1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
//! Lorem ipsum generator.
//!
//! This crate contains functions for generating pseudo-Latin lorem
//! ipsum placeholder text. The traditional lorem ipsum text start
//! like this:
//!
//! > Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
//! > eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
//! > enim ad minim veniam, quis nostrud exercitation ullamco laboris
//! > nisi ut aliquip ex ea commodo consequat. [...]
//!
//! This text is in the [`LOREM_IPSUM`] constant. Random text looking
//! like the above can be generated using the [`lipsum`] function.
//! This function allows you to generate as much text as desired and
//! each invocation will generate different text. This is done using a
//! [Markov chain] based on both the [`LOREM_IPSUM`] and
//! [`LIBER_PRIMUS`] texts. The latter constant holds the full text of
//! the first book of a work by Cicero, of which the lorem ipsum text
//! is a scrambled subset.
//!
//! The random looking text is generatd using a Markov chain of order
//! two, which simply means that the next word is based on the
//! previous two words in the input texts. The Markov chain can be
//! used with other input texts by creating an instance of
//! [`MarkovChain`] and calling its [`learn`] method.
//!
//! [`LOREM_IPSUM`]: constant.LOREM_IPSUM.html
//! [`LIBER_PRIMUS`]: constant.LIBER_PRIMUS.html
//! [`lipsum`]: fn.lipsum.html
//! [`MarkovChain`]: struct.MarkovChain.html
//! [`learn`]: struct.MarkovChain.html#method.learn
//! [Markov chain]: https://en.wikipedia.org/wiki/Markov_chain

#![doc(html_root_url = "https://docs.rs/lipsum/0.6.0")]
#![deny(missing_docs)]

extern crate rand;
#[cfg(test)]
extern crate rand_xorshift;

use rand::rngs::ThreadRng;
use rand::seq::SliceRandom;
use rand::Rng;
use std::cell::RefCell;
use std::collections::HashMap;

/// A bigram is simply two consecutive words.
pub type Bigram<'a> = (&'a str, &'a str);

/// Simple order two Markov chain implementation.
///
/// The [Markov chain] is a chain of order two, which means that it
/// will use the previous two words (a bigram) when predicting the
/// next word. This is normally enough to generate random text that
/// looks somewhat plausible. The implementation is based on
/// [Generating arbitrary text with Markov chains in Rust][blog post].
///
/// [Markov chain]: https://en.wikipedia.org/wiki/Markov_chain
/// [blog post]: https://blakewilliams.me/posts/generating-arbitrary-text-with-markov-chains-in-rust
pub struct MarkovChain<'a, R: Rng> {
    map: HashMap<Bigram<'a>, Vec<&'a str>>,
    keys: Vec<Bigram<'a>>,
    rng: R,
}

impl<'a> MarkovChain<'a, ThreadRng> {
    /// Create a new empty Markov chain. It will use a default
    /// thread-local random number generator.
    ///
    /// # Examples
    ///
    /// ```
    /// use lipsum::MarkovChain;
    ///
    /// let chain = MarkovChain::new();
    /// assert!(chain.is_empty());
    /// ```
    pub fn new() -> MarkovChain<'a, ThreadRng> {
        MarkovChain::new_with_rng(rand::thread_rng())
    }
}

impl<'a> Default for MarkovChain<'a, ThreadRng> {
    /// Create a new empty Markov chain. It will use a default
    /// thread-local random number generator.
    fn default() -> Self {
        Self::new()
    }
}

impl<'a, R: Rng> MarkovChain<'a, R> {
    /// Create a new empty Markov chain that uses the given random
    /// number generator.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate rand;
    /// extern crate rand_xorshift;
    /// # extern crate lipsum;
    ///
    /// # fn main() {
    /// use rand::SeedableRng;
    /// use rand_xorshift::XorShiftRng;
    /// use lipsum::MarkovChain;
    ///
    /// let rng = XorShiftRng::seed_from_u64(0);
    /// let mut chain = MarkovChain::new_with_rng(rng);
    /// chain.learn("infra-red red orange yellow green blue indigo x-ray");
    ///
    /// // The chain jumps consistently like this:
    /// assert_eq!(chain.generate(1), "Yellow.");
    /// assert_eq!(chain.generate(1), "Blue.");
    /// assert_eq!(chain.generate(1), "Green.");
    /// # }
    /// ```

    pub fn new_with_rng(rng: R) -> MarkovChain<'a, R> {
        MarkovChain {
            map: HashMap::new(),
            keys: Vec::new(),
            rng: rng,
        }
    }

