packet_formats/icmp/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Parsing and serialization of Internet Control Message Protocol (ICMP)
//! packets.
//!
//! This module supports both ICMPv4 and ICMPv6.
//!
//! The ICMPv4 packet format is defined in [RFC 792], and the ICMPv6
//! packet format is defined in [RFC 4443 Section 2.1].
//!
//! [RFC 792]: https://datatracker.ietf.org/doc/html/rfc792
//! [RFC 4443 Section 2.1]: https://datatracker.ietf.org/doc/html/rfc4443#section-2.1

#[macro_use]
mod macros;
mod common;
mod icmpv4;
mod icmpv6;
pub mod mld;
pub mod ndp;

#[cfg(test)]
mod testdata;

pub use self::common::*;
pub use self::icmpv4::*;
pub use self::icmpv6::*;

use core::fmt::Debug;
use core::marker::PhantomData;
use core::{cmp, mem};

use byteorder::{ByteOrder, NetworkEndian};
use derivative::Derivative;
use internet_checksum::Checksum;
use net_types::ip::{GenericOverIp, Ip, IpAddress, Ipv4, Ipv4Addr, Ipv6, Ipv6Addr};
use packet::records::options::{Options, OptionsImpl};
use packet::{
    AsFragmentedByteSlice, BufferView, FragmentedByteSlice, FragmentedBytesMut, FromRaw,
    PacketBuilder, PacketConstraints, ParsablePacket, ParseMetadata, SerializeTarget,
};
use zerocopy::byteorder::network_endian::U16;
use zerocopy::{
    FromBytes, Immutable, IntoBytes, KnownLayout, Ref, SplitByteSlice, SplitByteSliceMut, Unaligned,
};

use crate::error::{NotZeroError, ParseError, ParseResult};
use crate::ip::{IpProtoExt, Ipv4Proto, Ipv6Proto};
use crate::ipv4::{self, Ipv4PacketRaw};
use crate::ipv6::Ipv6PacketRaw;

#[derive(Copy, Clone, Default, Debug, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
struct HeaderPrefix {
    msg_type: u8,
    code: u8,
    checksum: [u8; 2],
    /* NOTE: The "Rest of Header" field is stored in message types rather than
     * in the HeaderPrefix. This helps consolidate how callers access data about the
     * packet, and is consistent with ICMPv6, which treats the field as part of
     * messages rather than the header. */
}

impl HeaderPrefix {
    fn set_msg_type<T: Into<u8>>(&mut self, msg_type: T) {
        self.msg_type = msg_type.into();
    }
}

/// Peek at an ICMP header to see what message type is present.
///
/// Since `IcmpPacket` is statically typed with the message type expected, this
/// type must be known ahead of time before calling `parse`. If multiple
/// different types are valid in a given parsing context, and so the caller
/// cannot know ahead of time which type to use, `peek_message_type` can be used
/// to peek at the header first to figure out which static type should be used
/// in a subsequent call to `parse`.
///
/// Note that `peek_message_type` only inspects certain fields in the header,
/// and so `peek_message_type` succeeding does not guarantee that a subsequent
/// call to `parse` will also succeed.
pub fn peek_message_type<MessageType: TryFrom<u8>>(bytes: &[u8]) -> ParseResult<MessageType> {
    let (hdr_pfx, _) = Ref::<_, HeaderPrefix>::from_prefix(bytes).map_err(Into::into).map_err(
        |_: zerocopy::SizeError<_, _>| debug_err!(ParseError::Format, "too few bytes for header"),
    )?;
    MessageType::try_from(hdr_pfx.msg_type).map_err(|_| {
        debug_err!(ParseError::NotSupported, "unrecognized message type: {:x}", hdr_pfx.msg_type,)
    })
}

/// An extension trait adding ICMP-related functionality to `Ipv4` and `Ipv6`.
pub trait IcmpIpExt: IpProtoExt {
    /// The ICMP packet type for this IP version.
    type IcmpPacketTypeRaw<B: SplitByteSliceMut>: IcmpPacketTypeRaw<B, Self>
        + GenericOverIp<Self, Type = Self::IcmpPacketTypeRaw<B>>
        + GenericOverIp<Ipv4, Type = Icmpv4PacketRaw<B>>
        + GenericOverIp<Ipv6, Type = Icmpv6PacketRaw<B>>;

    /// The type of ICMP messages.
    ///
    /// For `Ipv4`, this is `Icmpv4MessageType`, and for `Ipv6`, this is
    /// `Icmpv6MessageType`.
    type IcmpMessageType: IcmpMessageType
        + GenericOverIp<Self, Type = Self::IcmpMessageType>
        + GenericOverIp<Ipv4, Type = Icmpv4MessageType>
        + GenericOverIp<Ipv6, Type = Icmpv6MessageType>;

