1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
mod wire;
use anyhow::{anyhow, Error};
use std::io::{Read, Seek};
use std::mem;
use zerocopy::{FromBytes, Immutable, KnownLayout};
// Each QCOW file starts with this magic value "QFI\xfb".
const QCOW_MAGIC: u32 = 0x514649fb;
#[inline]
const fn cluster_size(cluster_bits: u32) -> u64 {
1 << cluster_bits
}
#[inline]
const fn cluster_mask(cluster_bits: u32) -> u64 {
cluster_size(cluster_bits) - 1
}
#[inline]
const fn l2_bits(cluster_bits: u32) -> u32 {
assert!(cluster_bits > 3);
cluster_bits - 3
}
#[inline]
const fn l2_size(cluster_bits: u32) -> u64 {
1 << l2_bits(cluster_bits)
}
#[inline]
const fn l2_mask(cluster_bits: u32) -> u64 {
l2_size(cluster_bits) - 1
}
#[inline]
fn required_l1_size(disk_size: u64, cluster_bits: u32) -> u32 {
// l1_entry_size is the addressable disk space that is enabled by a single L1 entry.
let l1_entry_size = cluster_size(cluster_bits) * l2_size(cluster_bits);
// Round up disk size to the nearest l1_entry_size.
let disk_size = disk_size + l1_entry_size - 1;
// Return the required number of L1 entries to address the entire disk.
(disk_size / l1_entry_size).try_into().unwrap()
}
fn read_header(file: &mut std::fs::File) -> Result<wire::Header, Error> {
const HEADER_SIZE: usize = mem::size_of::<wire::Header>();
let mut buf = vec![0u8; HEADER_SIZE];
file.seek(std::io::SeekFrom::Start(0))?;
file.read_exact(&mut buf)?;
// Header::read_from_bytes should not fail if `buf` is of the correct size.
Ok(wire::Header::read_from_bytes(buf.as_slice()).expect("read_from failed unexpectedly"))
}
/// Loads a translation table from a backing file.
///
/// This is used to load both the L1 and L2 tables
fn load_tranlsation_table<Entry: FromBytes + KnownLayout + Immutable + Sized>(
file: &mut std::fs::File,
num_entries: u64,
table_offset: u64,
) -> Result<Vec<Entry>, Error> {
let entry_size = std::mem::size_of::<Entry>() as u64;
// Not explicitly needed, but in practice L1 and L2 tables are 8 bytes so we don't expect
// this to be anything else.
assert!(entry_size == 8);
let bytes_to_read = num_entries * entry_size;
let mut table = vec![0u8; bytes_to_read as usize];
file.seek(std::io::SeekFrom::Start(table_offset))?;
file.read_exact(&mut table)?;
Ok(table
// Break the bytes up into entry size slices
.chunks_exact(entry_size as usize)
// Deserialize and unwrap. This should never fail so long as we pass the correct
// slice size to `chunks_exact`.
.map(Entry::read_from_bytes)
.map(Result::unwrap)
.collect::<Vec<Entry>>())
}
/// Describes how bytes for a region of disk are stored in the qcow translation table.
#[derive(Debug, Clone)]
pub enum Mapping {
/// The requested guest cluster has a corresponding physical cluster specified in the
/// translation table.
Mapped {
/// The physical offset (in the QCOW file) that maps to the requested guest offset.
physical_offset: u64,
/// The mapping is valid for at least these many bytes. If length does not cover the range
/// requested then a new translation should be requested for the range immediately
/// following this one.
length: u64,
},
/// The requested linear range is unmapped in the translation table for the next `length`
/// bytes.
///
/// Unmapped sectors read as zero.
Unmapped { length: u64 },
}
impl Mapping {
pub fn len(&self) -> u64 {
match self {
Mapping::Mapped { length, .. } => *length,
Mapping::Unmapped { length } => *length,
}
}
}
/// Implements an iterable type over the set of mappings for a linear disk range.
///
/// See `TranslationTable::translation` for more details.
pub struct Translation<'a> {
translation: &'a TranslationTable,
linear_range: std::ops::Range<u64>,
}
impl<'a> Iterator for Translation<'a> {
type Item = Mapping;
fn next(&mut self) -> Option<Self::Item> {
if self.linear_range.is_empty() {
return None;
}
let translation = self.translation.translate_range(&self.linear_range);
if let Some(translation) = translation.as_ref() {
self.linear_range.start += translation.len();
}
translation
}
}
/// QCOW uses a 2-level translation table to map guest-clusters to host clusters.