    /// Add new text to the Markov chain. This can be called several
    /// times to build up the chain.
    ///
    /// # Examples
    ///
    /// ```
    /// use lipsum::MarkovChain;
    ///
    /// let mut chain = MarkovChain::new();
    /// chain.learn("red green blue");
    /// assert_eq!(chain.words(("red", "green")), Some(&vec!["blue"]));
    ///
    /// chain.learn("red green yellow");
    /// assert_eq!(chain.words(("red", "green")), Some(&vec!["blue", "yellow"]));
    /// ```
    pub fn learn(&mut self, sentence: &'a str) {
        let words = sentence.split_whitespace().collect::<Vec<&str>>();
        for window in words.windows(3) {
            let (a, b, c) = (window[0], window[1], window[2]);
            self.map.entry((a, b)).or_insert_with(Vec::new).push(c);
        }
        // Sync the keys with the current map.
        self.keys = self.map.keys().cloned().collect();
        self.keys.sort();
    }

    /// Returs the number of states in the Markov chain.
    ///
    /// # Examples
    ///
    /// ```
    /// use lipsum::MarkovChain;
    ///
    /// let mut chain = MarkovChain::new();
    /// assert_eq!(chain.len(), 0);
    ///
    /// chain.learn("red orange yellow green blue indigo");
    /// assert_eq!(chain.len(), 4);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Returns `true` if the Markov chain has no states.
    ///
    /// # Examples
    ///
    /// ```
    /// use lipsum::MarkovChain;
    ///
    /// let mut chain = MarkovChain::new();
    /// assert!(chain.is_empty());
    ///
    /// chain.learn("foo bar baz");
    /// assert!(!chain.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Get the possible words following the given bigram, or `None`
    /// if the state is invalid.
    ///
    /// # Examples
    ///
    /// ```
    /// use lipsum::MarkovChain;
    ///
    /// let mut chain = MarkovChain::new();
    /// chain.learn("red green blue");
    /// assert_eq!(chain.words(("red", "green")), Some(&vec!["blue"]));
    /// assert_eq!(chain.words(("foo", "bar")), None);
    /// ```
    pub fn words(&self, state: Bigram<'a>) -> Option<&Vec<&str>> {
        self.map.get(&state)
    }

    /// Generate a sentence with `n` words of lorem ipsum text. The
    /// sentence will start from a random point in the Markov chain
    /// and a `.` will be added as necessary to form a full sentence.
    ///
    /// See [`generate_from`] if you want to control the starting
    /// point for the generated text and see [`iter`] if you simply
    /// want a sequence of words.
    ///
    /// # Examples
    ///
    /// Generating the sounds of a grandfather clock:
    ///
    /// ```
    /// use lipsum::MarkovChain;
    ///
    /// let mut chain = MarkovChain::new();
    /// chain.learn("Tick, Tock, Tick, Tock, Ding! Tick, Tock, Ding! Ding!");
    /// println!("{}", chain.generate(15));
    /// ```
    ///
    /// The output looks like this:
    ///
    /// > Ding! Tick, Tock, Tick, Tock, Ding! Ding! Tock, Ding! Tick,
    /// > Tock, Tick, Tock, Tick, Tock.
    ///
    /// [`generate_from`]: struct.MarkovChain.html#method.generate_from
    /// [`iter`]: struct.MarkovChain.html#method.iter
    pub fn generate(&mut self, n: usize) -> String {
        join_words(self.iter().take(n))
    }