    /// The type of an ICMP parameter problem code.
    ///
    /// For `Ipv4`, this is `Icmpv4ParameterProblemCode`, and for `Ipv6` this
    /// is `Icmpv6ParameterProblemCode`.
    type ParameterProblemCode: PartialEq + Send + Sync + Debug;

    /// The type of an ICMP parameter problem pointer.
    ///
    /// For `Ipv4`, this is `u8`, and for `Ipv6` this is `u32`.
    type ParameterProblemPointer: PartialEq + Send + Sync + Debug;

    /// The type of an ICMP parameter header length.
    ///
    /// For `Ipv4`, this is `usize`, and for `Ipv6` this is `()`.
    type HeaderLen: PartialEq + Send + Sync + Debug;

    /// The identifier for this ICMP version.
    ///
    /// This value will be found in an IPv4 packet's Protocol field (for ICMPv4
    /// packets) or an IPv6 fixed header's or last extension header's Next
    /// Heeader field (for ICMPv6 packets).
    const ICMP_IP_PROTO: <Self as IpProtoExt>::Proto;

    /// Computes the length of the header of the packet prefix stored in
    /// `bytes`.
    ///
    /// Given the prefix of a packet stored in `bytes`, compute the length of
    /// the header of that packet, or `bytes.len()` if `bytes` does not contain
    /// the entire header. If the version is IPv6, the returned length should
    /// include all extension headers.
    fn header_len(bytes: &[u8]) -> usize;

    /// Icmp{v4,v6}MessageType::EchoReply.
    const ECHO_REPLY: Self::IcmpMessageType;
    /// Icmp{v4,v6}MessageType::EchoRequest.
    const ECHO_REQUEST: Self::IcmpMessageType;
}

impl IcmpIpExt for Ipv4 {
    type IcmpPacketTypeRaw<B: SplitByteSliceMut> = Icmpv4PacketRaw<B>;
    type IcmpMessageType = Icmpv4MessageType;
    type ParameterProblemCode = Icmpv4ParameterProblemCode;
    type ParameterProblemPointer = u8;
    type HeaderLen = usize;

    const ICMP_IP_PROTO: Ipv4Proto = Ipv4Proto::Icmp;

    fn header_len(bytes: &[u8]) -> usize {
        if bytes.len() < ipv4::IPV4_MIN_HDR_LEN {
            return bytes.len();
        }
        let (header_prefix, _) = Ref::<_, ipv4::HeaderPrefix>::from_prefix(bytes).unwrap();
        cmp::min(header_prefix.ihl() as usize * 4, bytes.len())
    }

    const ECHO_REPLY: Icmpv4MessageType = Icmpv4MessageType::EchoReply;
    const ECHO_REQUEST: Icmpv4MessageType = Icmpv4MessageType::EchoRequest;
}

impl IcmpIpExt for Ipv6 {
    type IcmpPacketTypeRaw<B: SplitByteSliceMut> = Icmpv6PacketRaw<B>;
    type IcmpMessageType = Icmpv6MessageType;
    type ParameterProblemCode = Icmpv6ParameterProblemCode;
    type ParameterProblemPointer = u32;
    type HeaderLen = ();

    const ICMP_IP_PROTO: Ipv6Proto = Ipv6Proto::Icmpv6;

    // TODO: Re-implement this in terms of partial parsing, and then get rid of
    // the `header_len` method.
    fn header_len(_bytes: &[u8]) -> usize {
        // NOTE: We panic here rather than doing log_unimplemented! because
        // there's no sane default value for this function. If it's called, it
        // doesn't make sense for the program to continue executing; if we did,
        // it would cause bugs in the caller.
        unimplemented!()
    }

    const ECHO_REPLY: Icmpv6MessageType = Icmpv6MessageType::EchoReply;
    const ECHO_REQUEST: Icmpv6MessageType = Icmpv6MessageType::EchoRequest;
}

