netlink_packet_core/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
// SPDX-License-Identifier: MIT
//! `netlink-packet-core` provides a generic netlink message
//! `NetlinkMessage<T>` that is independant of the sub-protocol. Such
//! messages are not very useful by themselves, since they are just
//! used to carry protocol-dependant messages. That is what the `T`
//! represent: `T` is the `NetlinkMessage`'s protocol-dependant
//! message. This can be any type that implements
//! `NetlinkSerializable` and `NetlinkDeserializable`.
//!
//! For instance, the `netlink-packet-route` crate provides rtnetlink
//! messages via `netlink_packet_route::RtnlMessage`, and
//! `netlink-packet-audit` provides audit messages via
//! `netlink_packet_audit::AuditMessage`.
//!
//! By itself, the `netlink-packet-core` crate is not very
//! useful. However, it is used in `netlink-proto` to provide an
//! asynchronous implementation of the netlink protocol for any
//! sub-protocol. Thus, a crate that defines messages for a given
//! netlink sub-protocol could integrate with `netlink-packet-core`
//! and would get an asynchronous implementation for free. See the
//! second example below for such an integration, via the
//! `NetlinkSerializable` and `NetlinkDeserializable` traits.
//!
//! # Example: usage with `netlink-packet-route`
//!
//! This example shows how to serialize and deserialize netlink packet
//! for the rtnetlink sub-protocol. It requires
//! `netlink-packet-route`.
//!
//! ```rust
//! use netlink_packet_core::{NLM_F_DUMP, NLM_F_REQUEST};
//! use netlink_packet_route::{LinkMessage, RtnlMessage, NetlinkMessage,
//! NetlinkHeader};
//!
//! // Create the netlink message, that contains the rtnetlink
//! // message
//! let mut packet = NetlinkMessage {
//! header: NetlinkHeader {
//! sequence_number: 1,
//! flags: NLM_F_DUMP | NLM_F_REQUEST,
//! ..Default::default()
//! },
//! payload: RtnlMessage::GetLink(LinkMessage::default()).into(),
//! };
//!
//! // Before serializing the packet, it is important to call
//! // finalize() to ensure the header of the message is consistent
//! // with its payload. Otherwise, a panic may occur when calling
//! // serialize()
//! packet.finalize();
//!
//! // Prepare a buffer to serialize the packet. Note that we never
//! // set explicitely `packet.header.length` above. This was done
//! // automatically when we called `finalize()`
//! let mut buf = vec![0; packet.header.length as usize];
//! // Serialize the packet
//! packet.serialize(&mut buf[..]);
//!
//! // Deserialize the packet
//! let deserialized_packet =
//! NetlinkMessage::<RtnlMessage>::deserialize(&buf).expect("Failed to deserialize message");
//!
//! // Normally, the deserialized packet should be exactly the same
//! // than the serialized one.
//! assert_eq!(deserialized_packet, packet);
//!
//! println!("{:?}", packet);
//! ```
//!
//! # Example: adding messages for new netlink sub-protocol
//!
//! Let's assume we have a netlink protocol called "ping pong" that
//! defines two types of messages: "ping" messages, which payload can
//! be any sequence of bytes, and "pong" message, which payload is
//! also a sequence of bytes. The protocol works as follow: when an
//! enpoint receives a "ping" message, it answers with a "pong", with
//! the payload of the "ping" it's answering to.
//!
//! "ping" messages have type 18 and "pong" have type "20". Here is
//! what a "ping" message that would look like if its payload is `[0,
//! 1, 2, 3]`:
//!
//! ```no_rust
//! 0 8 16 24 32
//! +----------------+----------------+----------------+----------------+
//! | packet length (including header) = 16 + 4 = 20 |
//! +----------------+----------------+----------------+----------------+
//! | message type = 18 (ping) | flags |
//! +----------------+----------------+----------------+----------------+
//! | sequence number |
//! +----------------+----------------+----------------+----------------+
//! | port number |
//! +----------------+----------------+----------------+----------------+
//! | 0 | 1 | 2 | 3 |
//! +----------------+----------------+----------------+----------------+
//! ```
//!
//! And the "pong" response would be:
//!
//! ```no_rust
//! 0 8 16 24 32
//! +----------------+----------------+----------------+----------------+
//! | packet length (including header) = 16 + 4 = 20 |
//! +----------------+----------------+----------------+----------------+
//! | message type = 20 (pong) | flags |
//! +----------------+----------------+----------------+----------------+
//! | sequence number |
//! +----------------+----------------+----------------+----------------+
//! | port number |
//! +----------------+----------------+----------------+----------------+
//! | 0 | 1 | 2 | 3 |
//! +----------------+----------------+----------------+----------------+
//! ```
//!
//! Here is how we could implement the messages for such a protocol
//! and integrate this implementation with `netlink-packet-core`:
//!
//! ```rust
//! use netlink_packet_core::{
//! NetlinkDeserializable, NetlinkHeader, NetlinkMessage, NetlinkPayload, NetlinkSerializable,
//! };
//! use std::error::Error;
//! use std::fmt;
//!
//! // PingPongMessage represent the messages for the "ping-pong" netlink
//! // protocol. There are only two types of messages.