    /// Generate a sentence with `n` words of lorem ipsum text. The
    /// sentence will start from the given bigram and a `.` will be
    /// added as necessary to form a full sentence.
    ///
    /// Use [`generate`] if the starting point is not important. See
    /// [`iter_from`] if you want a sequence of words that you can
    /// format yourself.
    ///
    /// [`generate`]: struct.MarkovChain.html#method.generate
    /// [`iter_from`]: struct.MarkovChain.html#method.iter_from
    pub fn generate_from(&mut self, n: usize, from: Bigram<'a>) -> String {
        join_words(self.iter_from(from).take(n))
    }

    /// Make a never-ending iterator over the words in the Markov
    /// chain. The iterator starts at a random point in the chain.
    pub fn iter(&mut self) -> Words<R> {
        let state = if self.is_empty() {
            ("", "")
        } else {
            *self.keys.choose(&mut self.rng).unwrap()
        };
        Words {
            map: &self.map,
            rng: &mut self.rng,
            keys: &self.keys,
            state: state,
        }
    }

    /// Make a never-ending iterator over the words in the Markov
    /// chain. The iterator starts at the given bigram.
    pub fn iter_from(&mut self, from: Bigram<'a>) -> Words<R> {
        Words {
            map: &self.map,
            rng: &mut self.rng,
            keys: &self.keys,
            state: from,
        }
    }
}

/// Never-ending iterator over words in the Markov chain.
///
/// Generated with the [`iter`] or [`iter_from`] methods.
///
/// [`iter`]: struct.MarkovChain.html#method.iter
/// [`iter_from`]: struct.MarkovChain.html#method.iter_from
pub struct Words<'a, R: 'a + Rng> {
    map: &'a HashMap<Bigram<'a>, Vec<&'a str>>,
    rng: &'a mut R,
    keys: &'a Vec<Bigram<'a>>,
    state: Bigram<'a>,
}

impl<'a, R: Rng> Iterator for Words<'a, R> {
    type Item = &'a str;

    fn next(&mut self) -> Option<&'a str> {
        if self.map.is_empty() {
            return None;
        }

        let result = Some(self.state.0);

        while !self.map.contains_key(&self.state) {
            self.state = *self.keys.choose(self.rng).unwrap();
        }
        let next_words = &self.map[&self.state];
        let next = next_words.choose(self.rng).unwrap();
        self.state = (self.state.1, next);
        result
    }
}

/// Check if `c` is an ASCII punctuation character.
fn is_ascii_punctuation(c: char) -> bool {
    // We use the table from the unstable
    // AsciiExt::is_ascii_punctuation function:
    //
    // U+0021 ... U+002F `! " # $ % & ' ( ) * + , - . /`
    // U+003A ... U+0040 `: ; < = > ? @`
    // U+005B ... U+0060 `[ \\ ] ^ _ \``
    // U+007B ... U+007E `{ | } ~`
    match c {
        '\x21'...'\x2F' | '\x3A'...'\x40' | '\x5B'...'\x60' | '\x7B'...'\x7E' => true,
        _ => false,
    }
}

/// Capitalize the first character in a string.
fn capitalize<'a>(word: &'a str) -> String {
    let idx = match word.chars().next() {
        Some(c) => c.len_utf8(),
        None => 0,
    };

    let mut result = String::with_capacity(word.len());
    result.push_str(&word[..idx].to_uppercase());
    result.push_str(&word[idx..]);
    result
}

/// Join words from an iterator. The first word is always capitalized
/// and the generated sentence will end with `'.'` if it doesn't
/// already end with some other ASCII punctuation character.
fn join_words<'a, I: Iterator<Item = &'a str>>(mut words: I) -> String {
    match words.next() {
        None => String::new(),
        Some(word) => {
            let mut sentence = capitalize(word);

            // Add remaining words.
            for word in words {
                sentence.push(' ');
                sentence.push_str(word);
            }