/// An ICMP or ICMPv6 packet
///
/// 'IcmpPacketType' is implemented by `Icmpv4Packet` and `Icmpv6Packet`
pub trait IcmpPacketTypeRaw<B: SplitByteSliceMut, I: Ip>:
    Sized + ParsablePacket<B, (), Error = ParseError>
{
    /// Update the checksum to reflect an updated address in the pseudo header.
    fn update_checksum_pseudo_header_address(&mut self, old: I::Addr, new: I::Addr);
}

impl<B: SplitByteSliceMut> IcmpPacketTypeRaw<B, Ipv4> for Icmpv4PacketRaw<B> {
    /// Update the checksum to reflect an updated address in the pseudo header.
    fn update_checksum_pseudo_header_address(&mut self, _: Ipv4Addr, _: Ipv4Addr) {
        // ICMPv4 does not have a pseudo header.
    }
}

impl<I: IcmpIpExt, B: SplitByteSliceMut> GenericOverIp<I> for Icmpv4PacketRaw<B> {
    type Type = I::IcmpPacketTypeRaw<B>;
}

impl<B: SplitByteSliceMut> IcmpPacketTypeRaw<B, Ipv6> for Icmpv6PacketRaw<B> {
    /// Update the checksum to reflect an updated address in the pseudo header.
    fn update_checksum_pseudo_header_address(&mut self, old: Ipv6Addr, new: Ipv6Addr) {
        let checksum = &mut self.header_prefix_mut().checksum;
        *checksum = internet_checksum::update(*checksum, old.bytes(), new.bytes());
    }
}

impl<I: IcmpIpExt, B: SplitByteSliceMut> GenericOverIp<I> for Icmpv6PacketRaw<B> {
    type Type = I::IcmpPacketTypeRaw<B>;
}

/// Empty message.
#[derive(Derivative, Debug, Clone, Copy, PartialEq, Eq)]
#[derivative(Default(bound = ""))]
pub struct EmptyMessage<B>(core::marker::PhantomData<B>);

/// `MessageBody` represents the parsed body of the ICMP packet.
///
/// - For messages that expect no body, the `MessageBody` is of type `EmptyMessage`.
/// - For NDP messages, the `MessageBody` is of the type `ndp::Options`.
/// - For all other messages, the `MessageBody` will be of the type
///   `OriginalPacket`, which is a thin wrapper around `B`.
pub trait MessageBody: Sized {
    /// The underlying byteslice.
    type B: SplitByteSlice;

    /// Parse the MessageBody from the provided bytes.
    fn parse(bytes: Self::B) -> ParseResult<Self>;

    /// The length of the underlying buffer.
    fn len(&self) -> usize;

    /// Is the body empty?
    ///
    /// `b.is_empty()` is equivalent to `b.len() == 0`.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return the underlying bytes.
    ///
    /// Not all ICMP messages have a fixed size, some messages like MLDv2 Query or MLDv2 Report
    /// ([RFC 3810 section 5.1] and [RFC 3810 section 5.2]) contain a fixed amount of information
    /// followed by a variable amount of records.
    /// The first value returned contains the fixed size part, while the second value contains the
    /// records for the messages that support them, more precisely, the second value is [None] if
    /// the message does not have a variable part, otherwise it will contain the serialized list of
    /// records.
    ///
    /// [RFC 3810 section 5.1]: https://datatracker.ietf.org/doc/html/rfc3810#section-5.1
    /// [RFC 3810 section 5.2]: https://datatracker.ietf.org/doc/html/rfc3810#section-5.2
    fn bytes(&self) -> (&[u8], Option<&[u8]>);
}

impl<B: SplitByteSlice> MessageBody for EmptyMessage<B> {
    type B = B;

    fn parse(bytes: B) -> ParseResult<Self> {
        if !bytes.is_empty() {
            return debug_err!(Err(ParseError::Format), "unexpected message body");
        }

        Ok(EmptyMessage::default())
    }

    fn len(&self) -> usize {
        0
    }

    fn bytes(&self) -> (&[u8], Option<&[u8]>) {
        (&[], None)
    }
}

/// A thin wrapper around B which implements `MessageBody`.
#[derive(Debug)]
pub struct OriginalPacket<B>(B);

impl<B: SplitByteSlice> OriginalPacket<B> {
    /// Returns the the body of the original packet.
    pub fn body<I: IcmpIpExt>(&self) -> &[u8] {
        // TODO(joshlf): Can these debug_asserts be triggered by external input?
        let header_len = I::header_len(&self.0);
        debug_assert!(header_len <= self.0.len());
        debug_assert!(I::VERSION.is_v6() || self.0.len() - header_len == 8);
        &self.0[header_len..]
    }
}

impl<B: SplitByteSlice> MessageBody for OriginalPacket<B> {
    type B = B;

    fn parse(bytes: B) -> ParseResult<OriginalPacket<B>> {
        Ok(OriginalPacket(bytes))
    }

    fn len(&self) -> usize {
        self.0.len()
    }

    fn bytes(&self) -> (&[u8], Option<&[u8]>) {
        (&self.0, None)
    }
}

impl<B: SplitByteSlice, O: OptionsImpl> MessageBody for Options<B, O> {
    type B = B;
    fn parse(bytes: B) -> ParseResult<Options<B, O>> {
        Self::parse(bytes).map_err(|_e| debug_err!(ParseError::Format, "unable to parse options"))
    }

    fn len(&self) -> usize {
        self.bytes().len()
    }

    fn bytes(&self) -> (&[u8], Option<&[u8]>) {
        (self.bytes(), None)
    }
}

/// An ICMP message.
pub trait IcmpMessage<I: IcmpIpExt>:
    Sized + Copy + FromBytes + IntoBytes + KnownLayout + Immutable + Unaligned
{
    /// Whether or not a message body is expected in an ICMP packet.
    const EXPECTS_BODY: bool = true;

