packet_formats/icmp/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Parsing and serialization of Internet Control Message Protocol (ICMP)
//! packets.
//!
//! This module supports both ICMPv4 and ICMPv6.
//!
//! The ICMPv4 packet format is defined in [RFC 792], and the ICMPv6
//! packet format is defined in [RFC 4443 Section 2.1].
//!
//! [RFC 792]: https://datatracker.ietf.org/doc/html/rfc792
//! [RFC 4443 Section 2.1]: https://datatracker.ietf.org/doc/html/rfc4443#section-2.1
#[macro_use]
mod macros;
mod common;
mod icmpv4;
mod icmpv6;
pub mod mld;
pub mod ndp;
#[cfg(test)]
mod testdata;
pub use self::common::*;
pub use self::icmpv4::*;
pub use self::icmpv6::*;
use core::fmt::Debug;
use core::marker::PhantomData;
use core::{cmp, mem};
use byteorder::{ByteOrder, NetworkEndian};
use derivative::Derivative;
use internet_checksum::Checksum;
use net_types::ip::{GenericOverIp, Ip, IpAddress, Ipv4, Ipv4Addr, Ipv6, Ipv6Addr};
use packet::records::options::{Options, OptionsImpl};
use packet::{
AsFragmentedByteSlice, BufferView, FragmentedByteSlice, FragmentedBytesMut, FromRaw,
PacketBuilder, PacketConstraints, ParsablePacket, ParseMetadata, SerializeTarget,
};
use zerocopy::byteorder::network_endian::U16;
use zerocopy::{
FromBytes, Immutable, IntoBytes, KnownLayout, Ref, SplitByteSlice, SplitByteSliceMut, Unaligned,
};
use crate::error::{NotZeroError, ParseError, ParseResult};
use crate::ip::{IpProtoExt, Ipv4Proto, Ipv6Proto};
use crate::ipv4::{self, Ipv4PacketRaw};
use crate::ipv6::Ipv6PacketRaw;
#[derive(Copy, Clone, Default, Debug, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
struct HeaderPrefix {
msg_type: u8,
code: u8,
checksum: [u8; 2],
/* NOTE: The "Rest of Header" field is stored in message types rather than
* in the HeaderPrefix. This helps consolidate how callers access data about the
* packet, and is consistent with ICMPv6, which treats the field as part of
* messages rather than the header. */
}
impl HeaderPrefix {
fn set_msg_type<T: Into<u8>>(&mut self, msg_type: T) {
self.msg_type = msg_type.into();
}
}
/// Peek at an ICMP header to see what message type is present.
///
/// Since `IcmpPacket` is statically typed with the message type expected, this
/// type must be known ahead of time before calling `parse`. If multiple
/// different types are valid in a given parsing context, and so the caller
/// cannot know ahead of time which type to use, `peek_message_type` can be used
/// to peek at the header first to figure out which static type should be used
/// in a subsequent call to `parse`.
///
/// Note that `peek_message_type` only inspects certain fields in the header,
/// and so `peek_message_type` succeeding does not guarantee that a subsequent
/// call to `parse` will also succeed.
pub fn peek_message_type<MessageType: TryFrom<u8>>(bytes: &[u8]) -> ParseResult<MessageType> {
let (hdr_pfx, _) = Ref::<_, HeaderPrefix>::from_prefix(bytes).map_err(Into::into).map_err(
|_: zerocopy::SizeError<_, _>| debug_err!(ParseError::Format, "too few bytes for header"),
)?;
MessageType::try_from(hdr_pfx.msg_type).map_err(|_| {
debug_err!(ParseError::NotSupported, "unrecognized message type: {:x}", hdr_pfx.msg_type,)
})
}
/// An extension trait adding ICMP-related functionality to `Ipv4` and `Ipv6`.
pub trait IcmpIpExt: IpProtoExt {
/// The ICMP packet type for this IP version.
type IcmpPacketTypeRaw<B: SplitByteSliceMut>: IcmpPacketTypeRaw<B, Self>
+ GenericOverIp<Self, Type = Self::IcmpPacketTypeRaw<B>>
+ GenericOverIp<Ipv4, Type = Icmpv4PacketRaw<B>>
+ GenericOverIp<Ipv6, Type = Icmpv6PacketRaw<B>>;
/// The type of ICMP messages.
