packet_formats/igmp/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Parsing and serialization of Internet Group Management Protocol (IGMP)
//! packets.
//!
//! This module supports both IGMPv2 and IGMPv3.
//!
//! The IGMPv2 packet format is defined in [RFC 2236 Section 2], and the IGMPv3
//! packet format is defined in [RFC 3376 Section 4].
//!
//! [RFC 2236 Section 2]: https://datatracker.ietf.org/doc/html/rfc2236#section-2
//! [RFC 3376 Section 4]: https://datatracker.ietf.org/doc/html/rfc3376#section-4

pub mod messages;
mod types;

#[cfg(test)]
mod testdata;

pub use self::types::*;

use core::fmt::Debug;
use core::marker::PhantomData;
use core::mem;

use internet_checksum::Checksum;
use net_types::ip::Ipv4Addr;
use packet::{
    AsFragmentedByteSlice, BufferView, FragmentedByteSlice, FragmentedBytesMut, InnerPacketBuilder,
    PacketBuilder, PacketConstraints, ParsablePacket, ParseMetadata, SerializeTarget,
};
use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Ref, SplitByteSlice, Unaligned};

use self::messages::IgmpMessageType;
use crate::error::ParseError;

/// Trait specifying serialization behavior for IGMP messages.
///
/// IGMP messages are broken into 3 parts:
///
/// - `HeaderPrefix`: common to all IGMP messages;
/// - `FixedHeader`: A fixed part of the message following the HeaderPrefix;
/// - `VariableBody`: A variable-length body;
///
/// `MessageType` specifies the types used for `FixedHeader` and `VariableBody`,
/// `HeaderPrefix` is shared among all message types.
pub trait MessageType<B> {
    /// The fixed header type used for the message type.
    ///
    /// These are the bytes immediately following the checksum bytes in an IGMP
    /// message. Most IGMP messages' `FixedHeader` is an IPv4 address.
    type FixedHeader: Sized
        + Copy
        + Clone
        + FromBytes
        + IntoBytes
        + KnownLayout
        + Immutable
        + Unaligned
        + Debug;

    /// The variable-length body for the message type.
    type VariableBody: Sized;

    /// The type corresponding to this message type.
    ///
    /// The value of the "type" field in the IGMP header corresponding to
    /// messages of this type.
    const TYPE: IgmpMessageType;

    /// A type specializing how to parse the `max_resp_code` field in the
    /// `HeaderPrefix`.
    ///
    /// Specifies how to transform *Max Resp Code* (transmitted value)
    /// into *Max Resp Time* (semantic meaning). Provides a single interface to
    /// deal with differences between IGMPv2 ([RFC 2236]) and
    /// IGMPv3 ([RFC 3376]).
    ///
    /// The *Max Resp Code* field in `HeaderPrefix` only has meaning for IGMP
    /// *Query* messages, and should be set to zero for all other outgoing
    /// and ignored for all other incoming messages. For that case,
    /// an implementation of `MaxRespTime` for `()` is provided.
    ///
    /// [RFC 2236]: https://tools.ietf.org/html/rfc2236
    /// [RFC 3376]: https://tools.ietf.org/html/rfc3376
    type MaxRespTime: Sized + IgmpMaxRespCode + Debug;

    /// Parses the variable body part of the IGMP message.
    fn parse_body<BV: BufferView<B>>(
        header: &Self::FixedHeader,
        bytes: BV,
    ) -> Result<Self::VariableBody, ParseError>
    where
        B: SplitByteSlice;

    /// Retrieves the underlying bytes of `VariableBody`.
    // Note: this is delegating the responsibility of getting
    // `VariableBody` as `[u8]` to `MessageType` as opposed to just enforcing
    // a trait in `VariableBody` to do so. The decision to go this way is to
    // be able to relax the `ByteSlice` requirement on `B` elsewhere and it
    // also plays better with existing traits on `Ref` and
    // `Records`.
    fn body_bytes(body: &Self::VariableBody) -> &[u8]
    where
        B: SplitByteSlice;
}

/// Trait for treating the max_resp_code field of `HeaderPrefix`.
///
/// There are parsing differences between IGMP v2 and v3  for the maximum
/// response code (in IGMP v2 is in fact called maximum response time). That's
/// the reasoning behind making this a trait, so it can be specialized
/// differently with thin wrappers by the messages implementation.
pub trait IgmpMaxRespCode {
    /// The serialized value of the response code
    fn as_code(&self) -> u8;
    /// Parses from a code value.
    fn from_code(code: u8) -> Self;
}