///
/// The translation table is a way of mapping a linear disk address to a physical offset in the
/// QCOW file. Not every linear address may be mapped in the QCOW file, in which case reads to
/// those regions would read-as-zero. These mappings are done with 'cluster' granularity such that
/// a single, contiguous linear cluster maps to a contiguous region in the host file. The exact
/// size of clusters used is determined by a field in the QCOW header.
///
/// Ex: a linear address can be decomposed into 3 parts:
///
/// * l1_index - The index into the top-level L1 translation table. The entry in the L1 table
/// can either be a pointer to an L2 translation table, or the entry can indicate that
/// the entire region is un-mapped, regardless of l2_index or cluster_offset.
/// * l2_index - If the l1_index indicates that there is a valid L2 table for a translation, the
/// l2_index is offset into that L2 table that defines the per-cluster mapping for a
/// translation. This mapping can either indicate there is a physical cluster allocated
/// for a linear cluster or it can indicate that the cluster is unmapped and no
/// translation exists.
/// * cluster_offset - If there is a valid l1_table entry and a valid l2_table entry for a
/// linear disk address, that means there is physical cluster that has been allocated to
/// the linear cluster. The cluster_offset is then the remaining byte-offset into this
/// cluster.
///
pub struct TranslationTable {
/// The number of bits in a linear address that represent the cluster offset.
///
/// cluster_size == 1 << cluster_bits
cluster_bits: u32,
/// The linear size of the qcow file.
linear_size: u64,
/// The L1 table is stored as a fully loaded vector of L2 tables. This is simple but does
/// require that we retain all L2 tables in memory at all times.
l1: Vec<Option<Vec<wire::L2Entry>>>,
}
impl TranslationTable {
pub fn load(file: &mut std::fs::File) -> Result<Self, Error> {
let mut header = read_header(file)?;
// Every file must start with this magic value.
if header.magic.get() != QCOW_MAGIC {
return Err(anyhow!("File has bad magic"));
}
// Version check. We don't make any assumptions that we can properly load files with a
// version greater than 3.
let version = header.version.get();
if version != 2 && version != 3 {
return Err(anyhow!("QCOW file has unsupported version {}", version));
}
if version == 2 {
// These were added in version 3 with the following defaults with version 2.
header.incompatible_features.set(0);
header.compatible_features.set(0);
header.autoclear_features.set(0);
header.refcount_order.set(4);
header.header_length.set(72);
}
// Backing files allow for a copy-on-write shadow of a read-only backing file. We don't
// support this feature so if we're provided an image the relies on a backing file we will
// not be able to properly support it.
let backing_file_size = header.backing_file_size.get();
if backing_file_size != 0 {
return Err(anyhow!("QCOW file has backing file, which is not supported"));
}
// Some guard-rails for the cluster bits.
//
// The QCOW specification indicates this must be at least 9 bits (512-byte clusters). The
// spec also indicates that QEMU may not support cluster sizes above 2MiB so we also go
// ahead an adopt that upper bound.
let cluster_bits = header.cluster_bits.get();
if cluster_bits < 9 || cluster_bits > 22 {
return Err(anyhow!("cluster_bits is out of the supported range."));
}
// Size is the linear size of the file in bytes.
let size = header.size.get();
if size == 0 {
return Err(anyhow!("QCOW file has 0 size"));
}
// QCOW files can be encrypted, but we don't support that.
if header.crypt_method.get() != wire::QCOW_CRYPT_NONE {
return Err(anyhow!("QCOW encryption is not supported"));
}
// The l1 should be large enough to cover the reported disk size.
let l1_size = header.l1_size.get();
if l1_size < required_l1_size(size, cluster_bits) {
return Err(anyhow!("QCOW L1 table is not large enough to address the entire disk"));
}
// Load L1 Table
//
// First we load a vector of the 8-byte table entries.
let l1_entries = load_tranlsation_table::<wire::L1Entry>(
file,
header.l1_size.get().into(),
header.l1_table_offset.get(),
)?;
// Now iterate over each L1 entry and load the corresponding L2 table if necessary.
let l1 = l1_entries
.into_iter()
.map(move |entry| {
let entry: Option<Vec<wire::L2Entry>> = if let Some(offset) = entry.offset() {
let l2 = load_tranlsation_table::<wire::L2Entry>(
file,
l2_size(cluster_bits),
offset,
)?;
if l2.iter().find(|e| e.compressed()).is_some() {
return Err(anyhow!("QCOW contains compressed sectors"));
}
Some(l2)
} else {
None
};
Ok::<Option<Vec<wire::L2Entry>>, Error>(entry)
})
.collect::<Result<Vec<Option<Vec<wire::L2Entry>>>, Error>>()?;
Ok(Self { cluster_bits, linear_size: size, l1 })
}
/// The logical size of the QCOW disk as specified in the header.
pub fn linear_size(&self) -> u64 {
self.linear_size
}
/// Looks up translations for a linear disk range.