///
/// For `Ipv4`, this is `Icmpv4MessageType`, and for `Ipv6`, this is
/// `Icmpv6MessageType`.
type IcmpMessageType: IcmpMessageType
+ GenericOverIp<Self, Type = Self::IcmpMessageType>
+ GenericOverIp<Ipv4, Type = Icmpv4MessageType>
+ GenericOverIp<Ipv6, Type = Icmpv6MessageType>;
/// The type of an ICMP parameter problem code.
///
/// For `Ipv4`, this is `Icmpv4ParameterProblemCode`, and for `Ipv6` this
/// is `Icmpv6ParameterProblemCode`.
type ParameterProblemCode: PartialEq + Send + Sync + Debug;
/// The type of an ICMP parameter problem pointer.
///
/// For `Ipv4`, this is `u8`, and for `Ipv6` this is `u32`.
type ParameterProblemPointer: PartialEq + Send + Sync + Debug;
/// The type of an ICMP parameter header length.
///
/// For `Ipv4`, this is `usize`, and for `Ipv6` this is `()`.
type HeaderLen: PartialEq + Send + Sync + Debug;
/// The identifier for this ICMP version.
///
/// This value will be found in an IPv4 packet's Protocol field (for ICMPv4
/// packets) or an IPv6 fixed header's or last extension header's Next
/// Heeader field (for ICMPv6 packets).
const ICMP_IP_PROTO: <Self as IpProtoExt>::Proto;
/// Computes the length of the header of the packet prefix stored in
/// `bytes`.
///
/// Given the prefix of a packet stored in `bytes`, compute the length of
/// the header of that packet, or `bytes.len()` if `bytes` does not contain
/// the entire header. If the version is IPv6, the returned length should
/// include all extension headers.
fn header_len(bytes: &[u8]) -> usize;
/// Icmp{v4,v6}MessageType::EchoReply.
const ECHO_REPLY: Self::IcmpMessageType;
/// Icmp{v4,v6}MessageType::EchoRequest.
const ECHO_REQUEST: Self::IcmpMessageType;
}
impl IcmpIpExt for Ipv4 {
type IcmpPacketTypeRaw<B: SplitByteSliceMut> = Icmpv4PacketRaw<B>;
type IcmpMessageType = Icmpv4MessageType;
type ParameterProblemCode = Icmpv4ParameterProblemCode;
type ParameterProblemPointer = u8;
type HeaderLen = usize;
const ICMP_IP_PROTO: Ipv4Proto = Ipv4Proto::Icmp;
fn header_len(bytes: &[u8]) -> usize {
if bytes.len() < ipv4::IPV4_MIN_HDR_LEN {
return bytes.len();
}
let (header_prefix, _) = Ref::<_, ipv4::HeaderPrefix>::from_prefix(bytes).unwrap();
cmp::min(header_prefix.ihl() as usize * 4, bytes.len())
}
const ECHO_REPLY: Icmpv4MessageType = Icmpv4MessageType::EchoReply;
const ECHO_REQUEST: Icmpv4MessageType = Icmpv4MessageType::EchoRequest;
}
impl IcmpIpExt for Ipv6 {
type IcmpPacketTypeRaw<B: SplitByteSliceMut> = Icmpv6PacketRaw<B>;
type IcmpMessageType = Icmpv6MessageType;
type ParameterProblemCode = Icmpv6ParameterProblemCode;
type ParameterProblemPointer = u32;
type HeaderLen = ();
const ICMP_IP_PROTO: Ipv6Proto = Ipv6Proto::Icmpv6;
// TODO: Re-implement this in terms of partial parsing, and then get rid of
// the `header_len` method.
fn header_len(_bytes: &[u8]) -> usize {
// NOTE: We panic here rather than doing log_unimplemented! because
// there's no sane default value for this function. If it's called, it
// doesn't make sense for the program to continue executing; if we did,
// it would cause bugs in the caller.
unimplemented!()
}
const ECHO_REPLY: Icmpv6MessageType = Icmpv6MessageType::EchoReply;
const ECHO_REQUEST: Icmpv6MessageType = Icmpv6MessageType::EchoRequest;
}
/// An ICMP or ICMPv6 packet
///
/// 'IcmpPacketType' is implemented by `Icmpv4Packet` and `Icmpv6Packet`
pub trait IcmpPacketTypeRaw<B: SplitByteSliceMut, I: Ip>:
Sized + ParsablePacket<B, (), Error = ParseError>
{
/// Update the checksum to reflect an updated address in the pseudo header.
fn update_checksum_pseudo_header_address(&mut self, old: I::Addr, new: I::Addr);
}
impl<B: SplitByteSliceMut> IcmpPacketTypeRaw<B, Ipv4> for Icmpv4PacketRaw<B> {
/// Update the checksum to reflect an updated address in the pseudo header.
fn update_checksum_pseudo_header_address(&mut self, _: Ipv4Addr, _: Ipv4Addr) {
// ICMPv4 does not have a pseudo header.