/// Max Resp Code should be ignored on all non-query incoming messages and
/// set to zero on all non-query outgoing messages, the implementation for `()`
/// provides that.
impl IgmpMaxRespCode for () {
    fn as_code(&self) -> u8 {
        0
    }

    fn from_code(_code: u8) {}
}

/// A marker trait for implementers of [`MessageType`]. Only [`MessageType`]s
/// whose `VariableBody` implements `IgmpNonEmptyBody` (or is `()` for empty
/// bodies) can be built using [`IgmpPacketBuilder`].
pub trait IgmpNonEmptyBody {}

/// A builder for IGMP packets.
#[derive(Debug)]
pub struct IgmpPacketBuilder<B, M: MessageType<B>> {
    max_resp_time: M::MaxRespTime,
    message_header: M::FixedHeader,
    _marker: PhantomData<B>,
}

impl<B, M: MessageType<B, MaxRespTime = ()>> IgmpPacketBuilder<B, M> {
    /// Construct a new `IgmpPacketBuilder`.
    pub fn new(msg_header: M::FixedHeader) -> IgmpPacketBuilder<B, M> {
        IgmpPacketBuilder { max_resp_time: (), message_header: msg_header, _marker: PhantomData }
    }
}

impl<B, M: MessageType<B>> IgmpPacketBuilder<B, M> {
    /// Construct a new `IgmpPacketBuilder` with provided `max_resp_time`.
    pub fn new_with_resp_time(
        msg_header: M::FixedHeader,
        max_resp_time: M::MaxRespTime,
    ) -> IgmpPacketBuilder<B, M> {
        IgmpPacketBuilder { max_resp_time, message_header: msg_header, _marker: PhantomData }
    }
}

impl<B, M: MessageType<B>> IgmpPacketBuilder<B, M> {
    fn serialize_headers<BB: packet::Fragment>(
        &self,
        mut headers_buff: &mut [u8],
        body: FragmentedByteSlice<'_, BB>,
    ) {
        use packet::BufferViewMut;
        let mut bytes = &mut headers_buff;
        // SECURITY: Use _zero constructors to ensure we zero memory to prevent
        // leaking information from packets previously stored in this buffer.
        let mut header_prefix =
            bytes.take_obj_front_zero::<HeaderPrefix>().expect("too few bytes for IGMP message");
        header_prefix.set_msg_type(M::TYPE);
        header_prefix.max_resp_code = self.max_resp_time.as_code();

        let mut header =
            bytes.take_obj_front_zero::<M::FixedHeader>().expect("too few bytes for IGMP message");
        *header = self.message_header;

        let checksum = compute_checksum_fragmented(&header_prefix, &Ref::bytes(&header), &body);
        header_prefix.checksum = checksum;
    }
}

const fn total_header_size<F>() -> usize {
    mem::size_of::<HeaderPrefix>() + mem::size_of::<F>()
}

// All messages that do not have a VariableBody,
// can have an InnerPacketBuilder impl.
impl<B, M: MessageType<B, VariableBody = ()>> InnerPacketBuilder for IgmpPacketBuilder<B, M> {
    fn bytes_len(&self) -> usize {
        total_header_size::<M::FixedHeader>()
    }

    fn serialize(&self, buffer: &mut [u8]) {
        let empty = FragmentedByteSlice::<&'static [u8]>::new_empty();
        self.serialize_headers(buffer, empty);
    }
}

impl<B, M: MessageType<B>> PacketBuilder for IgmpPacketBuilder<B, M>
where
    M::VariableBody: IgmpNonEmptyBody,
{
    fn constraints(&self) -> PacketConstraints {
        PacketConstraints::new(total_header_size::<M::FixedHeader>(), 0, 0, core::usize::MAX)
    }

    fn serialize(
        &self,
        target: &mut SerializeTarget<'_>,
        message_body: FragmentedBytesMut<'_, '_>,
    ) {
        self.serialize_headers(target.header, message_body);
    }
}