//! #[derive(Debug, Clone, Eq, PartialEq)]
//! pub enum PingPongMessage {
//! Ping(Vec<u8>),
//! Pong(Vec<u8>),
//! }
//!
//! // The netlink header contains a "message type" field that identifies
//! // the message it carries. Some values are reserved, and we
//! // arbitrarily decided that "ping" type is 18 and "pong" type is 20.
//! pub const PING_MESSAGE: u16 = 18;
//! pub const PONG_MESSAGE: u16 = 20;
//!
//! // A custom error type for when deserialization fails. This is
//! // required because `NetlinkDeserializable::Error` must implement
//! // `std::error::Error`, so a simple `String` won't cut it.
//! #[derive(Debug, Clone, Eq, PartialEq)]
//! pub struct DeserializeError(&'static str);
//!
//! impl Error for DeserializeError {
//! fn description(&self) -> &str {
//! self.0
//! }
//! fn source(&self) -> Option<&(dyn Error + 'static)> {
//! None
//! }
//! }
//!
//! impl fmt::Display for DeserializeError {
//! fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
//! write!(f, "{}", self.0)
//! }
//! }
//!
//! // NetlinkDeserializable implementation
//! impl NetlinkDeserializable for PingPongMessage {
//! type Error = DeserializeError;
//!
//! fn deserialize(header: &NetlinkHeader, payload: &[u8]) -> Result<Self, Self::Error> {
//! match header.message_type {
//! PING_MESSAGE => Ok(PingPongMessage::Ping(payload.to_vec())),
//! PONG_MESSAGE => Ok(PingPongMessage::Pong(payload.to_vec())),
//! _ => Err(DeserializeError(
//! "invalid ping-pong message: invalid message type",
//! )),
//! }
//! }
//! }
//!
//! // NetlinkSerializable implementation
//! impl NetlinkSerializable for PingPongMessage {
//! fn message_type(&self) -> u16 {
//! match self {
//! PingPongMessage::Ping(_) => PING_MESSAGE,
//! PingPongMessage::Pong(_) => PONG_MESSAGE,
//! }
//! }
//!
//! fn buffer_len(&self) -> usize {
//! match self {
//! PingPongMessage::Ping(vec) | PingPongMessage::Pong(vec) => vec.len(),
//! }
//! }
//!
//! fn serialize(&self, buffer: &mut [u8]) {
//! match self {
//! PingPongMessage::Ping(vec) | PingPongMessage::Pong(vec) => {
//! buffer.copy_from_slice(&vec[..])
//! }
//! }
//! }
//! }
//!
//! // It can be convenient to be able to create a NetlinkMessage directly
//! // from a PingPongMessage. Since NetlinkMessage<T> already implements
//! // From<NetlinkPayload<T>>, we just need to implement
//! // From<NetlinkPayload<PingPongMessage>> for this to work.
//! impl From<PingPongMessage> for NetlinkPayload<PingPongMessage> {
//! fn from(message: PingPongMessage) -> Self {
//! NetlinkPayload::InnerMessage(message)
//! }
//! }
//!
//! fn main() {
//! let ping_pong_message = PingPongMessage::Ping(vec![0, 1, 2, 3]);
//! let mut packet = NetlinkMessage::from(ping_pong_message);
//!
//! // Before serializing the packet, it is very important to call
//! // finalize() to ensure the header of the message is consistent
//! // with its payload. Otherwise, a panic may occur when calling
//! // `serialize()`
//! packet.finalize();
//!
//! // Prepare a buffer to serialize the packet. Note that we never
//! // set explicitely `packet.header.length` above. This was done
//! // automatically when we called `finalize()`
//! let mut buf = vec![0; packet.header.length as usize];
//! // Serialize the packet
//! packet.serialize(&mut buf[..]);
//!
//! // Deserialize the packet
//! let deserialized_packet = NetlinkMessage::<PingPongMessage>::deserialize(&buf)
//! .expect("Failed to deserialize message");
//!
//! // Normally, the deserialized packet should be exactly the same
//! // than the serialized one.
//! assert_eq!(deserialized_packet, packet);
//!
//! // This should print:
//! // NetlinkMessage { header: NetlinkHeader { length: 20, message_type: 18, flags: 0, sequence_number: 0, port_number: 0 }, payload: InnerMessage(Ping([0, 1, 2, 3])) }
//! println!("{:?}", packet);
//! }
//! ```
use core::ops::{Range, RangeFrom};
/// Represent a multi-bytes field with a fixed size in a packet
pub(crate) type Field = Range<usize>;
/// Represent a field that starts at a given index in a packet
pub(crate) type Rest = RangeFrom<usize>;
pub mod done;
pub use self::done::*;
pub mod error;
pub use self::error::*;
pub mod buffer;
pub use self::buffer::*;
pub mod header;
pub use self::header::*;
mod traits;
pub use self::traits::*;
mod payload;
pub use self::payload::*;
mod message;
pub use self::message::*;
pub mod constants;
pub use self::constants::*;
pub(crate) use self::utils::traits::*;
pub(crate) use netlink_packet_utils as utils;