    /// The type of codes used with this message.
    ///
    /// The ICMP header includes an 8-bit "code" field. For a given message
    /// type, different values of this field carry different meanings. Not all
    /// code values are used - some may be invalid. This type represents a
    /// parsed code. For example, for TODO, it is the TODO type.
    type Code: Into<u8> + Copy + Debug;

    /// The type of the body used with this message.
    type Body<B: SplitByteSlice>: MessageBody<B = B>;

    /// The type corresponding to this message type.
    ///
    /// The value of the "type" field in the ICMP header corresponding to
    /// messages of this type.
    const TYPE: I::IcmpMessageType;

    /// Parse a `Code` from an 8-bit number.
    ///
    /// Parse a `Code` from the 8-bit "code" field in the ICMP header. Not all
    /// values for this field are valid. If an invalid value is passed,
    /// `code_from_u8` returns `None`.
    fn code_from_u8(code: u8) -> Option<Self::Code>;
}

/// The type of an ICMP message.
///
/// `IcmpMessageType` is implemented by `Icmpv4MessageType` and
/// `Icmpv6MessageType`.
pub trait IcmpMessageType: TryFrom<u8> + Into<u8> + Copy + Debug {
    /// Is this an error message?
    ///
    /// For ICMP, this is true for the Destination Unreachable, Redirect, Source
    /// Quench, Time Exceeded, and Parameter Problem message types. For ICMPv6,
    /// this is true for the Destination Unreachable, Packet Too Big, Time
    /// Exceeded, and Parameter Problem message types.
    fn is_err(self) -> bool;
}

#[derive(Copy, Clone, Debug, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
struct Header<M> {
    prefix: HeaderPrefix,
    message: M,
}

/// A partially parsed and not yet validated ICMP packet.
///
/// An `IcmpPacketRaw` provides minimal parsing of an ICMP packet. Namely, it
/// only requires that the header and message (in ICMPv6, these are both
/// considered part of the header) are present, and that the header has the
/// expected message type. The body may be missing (or an unexpected body may be
/// present). Other than the message type, no header, message, or body field
/// values will be validated.
///
/// [`IcmpPacket`] provides a [`FromRaw`] implementation that can be used to
/// validate an [`IcmpPacketRaw`].
#[derive(Debug)]
pub struct IcmpPacketRaw<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> {
    header: Ref<B, Header<M>>,
    message_body: B,
    _marker: PhantomData<I>,
}

impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> IcmpPacketRaw<I, B, M> {
    /// Get the ICMP message.
    pub fn message(&self) -> &M {
        &self.header.message
    }
}

impl<I: IcmpIpExt, B: SplitByteSliceMut, M: IcmpMessage<I>> IcmpPacketRaw<I, B, M> {
    /// Attempts to calculate and write a Checksum for this [`IcmpPacketRaw`].
    ///
    /// Returns whether the checksum was successfully calculated & written. In
    /// the false case, self is left unmodified.
    pub(crate) fn try_write_checksum(&mut self, src_ip: I::Addr, dst_ip: I::Addr) -> bool {
        // NB: Zero the checksum to avoid interference when computing it.
        let original_checksum = self.header.prefix.checksum;
        self.header.prefix.checksum = [0, 0];

        if let Some(checksum) = IcmpPacket::<I, B, M>::compute_checksum(
            &self.header,
            &self.message_body,
            src_ip,
            dst_ip,
        ) {
            self.header.prefix.checksum = checksum;
            true
        } else {
            self.header.prefix.checksum = original_checksum;
            false
        }
    }
}

impl<I: IcmpIpExt, B: SplitByteSliceMut> IcmpPacketRaw<I, B, IcmpEchoRequest> {
    /// Set the ID of the ICMP echo message.
    pub fn set_id(&mut self, new: u16) {
        let old = self.header.message.id_seq.id;
        let new = U16::from(new);
        self.header.message.id_seq.id = new;
        self.header.prefix.checksum =
            internet_checksum::update(self.header.prefix.checksum, old.as_bytes(), new.as_bytes());
    }
}

impl<I: IcmpIpExt, B: SplitByteSliceMut> IcmpPacketRaw<I, B, IcmpEchoReply> {
    /// Set the ID of the ICMP echo message.
    pub fn set_id(&mut self, new: u16) {
        let old = self.header.message.id_seq.id;
        let new = U16::from(new);
        self.header.message.id_seq.id = new;
        self.header.prefix.checksum =
            internet_checksum::update(self.header.prefix.checksum, old.as_bytes(), new.as_bytes());
    }
}