}
}
impl<I: IcmpIpExt, B: SplitByteSliceMut> GenericOverIp<I> for Icmpv4PacketRaw<B> {
type Type = I::IcmpPacketTypeRaw<B>;
}
impl<B: SplitByteSliceMut> IcmpPacketTypeRaw<B, Ipv6> for Icmpv6PacketRaw<B> {
/// Update the checksum to reflect an updated address in the pseudo header.
fn update_checksum_pseudo_header_address(&mut self, old: Ipv6Addr, new: Ipv6Addr) {
let checksum = &mut self.header_prefix_mut().checksum;
*checksum = internet_checksum::update(*checksum, old.bytes(), new.bytes());
}
}
impl<I: IcmpIpExt, B: SplitByteSliceMut> GenericOverIp<I> for Icmpv6PacketRaw<B> {
type Type = I::IcmpPacketTypeRaw<B>;
}
/// Empty message.
#[derive(Derivative, Debug, Clone, Copy, PartialEq, Eq)]
#[derivative(Default(bound = ""))]
pub struct EmptyMessage<B>(core::marker::PhantomData<B>);
/// `MessageBody` represents the parsed body of the ICMP packet.
///
/// - For messages that expect no body, the `MessageBody` is of type `EmptyMessage`.
/// - For NDP messages, the `MessageBody` is of the type `ndp::Options`.
/// - For all other messages, the `MessageBody` will be of the type
/// `OriginalPacket`, which is a thin wrapper around `B`.
pub trait MessageBody: Sized {
/// The underlying byteslice.
type B: SplitByteSlice;
/// Parse the MessageBody from the provided bytes.
fn parse(bytes: Self::B) -> ParseResult<Self>;
/// The length of the underlying buffer.
fn len(&self) -> usize;
/// Is the body empty?
///
/// `b.is_empty()` is equivalent to `b.len() == 0`.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return the underlying bytes.
///
/// Not all ICMP messages have a fixed size, some messages like MLDv2 Query or MLDv2 Report
/// ([RFC 3810 section 5.1] and [RFC 3810 section 5.2]) contain a fixed amount of information
/// followed by a variable amount of records.
/// The first value returned contains the fixed size part, while the second value contains the
/// records for the messages that support them, more precisely, the second value is [None] if
/// the message does not have a variable part, otherwise it will contain the serialized list of
/// records.
///
/// [RFC 3810 section 5.1]: https://datatracker.ietf.org/doc/html/rfc3810#section-5.1
/// [RFC 3810 section 5.2]: https://datatracker.ietf.org/doc/html/rfc3810#section-5.2
fn bytes(&self) -> (&[u8], Option<&[u8]>);
}
impl<B: SplitByteSlice> MessageBody for EmptyMessage<B> {
type B = B;
fn parse(bytes: B) -> ParseResult<Self> {
if !bytes.is_empty() {
return debug_err!(Err(ParseError::Format), "unexpected message body");
}
Ok(EmptyMessage::default())
}
fn len(&self) -> usize {
0
}
fn bytes(&self) -> (&[u8], Option<&[u8]>) {
(&[], None)
}
}
/// A thin wrapper around B which implements `MessageBody`.
#[derive(Debug)]
pub struct OriginalPacket<B>(B);
impl<B: SplitByteSlice> OriginalPacket<B> {
/// Returns the the body of the original packet.
pub fn body<I: IcmpIpExt>(&self) -> &[u8] {
// TODO(joshlf): Can these debug_asserts be triggered by external input?
let header_len = I::header_len(&self.0);
debug_assert!(header_len <= self.0.len());
debug_assert!(I::VERSION.is_v6() || self.0.len() - header_len == 8);
&self.0[header_len..]
