fuchsia_async/runtime/fuchsia/task.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::scope::ScopeHandle;
use crate::EHandle;
use futures::prelude::*;
use std::marker::PhantomData;
use std::mem::ManuallyDrop;
use std::pin::Pin;
use std::task::{Context, Poll};
/// A handle to a future that is owned and polled by the executor.
///
/// Once a task is created, the executor will poll it until done, even if the task handle itself is
/// not polled.
///
/// NOTE: When a JoinHandle is dropped, its future will be detached.
///
/// Polling (or attempting to extract the value from) a task after the executor is dropped may
/// trigger a panic.
#[derive(Debug)]
// LINT.IfChange
pub struct JoinHandle<T> {
scope: ScopeHandle,
task_id: usize,
phantom: PhantomData<T>,
}
// LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
impl<T> Unpin for JoinHandle<T> {}
impl<T> JoinHandle<T> {
pub(crate) fn new(scope: ScopeHandle, task_id: usize) -> Self {
Self { scope, task_id, phantom: PhantomData }
}
/// Cancel a task and returns a future that resolves once the cancellation is complete. The
/// future can be ignored in which case the task will still be cancelled.
pub fn cancel(mut self) -> impl Future<Output = Option<T>> {
// SAFETY: We spawned the task so the return type should be correct.
let result = unsafe { self.scope.cancel_task(self.task_id) };
async move {
match result {
Some(output) => Some(output),
None => {
// If we are dropped from here, we'll end up calling `cancel_and_detach`.
let result = std::future::poll_fn(|cx| {
// SAFETY: We spawned the task so the return type should be correct.
unsafe { self.scope.poll_cancelled(self.task_id, cx) }
})
.await;
self.task_id = 0;
result
}
}
}
}
}
impl<T> Drop for JoinHandle<T> {
fn drop(&mut self) {
if self.task_id != 0 {
self.scope.detach(self.task_id);
}
}
}
impl<T: 'static> Future for JoinHandle<T> {
type Output = T;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// SAFETY: We spawned the task so the return type should be correct.
let result = unsafe { self.scope.poll_join_result(self.task_id, cx) };
if result.is_ready() {
self.task_id = 0;
}
result
}
}
/// This is the same as a JoinHandle, except that the future will be cancelled when the task is
/// dropped.
#[must_use]
#[repr(transparent)]
#[derive(Debug)]
// LINT.IfChange
pub struct Task<T>(JoinHandle<T>);
// LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
impl<T> Task<T> {
/// Returns a `JoinHandle` which will have detach-on-drop semantics.
pub fn detach_on_drop(self) -> JoinHandle<T> {
let this = ManuallyDrop::new(self);
// SAFETY: We are bypassing our drop implementation.
unsafe { std::ptr::read(&this.0) }
}
}
impl Task<()> {
/// Detach this task so that it can run independently in the background.
///
/// *Note*: This is usually not what you want. This API severs the control flow from the
/// caller. This can result in flaky tests and makes it impossible to return values
/// (including errors).
///
/// If your goal is to run multiple tasks concurrently, use [`Scope`][crate::Scope].
///
/// You can also use other futures combinators such as:
///
/// * [`futures::future::join`]
/// * [`futures::future::select`]
/// * [`futures::select`]
///
/// or their error-aware variants
///
/// * [`futures::future::try_join`]
/// * [`futures::future::try_select`]
///
/// or their stream counterparts
///
/// * [`futures::stream::StreamExt::for_each`]
/// * [`futures::stream::StreamExt::for_each_concurrent`]
/// * [`futures::stream::TryStreamExt::try_for_each`]
/// * [`futures::stream::TryStreamExt::try_for_each_concurrent`]
///
/// can meet your needs.
pub fn detach(mut self) {
self.0.scope.detach(self.0.task_id);
self.0.task_id = 0;
}
}
impl<T: Send + 'static> Task<T> {
/// Spawn a new task on the global scope of the current executor.
///
/// The task may be executed on any thread(s) owned by the current executor.
/// See [`Task::local`] for an equivalent that ensures locality.
///
/// The passed future will live until either (a) the future completes,
/// (b) the returned [`Task`] is dropped while the executor is running, or
/// (c) the executor is destroyed; whichever comes first.
///
/// Code that uses scopes is encouraged to spawn on a shorter lived scope or
/// explicitly call [`Scope::global()`][crate::Scope::global] for spawning.
///
/// # Panics
///
/// May panic if not called in the context of an executor (e.g. within a
/// call to [`run`][crate::SendExecutor::run]).
pub fn spawn(future: impl Future<Output = T> + Send + 'static) -> Task<T> {
let executor = EHandle::local();
let scope = executor.global_scope();
let task_id = executor.spawn(scope, future);
Task(JoinHandle::new(scope.clone(), task_id))
}
}
impl<T: 'static> Task<T> {
/// Spawn a new task on the global scope of the thread local executor.
///
/// The passed future will live until either (a) the future completes,
/// (b) the returned [`Task`] is dropped while the executor is running, or
/// (c) the executor is destroyed; whichever comes first.