/// An ICMP packet.
///
/// An `IcmpPacket` shares its underlying memory with the byte slice it was
/// parsed from, meaning that no copying or extra allocation is necessary.
#[derive(Debug)]
pub struct IcmpPacket<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> {
    header: Ref<B, Header<M>>,
    message_body: M::Body<B>,
    _marker: PhantomData<I>,
}

/// Arguments required to parse an ICMP packet.
pub struct IcmpParseArgs<A: IpAddress> {
    src_ip: A,
    dst_ip: A,
}

impl<A: IpAddress> IcmpParseArgs<A> {
    /// Construct a new `IcmpParseArgs`.
    pub fn new<S: Into<A>, D: Into<A>>(src_ip: S, dst_ip: D) -> IcmpParseArgs<A> {
        IcmpParseArgs { src_ip: src_ip.into(), dst_ip: dst_ip.into() }
    }
}

impl<B: SplitByteSlice, I: IcmpIpExt, M: IcmpMessage<I>> ParsablePacket<B, ()>
    for IcmpPacketRaw<I, B, M>
{
    type Error = ParseError;

    fn parse_metadata(&self) -> ParseMetadata {
        ParseMetadata::from_packet(Ref::bytes(&self.header).len(), self.message_body.len(), 0)
    }

    fn parse<BV: BufferView<B>>(mut buffer: BV, _args: ()) -> ParseResult<Self> {
        let header = buffer.take_obj_front::<Header<M>>().ok_or(ParseError::Format)?;
        let message_body = buffer.into_rest();
        if header.prefix.msg_type != M::TYPE.into() {
            return Err(ParseError::NotExpected);
        }
        Ok(IcmpPacketRaw { header, message_body, _marker: PhantomData })
    }
}

impl<B: SplitByteSlice, I: IcmpIpExt, M: IcmpMessage<I>>
    FromRaw<IcmpPacketRaw<I, B, M>, IcmpParseArgs<I::Addr>> for IcmpPacket<I, B, M>
{
    type Error = ParseError;

    fn try_from_raw_with(
        raw: IcmpPacketRaw<I, B, M>,
        args: IcmpParseArgs<I::Addr>,
    ) -> ParseResult<Self> {
        let IcmpPacketRaw { header, message_body, _marker } = raw;
        if !M::EXPECTS_BODY && !message_body.is_empty() {
            return Err(ParseError::Format);
        }
        let _: M::Code = M::code_from_u8(header.prefix.code).ok_or(ParseError::Format)?;
        let checksum = Self::compute_checksum(&header, &message_body, args.src_ip, args.dst_ip)
            .ok_or(ParseError::Format)?;
        if checksum != [0, 0] {
            return Err(ParseError::Checksum);
        }
        let message_body = M::Body::parse(message_body)?;
        Ok(IcmpPacket { header, message_body, _marker })
    }
}

impl<B: SplitByteSlice, I: IcmpIpExt, M: IcmpMessage<I>> ParsablePacket<B, IcmpParseArgs<I::Addr>>
    for IcmpPacket<I, B, M>
{
    type Error = ParseError;

    fn parse_metadata(&self) -> ParseMetadata {
        ParseMetadata::from_packet(Ref::bytes(&self.header).len(), self.message_body.len(), 0)
    }

    fn parse<BV: BufferView<B>>(buffer: BV, args: IcmpParseArgs<I::Addr>) -> ParseResult<Self> {
        IcmpPacketRaw::parse(buffer, ()).and_then(|p| IcmpPacket::try_from_raw_with(p, args))
    }
}

impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> IcmpPacket<I, B, M> {
    /// Get the ICMP message.
    pub fn message(&self) -> &M {
        &self.header.message
    }

    /// Get the ICMP body.
    pub fn body(&self) -> &M::Body<B> {
        &self.message_body
    }

    /// Get the ICMP message code.
    ///
    /// The code provides extra details about the message. Each message type has
    /// its own set of codes that are allowed.
    pub fn code(&self) -> M::Code {
        // infallible since it was validated in parse
        M::code_from_u8(self.header.prefix.code).unwrap()
    }