///
/// This takes a `linear_range` describing a region of the qcow file to read from and returns
/// an iterator over `Mapping`s of that region.
///
/// The returned iterator will yield mappings that indicate how the linear rante is represented
/// in the qcow file. This can be a combination of physical cluster mappings and also unmapped
/// regions if the translation table contains no data for the linear range.
///
/// If any part of `linear_range` extends beyond the disk (bounded by `linear_size()`) then
/// the iterator will not yield any mappings for those regions. In other words, no Mapping is a
/// distinct situation for a `Mapping::Unmapped`. The former means there is no logical disk
/// backing the range and the latter means that the linear range is valid but no physical disk
/// clusters have been allocated to it.
pub fn translate<'a>(&'a self, linear_range: std::ops::Range<u64>) -> Translation<'a> {
Translation { linear_range: linear_range.clone(), translation: self }
}
fn translate_range(&self, linear_range: &std::ops::Range<u64>) -> Option<Mapping> {
if linear_range.start >= self.linear_size() {
return None;
}
// cluster offset is the offset into the translated cluster.
let offset = linear_range.start;
let cluster_offset = offset & cluster_mask(self.cluster_bits);
// Now shift off the cluster bits and compute the L2 index
let offset = offset >> self.cluster_bits;
let l2_index = offset & l2_mask(self.cluster_bits);
// Now compute the l1 index
//
// The l1 table index contains the remaining most-significant bits of the linear address.
let l1_index = (offset >> l2_bits(self.cluster_bits)) as u32;
// Now walk the tables
//
// First find the L2 table by looking at the corresponding index in the L1 table. If this
// is None, the entire linear range covered by that L1 entry is unallocated.
let maybe_physical_cluster = self.l1[l1_index as usize]
.as_ref()
// If the L1 entry is valid, then we have an L2 table that defines per-cluster
// translations. This will just lookup the L2 translation entry for the requested
// sector.
.map(|l2_table| &l2_table[l2_index as usize])
// The specific L2 entry can indicate this cluster is either mapped to some physical
// cluster or it is an unallocated. `L2Entry::offset` will handle decoding the table
// entry and will the physical ofset for the cluster if it exists.
.and_then(|entry| entry.offset());
// The mapping length is valid to the end of the cluster, limited to the end of the range
// requested by the caller.
//
// TODO: As a refinement, we could detect contiguous physical clusters and coalesce
// contiguous sectors into a single range.
let length = std::cmp::min(
linear_range.end - linear_range.start,
cluster_size(self.cluster_bits) - cluster_offset,
);
// This will contain a physical cluster that maps to the start of the requested
// `linear_range` if a cluster is allocated to that region.
let transation = match maybe_physical_cluster {
Some(physical_cluster) => {
Mapping::Mapped { physical_offset: physical_cluster + cluster_offset, length }
}
None => Mapping::Unmapped { length },
};
Some(transation)
}
}
/// A very simple interface for reading from a qcow file.
#[cfg(test)]
struct QcowFileReadOnly {
file: std::cell::RefCell<std::fs::File>,
translation: TranslationTable,
}
#[cfg(test)]
impl QcowFileReadOnly {
pub fn new(mut file: std::fs::File) -> Result<Self, Error> {
Ok(Self {
translation: TranslationTable::load(&mut file)?,
file: std::cell::RefCell::new(file),
})
}
pub fn size(&self) -> u64 {
self.translation.linear_size()
}
pub fn read_at(&self, length: u64, offset: u64) -> Result<Vec<u8>, Error> {
// Iterate over the set of translations for this linear range and accumulate the result
// into a Vec.
self.translation
.translate(std::ops::Range { start: offset, end: offset + length })
.try_fold(Vec::new(), |mut result, translation| -> Result<Vec<u8>, Error> {
// 0-extend our result vector to add capacity for this translation.
let result_len = result.len();
result.resize(result_len + translation.len() as usize, 0);
match translation {
// For translations that have a physical cluster mapping we can read the bytes
// from the file using the physica offset.
