from_no_panic() {
// No panic when asked to generate a chain from a starting
// point that doesn't exist in the chain.
let mut chain = MarkovChain::new();
chain.learn("foo bar baz");
chain.generate_from(3, ("xxx", "yyy"));
}
#[test]
fn chain_map() {
let mut chain = MarkovChain::new();
chain.learn("foo bar baz quuz");
let map = &chain.map;
assert_eq!(map.len(), 2);
assert_eq!(map[&("foo", "bar")], vec!["baz"]);
assert_eq!(map[&("bar", "baz")], vec!["quuz"]);
}
#[test]
fn new_with_rng() {
let rng = XorShiftRng::seed_from_u64(1234);
let mut chain = MarkovChain::new_with_rng(rng);
chain.learn("foo bar x y z");
chain.learn("foo bar a b c");
assert_eq!(chain.generate(15), "A b x y y b y bar a b y x y bar a.");
}
}