    /// Construct a builder with the same contents as this packet.
    pub fn builder(&self, src_ip: I::Addr, dst_ip: I::Addr) -> IcmpPacketBuilder<I, M> {
        IcmpPacketBuilder { src_ip, dst_ip, code: self.code(), msg: *self.message() }
    }
}

fn compute_checksum_fragmented<I: IcmpIpExt, BB: packet::Fragment, M: IcmpMessage<I>>(
    header: &Header<M>,
    message_body: &FragmentedByteSlice<'_, BB>,
    src_ip: I::Addr,
    dst_ip: I::Addr,
) -> Option<[u8; 2]> {
    let mut c = Checksum::new();
    if I::VERSION.is_v6() {
        c.add_bytes(src_ip.bytes());
        c.add_bytes(dst_ip.bytes());
        let icmpv6_len = mem::size_of::<Header<M>>() + message_body.len();
        let mut len_bytes = [0; 4];
        NetworkEndian::write_u32(&mut len_bytes, icmpv6_len.try_into().ok()?);
        c.add_bytes(&len_bytes[..]);
        c.add_bytes(&[0, 0, 0]);
        c.add_bytes(&[Ipv6Proto::Icmpv6.into()]);
    }
    c.add_bytes(&[header.prefix.msg_type, header.prefix.code]);
    c.add_bytes(&header.prefix.checksum);
    c.add_bytes(header.message.as_bytes());
    for p in message_body.iter_fragments() {
        c.add_bytes(p);
    }
    Some(c.checksum())
}

impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> IcmpPacket<I, B, M> {
    /// Compute the checksum, including the checksum field itself.
    ///
    /// `compute_checksum` returns `None` if the version is IPv6 and the total
    /// ICMP packet length overflows a u32.
    fn compute_checksum(
        header: &Header<M>,
        message_body: &[u8],
        src_ip: I::Addr,
        dst_ip: I::Addr,
    ) -> Option<[u8; 2]> {
        let mut body = [message_body];
        compute_checksum_fragmented(header, &body.as_fragmented_byte_slice(), src_ip, dst_ip)
    }
}

impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I, Body<B> = OriginalPacket<B>>>
    IcmpPacket<I, B, M>
{
    /// Get the body of the packet that caused this ICMP message.
    ///
    /// This ICMP message contains some of the bytes of the packet that caused
    /// this message to be emitted. `original_packet_body` returns as much of
    /// the body of that packet as is contained in this message. For IPv4, this
    /// is guaranteed to be 8 bytes. For IPv6, there are no guarantees about the
    /// length.
    pub fn original_packet_body(&self) -> &[u8] {
        self.message_body.body::<I>()
    }

    /// Returns the original packt that caused this ICMP message.
    ///
    /// This ICMP message contains some of the bytes of the packet that caused
    /// this message to be emitted. `original_packet` returns as much of the
    /// body of that packet as is contained in this message. For IPv4, this is
    /// guaranteed to be 8 bytes. For IPv6, there are no guarantees about the
    /// length.
    pub fn original_packet(&self) -> &OriginalPacket<B> {
        &self.message_body
    }
}

impl<B: SplitByteSlice, M: IcmpMessage<Ipv4, Body<B> = OriginalPacket<B>>> IcmpPacket<Ipv4, B, M> {
    /// Attempt to partially parse the original packet as an IPv4 packet.
    ///
    /// `f` will be invoked on the result of calling `Ipv4PacketRaw::parse` on
    /// the original packet.
    pub fn with_original_packet<O, F: FnOnce(Result<Ipv4PacketRaw<&[u8]>, &[u8]>) -> O>(
        &self,
        f: F,
    ) -> O {
        let mut bv = self.message_body.0.deref();
        f(Ipv4PacketRaw::parse(&mut bv, ()).map_err(|_| self.message_body.0.deref()))
    }
}

impl<B: SplitByteSlice, M: IcmpMessage<Ipv6, Body<B> = OriginalPacket<B>>> IcmpPacket<Ipv6, B, M> {
    /// Attempt to partially parse the original packet as an IPv6 packet.
    ///
    /// `f` will be invoked on the result of calling `Ipv6PacketRaw::parse` on
    /// the original packet.
    pub fn with_original_packet<O, F: FnOnce(Result<Ipv6PacketRaw<&[u8]>, &[u8]>) -> O>(
        &self,
        f: F,
    ) -> O {
        let mut bv = self.message_body.0.deref();
        f(Ipv6PacketRaw::parse(&mut bv, ()).map_err(|_| self.message_body.0.deref()))
    }
}

impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I, Body<B> = ndp::Options<B>>>
    IcmpPacket<I, B, M>
{
    /// Get the pared list of NDP options from the ICMP message.
    pub fn ndp_options(&self) -> &ndp::Options<B> {
        &self.message_body
    }
}