}
}
impl<B: SplitByteSlice> MessageBody for OriginalPacket<B> {
type B = B;
fn parse(bytes: B) -> ParseResult<OriginalPacket<B>> {
Ok(OriginalPacket(bytes))
}
fn len(&self) -> usize {
self.0.len()
}
fn bytes(&self) -> (&[u8], Option<&[u8]>) {
(&self.0, None)
}
}
impl<B: SplitByteSlice, O: OptionsImpl> MessageBody for Options<B, O> {
type B = B;
fn parse(bytes: B) -> ParseResult<Options<B, O>> {
Self::parse(bytes).map_err(|_e| debug_err!(ParseError::Format, "unable to parse options"))
}
fn len(&self) -> usize {
self.bytes().len()
}
fn bytes(&self) -> (&[u8], Option<&[u8]>) {
(self.bytes(), None)
}
}
/// An ICMP message.
pub trait IcmpMessage<I: IcmpIpExt>:
Sized + Copy + FromBytes + IntoBytes + KnownLayout + Immutable + Unaligned
{
/// Whether or not a message body is expected in an ICMP packet.
const EXPECTS_BODY: bool = true;
/// The type of codes used with this message.
///
/// The ICMP header includes an 8-bit "code" field. For a given message
/// type, different values of this field carry different meanings. Not all
/// code values are used - some may be invalid. This type represents a
/// parsed code. For example, for TODO, it is the TODO type.
type Code: Into<u8> + Copy + Debug;
/// The type of the body used with this message.
type Body<B: SplitByteSlice>: MessageBody<B = B>;
/// The type corresponding to this message type.
///
/// The value of the "type" field in the ICMP header corresponding to
/// messages of this type.
const TYPE: I::IcmpMessageType;
/// Parse a `Code` from an 8-bit number.
///
/// Parse a `Code` from the 8-bit "code" field in the ICMP header. Not all
/// values for this field are valid. If an invalid value is passed,
/// `code_from_u8` returns `None`.
fn code_from_u8(code: u8) -> Option<Self::Code>;
}
/// The type of an ICMP message.
///
/// `IcmpMessageType` is implemented by `Icmpv4MessageType` and
/// `Icmpv6MessageType`.
pub trait IcmpMessageType: TryFrom<u8> + Into<u8> + Copy + Debug {
/// Is this an error message?
///
/// For ICMP, this is true for the Destination Unreachable, Redirect, Source
/// Quench, Time Exceeded, and Parameter Problem message types. For ICMPv6,
/// this is true for the Destination Unreachable, Packet Too Big, Time
/// Exceeded, and Parameter Problem message types.
fn is_err(self) -> bool;
}
#[derive(Copy, Clone, Debug, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
struct Header<M> {
prefix: HeaderPrefix,
message: M,
}
/// A partially parsed and not yet validated ICMP packet.
///
/// An `IcmpPacketRaw` provides minimal parsing of an ICMP packet. Namely, it
/// only requires that the header and message (in ICMPv6, these are both
/// considered part of the header) are present, and that the header has the
/// expected message type. The body may be missing (or an unexpected body may be
/// present). Other than the message type, no header, message, or body field
/// values will be validated.
///
/// [`IcmpPacket`] provides a [`FromRaw`] implementation that can be used to
/// validate an [`IcmpPacketRaw`].
#[derive(Debug)]
pub struct IcmpPacketRaw<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> {
header: Ref<B, Header<M>>,
message_body: B,
_marker: PhantomData<I>,
}
impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> IcmpPacketRaw<I, B, M> {
/// Get the ICMP message.
pub fn message(&self) -> &M {
&self.header.message
}
}
impl<I: IcmpIpExt, B: SplitByteSliceMut, M: IcmpMessage<I>> IcmpPacketRaw<I, B, M> {
/// Attempts to calculate and write a Checksum for this [`IcmpPacketRaw`].
///
/// Returns whether the checksum was successfully calculated & written. In
/// the false case, self is left unmodified.
pub(crate) fn try_write_checksum(&mut self, src_ip: I::Addr, dst_ip: I::Addr) -> bool {
// NB: Zero the checksum to avoid interference when computing it.
let original_checksum = self.header.prefix.checksum;
self.header.prefix.checksum = [0, 0];
if let Some(checksum) = IcmpPacket::<I, B, M>::compute_checksum(
&self.header,
&self.message_body,
src_ip,
dst_ip,
) {
self.header.prefix.checksum = checksum;
true
} else {
self.header.prefix.checksum = original_checksum;
false
}
}
}
impl<I: IcmpIpExt, B: SplitByteSliceMut> IcmpPacketRaw<I, B, IcmpEchoRequest> {
/// Set the ID of the ICMP echo message.
pub fn set_id(&mut self, new: u16) {
let old = self.header.message.id_seq.id;
let new = U16::from(new);
self.header.message.id_seq.id = new;
self.header.prefix.checksum =
internet_checksum::update(self.header.prefix.checksum, old.as_bytes(), new.as_bytes());
}
}
impl<I: IcmpIpExt, B: SplitByteSliceMut> IcmpPacketRaw<I, B, IcmpEchoReply> {
/// Set the ID of the ICMP echo message.
pub fn set_id(&mut self, new: u16) {
let old = self.header.message.id_seq.id;
let new = U16::from(new);
self.header.message.id_seq.id = new;
self.header.prefix.checksum =
internet_checksum::update(self.header.prefix.checksum, old.as_bytes(), new.as_bytes());
}
}
/// An ICMP packet.