///
/// NOTE: This is not supported with a [`SendExecutor`] and will cause a
/// runtime panic. Use [`Task::spawn`] instead.
///
/// Code that uses scopes is encouraged to spawn on a shorter lived scope or
/// explicitly call [`Scope::global()`][crate::Scope::global] for spawning.
///
/// # Panics
///
/// May panic if not called in the context of an executor (e.g. within a
/// call to [`run`][crate::SendExecutor::run]).
pub fn local(future: impl Future<Output = T> + 'static) -> Task<T> {
let executor = EHandle::local();
let scope = executor.global_scope();
let task_id = executor.spawn_local(scope, future);
Task(JoinHandle::new(scope.clone(), task_id))
}
}
impl<T: 'static> Task<T> {
/// Cancel a task and returns a future that resolves once the cancellation is complete. The
/// future can be ignored in which case the task will still be cancelled.
pub fn cancel(self) -> impl Future<Output = Option<T>> {
self.detach_on_drop().cancel()
}
}
impl<T: 'static> Future for Task<T> {
type Output = T;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// SAFETY: We spawned the task so the return type should be correct.
let result = unsafe { self.0.scope.poll_join_result(self.0.task_id, cx) };
if result.is_ready() {
self.0.task_id = 0;
}
result
}
}
impl<T> Drop for Task<T> {
fn drop(&mut self) {
if self.0.task_id != 0 {
self.0.scope.cancel_and_detach(self.0.task_id);
self.0.task_id = 0;
}
}
}
impl<T> From<JoinHandle<T>> for Task<T> {
fn from(value: JoinHandle<T>) -> Self {
Self(value)
}
}
/// Offload a blocking function call onto a different thread.
///
/// This function can be called from an asynchronous function without blocking
/// it, returning a future that can be `.await`ed normally. The provided
/// function should contain at least one blocking operation, such as:
///
/// - A synchronous syscall that does not yet have an async counterpart.
/// - A compute operation which risks blocking the executor for an unacceptable
/// amount of time.
///
/// If neither of these conditions are satisfied, just call the function normally,
/// as synchronous functions themselves are allowed within an async context,
/// as long as they are not blocking.
///
/// If you have an async function that may block, refactor the function such that
/// the blocking operations are offloaded onto the function passed to [`unblock`].
///
/// NOTE:
///
/// - The input function should not interact with the executor. Attempting to do so
/// can cause runtime errors. This includes spawning, creating new executors,
/// passing futures between the input function and the calling context, and
/// in some cases constructing async-aware types (such as IO-, IPC- and timer objects).
/// - Synchronous functions cannot be cancelled and may keep running after
/// the returned future is dropped. As a result, resources held by the function
/// should be assumed to be held until the returned future completes.
/// - This function assumes panic=abort semantics, so if the input function panics,
/// the process aborts. Behavior for panic=unwind is not defined.
// TODO(https://fxbug.dev/42158447): Consider using a backing thread pool to alleviate the cost of
// spawning new threads if this proves to be a bottleneck.
pub fn unblock<T: 'static + Send>(
f: impl 'static + Send + FnOnce() -> T,
) -> impl 'static + Send + Future<Output = T> {
let (tx, rx) = futures::channel::oneshot::channel();
std::thread::spawn(move || {
let _ = tx.send(f());
});
rx.map(|r| r.unwrap())
}
#[cfg(test)]
mod tests {
use super::super::executor::{LocalExecutor, SendExecutor};
use super::*;
use std::sync::{Arc, Mutex};
/// This struct holds a thread-safe mutable boolean and
/// sets its value to true when dropped.
#[derive(Clone)]
struct SetsBoolTrueOnDrop {
value: Arc<Mutex<bool>>,
}
impl SetsBoolTrueOnDrop {
fn new() -> (Self, Arc<Mutex<bool>>) {
let value = Arc::new(Mutex::new(false));
let sets_bool_true_on_drop = Self { value: value.clone() };
(sets_bool_true_on_drop, value)
}
}
impl Drop for SetsBoolTrueOnDrop {
fn drop(&mut self) {
let mut lock = self.value.lock().unwrap();
*lock = true;
}
}
#[test]
#[should_panic]
fn spawn_from_unblock_fails() {
// no executor in the off-thread, so spawning fails
SendExecutor::new(2).run(async move {
unblock(|| {
let _ = Task::spawn(async {});
})
.await;
});
}
#[test]
fn future_destroyed_before_await_returns() {
LocalExecutor::new().run_singlethreaded(async {
let (sets_bool_true_on_drop, value) = SetsBoolTrueOnDrop::new();
// Move the switch into a different thread.
// Once we return from this await, that switch should have been dropped.
unblock(move || {
let lock = sets_bool_true_on_drop.value.lock().unwrap();
assert_eq!(*lock, false);
})
.await;
// Switch moved into the future should have been dropped at this point.
// The value of the boolean should now be true.
let lock = value.lock().unwrap();
assert_eq!(*lock, true);
});
}
}