/// A builder for ICMP packets.
#[derive(Debug, PartialEq, Clone)]
pub struct IcmpPacketBuilder<I: IcmpIpExt, M: IcmpMessage<I>> {
    src_ip: I::Addr,
    dst_ip: I::Addr,
    code: M::Code,
    msg: M,
}

impl<I: IcmpIpExt, M: IcmpMessage<I>> IcmpPacketBuilder<I, M> {
    /// Construct a new `IcmpPacketBuilder`.
    pub fn new<S: Into<I::Addr>, D: Into<I::Addr>>(
        src_ip: S,
        dst_ip: D,
        code: M::Code,
        msg: M,
    ) -> IcmpPacketBuilder<I, M> {
        IcmpPacketBuilder { src_ip: src_ip.into(), dst_ip: dst_ip.into(), code, msg }
    }

    /// Returns the message in the ICMP packet.
    pub fn message(&self) -> &M {
        &self.msg
    }

    /// Returns a mutable reference to the message in the ICMP packet.
    pub fn message_mut(&mut self) -> &mut M {
        &mut self.msg
    }

    /// Sets the source IP address of the ICMP packet.
    pub fn set_src_ip(&mut self, addr: I::Addr) {
        self.src_ip = addr;
    }

    /// Sets the destination IP address of the ICMP packet.
    pub fn set_dst_ip(&mut self, addr: I::Addr) {
        self.dst_ip = addr;
    }
}

// TODO(joshlf): Figure out a way to split body and non-body message types by
// trait and implement PacketBuilder for some and InnerPacketBuilder for others.

impl<I: IcmpIpExt, M: IcmpMessage<I>> PacketBuilder for IcmpPacketBuilder<I, M> {
    fn constraints(&self) -> PacketConstraints {
        // The maximum body length constraint to make sure the body length
        // doesn't overflow the 32-bit length field in the pseudo-header used
        // for calculating the checksum.
        //
        // Note that, for messages that don't take bodies, it's important that
        // we don't just set this to 0. Trying to serialize a body in a message
        // type which doesn't take bodies is a programmer error, so we should
        // panic in that case. Setting the max_body_len to 0 would surface the
        // issue as an MTU error, which would hide the underlying problem.
        // Instead, we assert in serialize. Eventually, we will hopefully figure
        // out a way to implement InnerPacketBuilder (rather than PacketBuilder)
        // for these message types, and this won't be an issue anymore.
        PacketConstraints::new(mem::size_of::<Header<M>>(), 0, 0, core::u32::MAX as usize)
    }

    fn serialize(
        &self,
        target: &mut SerializeTarget<'_>,
        message_body: FragmentedBytesMut<'_, '_>,
    ) {
        use packet::BufferViewMut;

        // implements BufferViewMut, giving us take_obj_xxx_zero methods
        let mut prefix = &mut target.header;

        assert!(
            M::EXPECTS_BODY || message_body.is_empty(),
            "body provided for message that doesn't take a body"
        );
        // SECURITY: Use _zero constructors to ensure we zero memory to prevent
        // leaking information from packets previously stored in this buffer.
        let mut header =
            prefix.take_obj_front_zero::<Header<M>>().expect("too few bytes for ICMP message");
        header.prefix.set_msg_type(M::TYPE);
        header.prefix.code = self.code.into();
        header.message = self.msg;
        let checksum =
            compute_checksum_fragmented(&header, &message_body, self.src_ip, self.dst_ip)
                .unwrap_or_else(|| {
                    panic!(
                    "total ICMP packet length of {} overflows 32-bit length field of pseudo-header",
                    Ref::bytes(&header).len() + message_body.len(),
                )
                });
        header.prefix.checksum = checksum;
    }
}

/// An ICMP code that must be zero.
///
/// Some ICMP messages do not use codes. In Rust, the `IcmpMessage::Code` type
/// associated with these messages is `IcmpZeroCode`. The only valid numerical
/// value for this code is 0.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct IcmpZeroCode;

impl From<IcmpZeroCode> for u8 {
    fn from(_: IcmpZeroCode) -> u8 {
        0
    }
}

impl TryFrom<u8> for IcmpZeroCode {
    type Error = NotZeroError<u8>;

    fn try_from(value: u8) -> Result<Self, NotZeroError<u8>> {
        if value == 0 {
            Ok(Self)
        } else {
            Err(NotZeroError(value))
        }
    }
}