            // Ensure the sentence ends with either one of ".!?".
            if !sentence.ends_with(|c: char| c == '.' || c == '!' || c == '?') {
                // Trim all trailing punctuation characters to avoid
                // adding '.' after a ',' or similar.
                let idx = sentence.trim_right_matches(is_ascii_punctuation).len();
                sentence.truncate(idx);
                sentence.push('.');
            }

            sentence
        }
    }
}

/// The traditional lorem ipsum text as given in [Wikipedia]. Using
/// this text alone for a Markov chain of order two doesn't work very
/// well since each bigram (two consequtive words) is followed by just
/// one other word. In other words, the Markov chain will always
/// produce the same output and recreate the lorem ipsum text
/// precisely. However, combining it with the full text in
/// [`LIBER_PRIMUS`] works well.
///
/// [Wikipedia]: https://en.wikipedia.org/wiki/Lorem_ipsum
/// [`LIBER_PRIMUS`]: constant.LIBER_PRIMUS.html
pub const LOREM_IPSUM: &'static str = include_str!("lorem-ipsum.txt");

/// The first book in Cicero's work De finibus bonorum et malorum ("On
/// the ends of good and evil"). The lorem ipsum text in
/// [`LOREM_IPSUM`] is derived from part of this text.
///
/// [`LOREM_IPSUM`]: constant.LOREM_IPSUM.html
pub const LIBER_PRIMUS: &'static str = include_str!("liber-primus.txt");

thread_local! {
    // Markov chain generating lorem ipsum text.
    static LOREM_IPSUM_CHAIN: RefCell<MarkovChain<'static, ThreadRng>> = {
        let mut chain = MarkovChain::new();
        // The cost of learning increases as more and more text is
        // added, so we start with the smallest text.
        chain.learn(LOREM_IPSUM);
        chain.learn(LIBER_PRIMUS);
        RefCell::new(chain)
    }
}

/// Generate `n` words of lorem ipsum text. The output will always
/// start with "Lorem ipsum".
///
/// The text continues with the standard lorem ipsum text from
/// [`LOREM_IPSUM`] and becomes random if more than 18 words is
/// requested. See [`lipsum_words`] if fully random text is needed.
///
/// # Examples
///
/// ```
/// use lipsum::lipsum;
///
/// assert_eq!(lipsum(7), "Lorem ipsum dolor sit amet, consectetur adipiscing.");
/// ```
///
/// [`LOREM_IPSUM`]: constant.LOREM_IPSUM.html
/// [`lipsum_words`]: fn.lipsum_words.html
pub fn lipsum(n: usize) -> String {
    LOREM_IPSUM_CHAIN.with(|cell| {
        let mut chain = cell.borrow_mut();
        chain.generate_from(n, ("Lorem", "ipsum"))
    })
}

/// Generate `n` words of random lorem ipsum text.
///
/// The text starts with a random word from [`LOREM_IPSUM`]. Multiple
/// sentences may be generated, depending on the punctuation of the
/// words being random selected.
///
/// # Examples
///
/// ```
/// use lipsum::lipsum_words;
///
/// println!("{}", lipsum_words(6));
/// // -> "Propter soliditatem, censet in infinito inani."
/// ```
///
/// [`LOREM_IPSUM`]: constant.LOREM_IPSUM.html
pub fn lipsum_words(n: usize) -> String {
    LOREM_IPSUM_CHAIN.with(|cell| {
        let mut chain = cell.borrow_mut();
        chain.generate(n)
    })
}

/// Minimum number of words to include in a title.
const TITLE_MIN_WORDS: usize = 3;
/// Maximum number of words to include in a title.
const TITLE_MAX_WORDS: usize = 8;
/// Words shorter than this size are not capitalized.
const TITLE_SMALL_WORD: usize = 3;

/// Generate a short lorem ipsum text with words in title case.
///
/// The words are capitalized and stripped for punctuation characters.
///
/// # Examples
///
/// ```
/// use lipsum::lipsum_title;
///
/// println!("{}", lipsum_title());
/// ```
///
/// This will generate a string like
///
/// > Grate Meminit et Praesentibus
///
/// which should be suitable for use in a document title for section
/// heading.
pub fn lipsum_title() -> String {
    LOREM_IPSUM_CHAIN.with(|cell| {
        let n = rand::thread_rng().gen_range(TITLE_MIN_WORDS, TITLE_MAX_WORDS);
        let mut chain = cell.borrow_mut();
        // The average word length with our corpus is 7.6 bytes so
        // this capacity will avoid most allocations.
        let mut title = String::with_capacity(8 * n);

        let words = chain
            .iter()
            .map(|word| word.trim_matches(is_ascii_punctuation))
            .filter(|word| !word.is_empty())
            .take(n);

        for (i, word) in words.enumerate() {
            if i > 0 {
                title.push(' ');
            }