///
/// An `IcmpPacket` shares its underlying memory with the byte slice it was
/// parsed from, meaning that no copying or extra allocation is necessary.
#[derive(Debug)]
pub struct IcmpPacket<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> {
header: Ref<B, Header<M>>,
message_body: M::Body<B>,
_marker: PhantomData<I>,
}
/// Arguments required to parse an ICMP packet.
pub struct IcmpParseArgs<A: IpAddress> {
src_ip: A,
dst_ip: A,
}
impl<A: IpAddress> IcmpParseArgs<A> {
/// Construct a new `IcmpParseArgs`.
pub fn new<S: Into<A>, D: Into<A>>(src_ip: S, dst_ip: D) -> IcmpParseArgs<A> {
IcmpParseArgs { src_ip: src_ip.into(), dst_ip: dst_ip.into() }
}
}
impl<B: SplitByteSlice, I: IcmpIpExt, M: IcmpMessage<I>> ParsablePacket<B, ()>
for IcmpPacketRaw<I, B, M>
{
type Error = ParseError;
fn parse_metadata(&self) -> ParseMetadata {
ParseMetadata::from_packet(Ref::bytes(&self.header).len(), self.message_body.len(), 0)
}
fn parse<BV: BufferView<B>>(mut buffer: BV, _args: ()) -> ParseResult<Self> {
let header = buffer.take_obj_front::<Header<M>>().ok_or(ParseError::Format)?;
let message_body = buffer.into_rest();
if header.prefix.msg_type != M::TYPE.into() {
return Err(ParseError::NotExpected);
}
Ok(IcmpPacketRaw { header, message_body, _marker: PhantomData })
}
}
impl<B: SplitByteSlice, I: IcmpIpExt, M: IcmpMessage<I>>
FromRaw<IcmpPacketRaw<I, B, M>, IcmpParseArgs<I::Addr>> for IcmpPacket<I, B, M>
{
type Error = ParseError;
fn try_from_raw_with(
raw: IcmpPacketRaw<I, B, M>,
args: IcmpParseArgs<I::Addr>,
) -> ParseResult<Self> {
let IcmpPacketRaw { header, message_body, _marker } = raw;
if !M::EXPECTS_BODY && !message_body.is_empty() {
return Err(ParseError::Format);
}
let _: M::Code = M::code_from_u8(header.prefix.code).ok_or(ParseError::Format)?;
let checksum = Self::compute_checksum(&header, &message_body, args.src_ip, args.dst_ip)
.ok_or(ParseError::Format)?;
if checksum != [0, 0] {
return Err(ParseError::Checksum);
}
let message_body = M::Body::parse(message_body)?;
Ok(IcmpPacket { header, message_body, _marker })
}
}
impl<B: SplitByteSlice, I: IcmpIpExt, M: IcmpMessage<I>> ParsablePacket<B, IcmpParseArgs<I::Addr>>
for IcmpPacket<I, B, M>
{
type Error = ParseError;
fn parse_metadata(&self) -> ParseMetadata {
ParseMetadata::from_packet(Ref::bytes(&self.header).len(), self.message_body.len(), 0)
}
fn parse<BV: BufferView<B>>(buffer: BV, args: IcmpParseArgs<I::Addr>) -> ParseResult<Self> {
IcmpPacketRaw::parse(buffer, ()).and_then(|p| IcmpPacket::try_from_raw_with(p, args))
}
}
impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> IcmpPacket<I, B, M> {
/// Get the ICMP message.
pub fn message(&self) -> &M {
&self.header.message
}
/// Get the ICMP body.
pub fn body(&self) -> &M::Body<B> {
&self.message_body
}
/// Get the ICMP message code.