Mapping::Mapped { physical_offset, .. } => {
self.file.borrow_mut().seek(std::io::SeekFrom::Start(physical_offset))?;
self.file.borrow_mut().read_exact(&mut result[result_len..])?;
}
// If there exists no translation then the bytes should read-as-zero. This is
// a no-op here because we have already 0-extended the result vector.
Mapping::Unmapped { .. } => {}
}
Ok(result)
})
}
}
#[cfg(test)]
mod test {
use super::*;
use std::fs::File;
fn open_qcow_file(path: &str) -> QcowFileReadOnly {
let test_image = File::open(path).expect("Failed to open file");
QcowFileReadOnly::new(test_image).expect("Failed to create QcowFileReadOnly")
}
fn check_range(file: &QcowFileReadOnly, start: u64, length: u64, value: u8) {
let bytes = file.read_at(length, start).expect("Failed to read from file");
assert_eq!(bytes.len() as u64, length);
for byte in bytes {
assert_eq!(byte, value);
}
}
#[test]
fn test_empty_1gb() {
const SIZE: u64 = 1 * 1024 * 1024 * 1024;
let qcow = open_qcow_file("/pkg/data/empty_1gb.qcow2");
assert_eq!(SIZE, qcow.size());
check_range(&qcow, 0, 1024, 0);
check_range(&qcow, SIZE - 1024, 1024, 0);
}
#[test]
fn test_read_basic() {
const SIZE: u64 = 1 * 1024 * 1024 * 1024;
let qcow = open_qcow_file("/pkg/data/sparse.qcow2");
assert_eq!(SIZE, qcow.size());
// Verify we can read the expected data clusters.
{
const REGION_START: u64 = 0;
check_range(&qcow, REGION_START, 1024, 0xaa);
check_range(&qcow, REGION_START + 1024, 1024, 0);
}
{
const REGION_START: u64 = 512 * 1024 * 1024;
check_range(&qcow, REGION_START - 1024, 1024, 0);
check_range(&qcow, REGION_START, 1024, 0xcc);
check_range(&qcow, REGION_START + 1024, 1024, 0);
}
{
const REGION_START: u64 = 1 * 1024 * 1024 * 1024 - 1024;
check_range(&qcow, REGION_START - 1024, 1024, 0);
check_range(&qcow, REGION_START, 1024, 0xbb);
}
}
#[test]
fn test_read_across_translations() {
const SIZE: u64 = 1 * 1024 * 1024 * 1024;
let qcow = open_qcow_file("/pkg/data/sparse.qcow2");
assert_eq!(SIZE, qcow.size());
// Test reading a buffer that is partially translated and partially not translated.
let bytes = qcow.read_at(4096, 0).expect("Failed to read the last byte from file");
assert_eq!(bytes[0..1024], vec![0xaa; 1024]);
assert_eq!(bytes[1024..2048], vec![0; 1024]);
assert_eq!(bytes[2048..3072], vec![0xab; 1024]);
assert_eq!(bytes[3072..4096], vec![0; 1024]);
}
#[test]
fn test_read_short() {
const SIZE: u64 = 1 * 1024 * 1024 * 1024;
let qcow = open_qcow_file("/pkg/data/sparse.qcow2");
assert_eq!(SIZE, qcow.size());
// Test reading past the end of the file.
//
// Behavior here is Similar to std::io::Read in that the read_at call will not fail but may
// be short. For read_at calls that are beyond the end of the file this will result in a
// 0-byte Ok result.
let bytes = qcow.read_at(1, SIZE - 1).expect("Failed to read the last byte from file");
assert_eq!(1, bytes.len());
assert_eq!(0xbb, bytes[0]);
// Reading past the end of the file should be short.
let bytes =
qcow.read_at(10, SIZE - 1).expect("Failed to read 1 byte past the end of the file");
assert_eq!(1, bytes.len());
let bytes =
qcow.read_at(100, SIZE).expect("Failed to read entire buffer past the end of the file");
assert_eq!(0, bytes.len());
let bytes =
qcow.read_at(100, 2 * SIZE).expect("Failed to read far past the end of the file");
assert_eq!(0, bytes.len());
}
}