            // Capitalize the first word and all long words.
            if i == 0 || word.len() > TITLE_SMALL_WORD {
                title.push_str(&capitalize(word));
            } else {
                title.push_str(word);
            }
        }
        title
    })
}

#[cfg(test)]
mod tests {
    use super::rand::SeedableRng;
    use super::rand_xorshift::XorShiftRng;
    use super::*;

    #[test]
    fn starts_with_lorem_ipsum() {
        assert_eq!(&lipsum(10)[..11], "Lorem ipsum");
    }

    #[test]
    fn generate_zero_words() {
        assert_eq!(lipsum(0).split_whitespace().count(), 0);
    }

    #[test]
    fn generate_one_word() {
        assert_eq!(lipsum(1).split_whitespace().count(), 1);
    }

    #[test]
    fn generate_two_words() {
        assert_eq!(lipsum(2).split_whitespace().count(), 2);
    }

    #[test]
    fn starts_differently() {
        // Check that calls to lipsum_words don't always start with
        // "Lorem ipsum".
        let idx = "Lorem ipsum".len();
        assert_ne!(&lipsum_words(5)[..idx], &lipsum_words(5)[..idx]);
    }

    #[test]
    fn generate_title() {
        for word in lipsum_title().split_whitespace() {
            assert!(
                !word.starts_with(is_ascii_punctuation) && !word.ends_with(is_ascii_punctuation),
                "Unexpected punctuation: {:?}",
                word
            );
            if word.len() > TITLE_SMALL_WORD {
                assert!(
                    word.starts_with(char::is_uppercase),
                    "Expected small word to be capitalized: {:?}",
                    word
                );
            }
        }
    }

    #[test]
    fn empty_chain() {
        let mut chain = MarkovChain::new();
        assert_eq!(chain.generate(10), "");
    }

    #[test]
    fn generate_from() {
        let mut chain = MarkovChain::new();
        chain.learn("red orange yellow green blue indigo violet");
        assert_eq!(
            chain.generate_from(5, ("orange", "yellow")),
            "Orange yellow green blue indigo."
        );
    }

    #[test]
    fn generate_last_bigram() {
        // The bigram "yyy zzz" will not be present in the Markov
        // chain's map, and so we will not generate "xxx yyy zzz" as
        // one would expect. The chain moves from state "xxx yyy" to
        // "yyy zzz", but sees that as invalid state and resets itself
        // back to "xxx yyy".
        let mut chain = MarkovChain::new();
        chain.learn("xxx yyy zzz");
        assert_ne!(chain.generate_from(3, ("xxx", "yyy")), "xxx yyy zzz");
    }

    #[test]
    fn generate_from_no_panic() {
        // No panic when asked to generate a chain from a starting
        // point that doesn't exist in the chain.
        let mut chain = MarkovChain::new();
        chain.learn("foo bar baz");
        chain.generate_from(3, ("xxx", "yyy"));
    }

    #[test]
    fn chain_map() {
        let mut chain = MarkovChain::new();
        chain.learn("foo bar baz quuz");
        let map = &chain.map;

        assert_eq!(map.len(), 2);
        assert_eq!(map[&("foo", "bar")], vec!["baz"]);
        assert_eq!(map[&("bar", "baz")], vec!["quuz"]);
    }

    #[test]
    fn new_with_rng() {
        let rng = XorShiftRng::seed_from_u64(1234);
        let mut chain = MarkovChain::new_with_rng(rng);
        chain.learn("foo bar x y z");
        chain.learn("foo bar a b c");

        assert_eq!(chain.generate(15), "A b x y y b y bar a b y x y bar a.");
    }
}