///
/// The code provides extra details about the message. Each message type has
/// its own set of codes that are allowed.
pub fn code(&self) -> M::Code {
// infallible since it was validated in parse
M::code_from_u8(self.header.prefix.code).unwrap()
}
/// Construct a builder with the same contents as this packet.
pub fn builder(&self, src_ip: I::Addr, dst_ip: I::Addr) -> IcmpPacketBuilder<I, M> {
IcmpPacketBuilder { src_ip, dst_ip, code: self.code(), msg: *self.message() }
}
}
fn compute_checksum_fragmented<I: IcmpIpExt, BB: packet::Fragment, M: IcmpMessage<I>>(
header: &Header<M>,
message_body: &FragmentedByteSlice<'_, BB>,
src_ip: I::Addr,
dst_ip: I::Addr,
) -> Option<[u8; 2]> {
let mut c = Checksum::new();
if I::VERSION.is_v6() {
c.add_bytes(src_ip.bytes());
c.add_bytes(dst_ip.bytes());
let icmpv6_len = mem::size_of::<Header<M>>() + message_body.len();
let mut len_bytes = [0; 4];
NetworkEndian::write_u32(&mut len_bytes, icmpv6_len.try_into().ok()?);
c.add_bytes(&len_bytes[..]);
c.add_bytes(&[0, 0, 0]);
c.add_bytes(&[Ipv6Proto::Icmpv6.into()]);
}
c.add_bytes(&[header.prefix.msg_type, header.prefix.code]);
c.add_bytes(&header.prefix.checksum);
c.add_bytes(header.message.as_bytes());
for p in message_body.iter_fragments() {
c.add_bytes(p);
}
Some(c.checksum())
}
impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I>> IcmpPacket<I, B, M> {
/// Compute the checksum, including the checksum field itself.
///
/// `compute_checksum` returns `None` if the version is IPv6 and the total
/// ICMP packet length overflows a u32.
fn compute_checksum(
header: &Header<M>,
message_body: &[u8],
src_ip: I::Addr,
dst_ip: I::Addr,
) -> Option<[u8; 2]> {
let mut body = [message_body];
compute_checksum_fragmented(header, &body.as_fragmented_byte_slice(), src_ip, dst_ip)
}
}
impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I, Body<B> = OriginalPacket<B>>>
IcmpPacket<I, B, M>
{
/// Get the body of the packet that caused this ICMP message.
///
/// This ICMP message contains some of the bytes of the packet that caused
/// this message to be emitted. `original_packet_body` returns as much of
/// the body of that packet as is contained in this message. For IPv4, this
/// is guaranteed to be 8 bytes. For IPv6, there are no guarantees about the
/// length.
pub fn original_packet_body(&self) -> &[u8] {
self.message_body.body::<I>()
}
/// Returns the original packt that caused this ICMP message.
///
/// This ICMP message contains some of the bytes of the packet that caused
/// this message to be emitted. `original_packet` returns as much of the
/// body of that packet as is contained in this message. For IPv4, this is
/// guaranteed to be 8 bytes. For IPv6, there are no guarantees about the
/// length.
pub fn original_packet(&self) -> &OriginalPacket<B> {
&self.message_body
}
}
impl<B: SplitByteSlice, M: IcmpMessage<Ipv4, Body<B> = OriginalPacket<B>>> IcmpPacket<Ipv4, B, M> {
/// Attempt to partially parse the original packet as an IPv4 packet.
///
/// `f` will be invoked on the result of calling `Ipv4PacketRaw::parse` on
/// the original packet.
pub fn with_original_packet<O, F: FnOnce(Result<Ipv4PacketRaw<&[u8]>, &[u8]>) -> O>(
&self,
f: F,
) -> O {
let mut bv = self.message_body.0.deref();
f(Ipv4PacketRaw::parse(&mut bv, ()).map_err(|_| self.message_body.0.deref()))
}
}
impl<B: SplitByteSlice, M: IcmpMessage<Ipv6, Body<B> = OriginalPacket<B>>> IcmpPacket<Ipv6, B, M> {
/// Attempt to partially parse the original packet as an IPv6 packet.
///
/// `f` will be invoked on the result of calling `Ipv6PacketRaw::parse` on
/// the original packet.
pub fn with_original_packet<O, F: FnOnce(Result<Ipv6PacketRaw<&[u8]>, &[u8]>) -> O>(
&self,
f: F,
) -> O {
let mut bv = self.message_body.0.deref();
f(Ipv6PacketRaw::parse(&mut bv, ()).map_err(|_| self.message_body.0.deref()))
}
}
impl<I: IcmpIpExt, B: SplitByteSlice, M: IcmpMessage<I, Body<B> = ndp::Options<B>>>
IcmpPacket<I, B, M>
{
/// Get the pared list of NDP options from the ICMP message.
pub fn ndp_options(&self) -> &ndp::Options<B> {
&self.message_body
}
}
/// A builder for ICMP packets.