/// An ICMP code that is zero on serialization, but ignored on parsing.
///
/// This is used for ICMP messages whose specification states that senders must
/// set Code to 0 but receivers must ignore it (e.g. MLD/MLDv2).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct IcmpSenderZeroCode;

impl From<IcmpSenderZeroCode> for u8 {
    fn from(_: IcmpSenderZeroCode) -> u8 {
        0
    }
}

impl From<u8> for IcmpSenderZeroCode {
    fn from(_: u8) -> Self {
        Self
    }
}

// TODO(https://github.com/google/zerocopy/issues/1292),
// TODO(https://github.com/rust-lang/rust/issues/45713): This needs to be public
// in order to work around a Rust compiler bug. Once that bug is resolved, this
// can be made private again.
#[doc(hidden)]
#[derive(
    Copy, Clone, Debug, Eq, PartialEq, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned,
)]
#[repr(C)]
pub struct IdAndSeq {
    id: U16,
    seq: U16,
}

impl IdAndSeq {
    fn new(id: u16, seq: u16) -> IdAndSeq {
        IdAndSeq { id: U16::new(id), seq: U16::new(seq) }
    }
}

#[cfg(test)]
mod tests {
    use ip_test_macro::ip_test;
    use packet::{InnerPacketBuilder, ParseBuffer, Serializer, SliceBufViewMut};
    use test_case::test_case;

    use super::*;

    #[test]
    fn test_partial_parse() {
        // Test various behaviors of parsing the `IcmpPacketRaw` type.

        let reference_header = Header {
            prefix: HeaderPrefix {
                msg_type: <IcmpEchoRequest as IcmpMessage<Ipv4>>::TYPE.into(),
                code: 0,
                checksum: [0, 0],
            },
            message: IcmpEchoRequest::new(1, 1),
        };

        // Test that a too-short header is always rejected even if its contents
        // are otherwise valid (the checksum here is probably invalid, but we
        // explicitly check that it's a `Format` error, not a `Checksum`
        // error).
        let mut buf = &reference_header.as_bytes()[..7];
        assert_eq!(
            buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().unwrap_err(),
            ParseError::Format
        );

        // Test that a properly-sized header is rejected if the message type is wrong.
        let mut header = reference_header;
        header.prefix.msg_type = <IcmpEchoReply as IcmpMessage<Ipv4>>::TYPE.into();
        let mut buf = header.as_bytes();
        assert_eq!(
            buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().unwrap_err(),
            ParseError::NotExpected
        );

        // Test that an invalid code is accepted.
        let mut header = reference_header;
        header.prefix.code = 0xFF;
        let mut buf = header.as_bytes();
        assert!(buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().is_ok());

        // Test that an invalid checksum is accepted. Instead of calculating the
        // correct checksum, we just provide two different checksums. They can't
        // both be valid.
        let mut buf = reference_header.as_bytes();
        assert!(buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().is_ok());
        let mut header = reference_header;
        header.prefix.checksum = [1, 1];
        let mut buf = header.as_bytes();
        assert!(buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().is_ok());
    }

    #[ip_test(I)]
    #[test_case([0,0]; "zeroed_checksum")]
    #[test_case([123, 234]; "garbage_checksum")]
    fn test_try_write_checksum<I: IcmpIpExt>(corrupt_checksum: [u8; 2]) {
        // NB: The process of serializing an `IcmpPacketBuilder` will compute a
        // valid checksum.
        let icmp_message_with_checksum = []
            .into_serializer()
            .encapsulate(IcmpPacketBuilder::<I, _>::new(
                *I::LOOPBACK_ADDRESS,
                *I::LOOPBACK_ADDRESS,
                IcmpZeroCode,
                IcmpEchoRequest::new(1, 1),
            ))
            .serialize_vec_outer()
            .unwrap()
            .as_ref()
            .to_vec();

        // Clone the message and corrupt the checksum.
        let mut icmp_message_without_checksum = icmp_message_with_checksum.clone();
        {
            let buf = SliceBufViewMut::new(&mut icmp_message_without_checksum);
            let mut message = IcmpPacketRaw::<I, _, IcmpEchoRequest>::parse_mut(buf, ())
                .expect("parse packet raw should succeed");
            message.header.prefix.checksum = corrupt_checksum;
        }
        assert_ne!(&icmp_message_with_checksum[..], &icmp_message_without_checksum[..]);

        // Write the checksum, and verify the message now matches the original.
        let buf = SliceBufViewMut::new(&mut icmp_message_without_checksum);
        let mut message = IcmpPacketRaw::<I, _, IcmpEchoRequest>::parse_mut(buf, ())
            .expect("parse packet raw should succeed");
        assert!(message.try_write_checksum(*I::LOOPBACK_ADDRESS, *I::LOOPBACK_ADDRESS));
        assert_eq!(&icmp_message_with_checksum[..], &icmp_message_without_checksum[..]);
    }
}