#[derive(Debug, PartialEq, Clone)]
pub struct IcmpPacketBuilder<I: IcmpIpExt, M: IcmpMessage<I>> {
src_ip: I::Addr,
dst_ip: I::Addr,
code: M::Code,
msg: M,
}
impl<I: IcmpIpExt, M: IcmpMessage<I>> IcmpPacketBuilder<I, M> {
/// Construct a new `IcmpPacketBuilder`.
pub fn new<S: Into<I::Addr>, D: Into<I::Addr>>(
src_ip: S,
dst_ip: D,
code: M::Code,
msg: M,
) -> IcmpPacketBuilder<I, M> {
IcmpPacketBuilder { src_ip: src_ip.into(), dst_ip: dst_ip.into(), code, msg }
}
/// Returns the message in the ICMP packet.
pub fn message(&self) -> &M {
&self.msg
}
/// Returns a mutable reference to the message in the ICMP packet.
pub fn message_mut(&mut self) -> &mut M {
&mut self.msg
}
/// Sets the source IP address of the ICMP packet.
pub fn set_src_ip(&mut self, addr: I::Addr) {
self.src_ip = addr;
}
/// Sets the destination IP address of the ICMP packet.
pub fn set_dst_ip(&mut self, addr: I::Addr) {
self.dst_ip = addr;
}
}
// TODO(joshlf): Figure out a way to split body and non-body message types by
// trait and implement PacketBuilder for some and InnerPacketBuilder for others.
impl<I: IcmpIpExt, M: IcmpMessage<I>> PacketBuilder for IcmpPacketBuilder<I, M> {
fn constraints(&self) -> PacketConstraints {
// The maximum body length constraint to make sure the body length
// doesn't overflow the 32-bit length field in the pseudo-header used
// for calculating the checksum.
//
// Note that, for messages that don't take bodies, it's important that
// we don't just set this to 0. Trying to serialize a body in a message
// type which doesn't take bodies is a programmer error, so we should
// panic in that case. Setting the max_body_len to 0 would surface the
// issue as an MTU error, which would hide the underlying problem.
// Instead, we assert in serialize. Eventually, we will hopefully figure
// out a way to implement InnerPacketBuilder (rather than PacketBuilder)
// for these message types, and this won't be an issue anymore.
PacketConstraints::new(mem::size_of::<Header<M>>(), 0, 0, core::u32::MAX as usize)
}
fn serialize(
&self,
target: &mut SerializeTarget<'_>,
message_body: FragmentedBytesMut<'_, '_>,
) {
use packet::BufferViewMut;
// implements BufferViewMut, giving us take_obj_xxx_zero methods
let mut prefix = &mut target.header;
assert!(
M::EXPECTS_BODY || message_body.is_empty(),
"body provided for message that doesn't take a body"
);
// SECURITY: Use _zero constructors to ensure we zero memory to prevent
// leaking information from packets previously stored in this buffer.
let mut header =
prefix.take_obj_front_zero::<Header<M>>().expect("too few bytes for ICMP message");
header.prefix.set_msg_type(M::TYPE);
header.prefix.code = self.code.into();
header.message = self.msg;
let checksum =
compute_checksum_fragmented(&header, &message_body, self.src_ip, self.dst_ip)
.unwrap_or_else(|| {
panic!(
"total ICMP packet length of {} overflows 32-bit length field of pseudo-header",
Ref::bytes(&header).len() + message_body.len(),
)
});
header.prefix.checksum = checksum;
}
}
/// An ICMP code that must be zero.
///
/// Some ICMP messages do not use codes. In Rust, the `IcmpMessage::Code` type
/// associated with these messages is `IcmpZeroCode`. The only valid numerical
/// value for this code is 0.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct IcmpZeroCode;
impl From<IcmpZeroCode> for u8 {
fn from(_: IcmpZeroCode) -> u8 {
0
}
}
impl TryFrom<u8> for IcmpZeroCode {
type Error = NotZeroError<u8>;
fn try_from(value: u8) -> Result<Self, NotZeroError<u8>> {
if value == 0 {
Ok(Self)
} else {
Err(NotZeroError(value))
}
}
}
/// An ICMP code that is zero on serialization, but ignored on parsing.
///
/// This is used for ICMP messages whose specification states that senders must
/// set Code to 0 but receivers must ignore it (e.g. MLD/MLDv2).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct IcmpSenderZeroCode;
impl From<IcmpSenderZeroCode> for u8 {
fn from(_: IcmpSenderZeroCode) -> u8 {
0
}
}
impl From<u8> for IcmpSenderZeroCode {
fn from(_: u8) -> Self {
Self
}
}
// TODO(https://github.com/google/zerocopy/issues/1292),
// TODO(https://github.com/rust-lang/rust/issues/45713): This needs to be public
// in order to work around a Rust compiler bug. Once that bug is resolved, this
// can be made private again.
#[doc(hidden)]
#[derive(
Copy, Clone, Debug, Eq, PartialEq, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned,
)]
#[repr(C)]
pub struct IdAndSeq {
id: U16,
seq: U16,
}
impl IdAndSeq {
fn new(id: u16, seq: u16) -> IdAndSeq {
IdAndSeq { id: U16::new(id), seq: U16::new(seq) }
}
}
#[cfg(test)]
mod tests {
use ip_test_macro::ip_test;
use packet::{InnerPacketBuilder, ParseBuffer, Serializer, SliceBufViewMut};
use test_case::test_case;
use super::*;
#[test]
fn test_partial_parse() {
// Test various behaviors of parsing the `IcmpPacketRaw` type.
let reference_header = Header {
prefix: HeaderPrefix {
msg_type: <IcmpEchoRequest as IcmpMessage<Ipv4>>::TYPE.into(),
code: 0,
checksum: [0, 0],
},
message: IcmpEchoRequest::new(1, 1),
};
// Test that a too-short header is always rejected even if its contents
// are otherwise valid (the checksum here is probably invalid, but we
// explicitly check that it's a `Format` error, not a `Checksum`
// error).
let mut buf = &reference_header.as_bytes()[..7];
assert_eq!(
buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().unwrap_err(),
ParseError::Format
);
// Test that a properly-sized header is rejected if the message type is wrong.
let mut header = reference_header;
header.prefix.msg_type = <IcmpEchoReply as IcmpMessage<Ipv4>>::TYPE.into();
let mut buf = header.as_bytes();
assert_eq!(
buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().unwrap_err(),
ParseError::NotExpected
);
// Test that an invalid code is accepted.
let mut header = reference_header;
header.prefix.code = 0xFF;
let mut buf = header.as_bytes();
assert!(buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().is_ok());
// Test that an invalid checksum is accepted. Instead of calculating the
// correct checksum, we just provide two different checksums. They can't
// both be valid.
let mut buf = reference_header.as_bytes();
assert!(buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().is_ok());
let mut header = reference_header;
header.prefix.checksum = [1, 1];
let mut buf = header.as_bytes();
assert!(buf.parse::<IcmpPacketRaw<Ipv4, _, IcmpEchoRequest>>().is_ok());
}
#[ip_test(I)]
#[test_case([0,0]; "zeroed_checksum")]
#[test_case([123, 234]; "garbage_checksum")]
fn test_try_write_checksum<I: IcmpIpExt>(corrupt_checksum: [u8; 2]) {
// NB: The process of serializing an `IcmpPacketBuilder` will compute a
// valid checksum.
let icmp_message_with_checksum = []
.into_serializer()
.encapsulate(IcmpPacketBuilder::<I, _>::new(
*I::LOOPBACK_ADDRESS,
*I::LOOPBACK_ADDRESS,
IcmpZeroCode,
IcmpEchoRequest::new(1, 1),
))
.serialize_vec_outer()
.unwrap()
.as_ref()
.to_vec();
// Clone the message and corrupt the checksum.
let mut icmp_message_without_checksum = icmp_message_with_checksum.clone();
{
let buf = SliceBufViewMut::new(&mut icmp_message_without_checksum);
let mut message = IcmpPacketRaw::<I, _, IcmpEchoRequest>::parse_mut(buf, ())
.expect("parse packet raw should succeed");
message.header.prefix.checksum = corrupt_checksum;
}
assert_ne!(&icmp_message_with_checksum[..], &icmp_message_without_checksum[..]);
// Write the checksum, and verify the message now matches the original.
let buf = SliceBufViewMut::new(&mut icmp_message_without_checksum);
let mut message = IcmpPacketRaw::<I, _, IcmpEchoRequest>::parse_mut(buf, ())
.expect("parse packet raw should succeed");
assert!(message.try_write_checksum(*I::LOOPBACK_ADDRESS, *I::LOOPBACK_ADDRESS));
assert_eq!(&icmp_message_with_checksum[..], &icmp_message_without_checksum[..]);
}
}