/// `HeaderPrefix` represents the first 4 octets of every IGMP message.
///
/// The `HeaderPrefix` carries the message type information, which is used to
/// parse which IGMP message follows.
///
/// Note that even though `max_rsp_time` is part of `HeaderPrefix`, it is not
/// meaningful or used in every message.
#[derive(Default, Debug, IntoBytes, KnownLayout, FromBytes, Immutable, Unaligned)]
#[repr(C)]
pub struct HeaderPrefix {
    msg_type: u8,
    /// The Max Response Time field is meaningful only in Membership Query
    /// messages, and specifies the maximum allowed time before sending a
    /// responding report. In all other messages, it is set to zero by the
    /// sender and ignored by receivers. The parsing of `max_resp_code` into
    /// a value *Max Response Time* is performed by the `MaxRespType` type in
    /// the `MessageType` trait.
    max_resp_code: u8,
    checksum: [u8; 2],
}

impl HeaderPrefix {
    fn set_msg_type<T: Into<u8>>(&mut self, msg_type: T) {
        self.msg_type = msg_type.into();
    }
}

/// An IGMP message.
///
/// An `IgmpMessage` is a struct representing an IGMP message in memory;
/// it holds the 3 IGMP message parts and is characterized by the
/// `MessageType` trait.
#[derive(Debug)]
pub struct IgmpMessage<B: SplitByteSlice, M: MessageType<B>> {
    prefix: Ref<B, HeaderPrefix>,
    header: Ref<B, M::FixedHeader>,
    body: M::VariableBody,
}

impl<B: SplitByteSlice, M: MessageType<B>> IgmpMessage<B, M> {
    /// Construct a builder with the same contents as this packet.
    pub fn builder(&self) -> IgmpPacketBuilder<B, M> {
        IgmpPacketBuilder::new_with_resp_time(*self.header, self.max_response_time())
    }

    /// Gets the interpreted *Max Response Time* for the message
    pub fn max_response_time(&self) -> M::MaxRespTime {
        M::MaxRespTime::from_code(self.prefix.max_resp_code)
    }

    /// Returns the header.
    pub fn header(&self) -> &M::FixedHeader {
        &self.header
    }

    /// Returns the body.
    pub fn body(&self) -> &M::VariableBody {
        &self.body
    }
}

fn compute_checksum_fragmented<BB: packet::Fragment>(
    header_prefix: &HeaderPrefix,
    header: &[u8],
    body: &FragmentedByteSlice<'_, BB>,
) -> [u8; 2] {
    let mut c = Checksum::new();
    c.add_bytes(&[header_prefix.msg_type, header_prefix.max_resp_code]);
    c.add_bytes(&header_prefix.checksum);
    c.add_bytes(header);
    for p in body.iter_fragments() {
        c.add_bytes(p);
    }
    c.checksum()
}

impl<B: SplitByteSlice, M: MessageType<B>> IgmpMessage<B, M> {
    fn compute_checksum(header_prefix: &HeaderPrefix, header: &[u8], body: &[u8]) -> [u8; 2] {
        let mut body = [body];
        compute_checksum_fragmented(header_prefix, header, &body.as_fragmented_byte_slice())
    }
}

impl<B: SplitByteSlice, M: MessageType<B, FixedHeader = Ipv4Addr>> IgmpMessage<B, M> {
    /// Returns the group address.
    pub fn group_addr(&self) -> Ipv4Addr {
        *self.header
    }
}

impl<B: SplitByteSlice, M: MessageType<B>> ParsablePacket<B, ()> for IgmpMessage<B, M> {
    type Error = ParseError;

    fn parse_metadata(&self) -> ParseMetadata {
        let header_len = Ref::bytes(&self.prefix).len() + Ref::bytes(&self.header).len();
        ParseMetadata::from_packet(header_len, M::body_bytes(&self.body).len(), 0)
    }

    fn parse<BV: BufferView<B>>(mut buffer: BV, _args: ()) -> Result<Self, ParseError> {
        let prefix = buffer
            .take_obj_front::<HeaderPrefix>()
            .ok_or_else(debug_err_fn!(ParseError::Format, "too few bytes for header prefix"))?;

        let header = buffer
            .take_obj_front::<M::FixedHeader>()
            .ok_or_else(debug_err_fn!(ParseError::Format, "too few bytes for header"))?;

        let checksum = Self::compute_checksum(&prefix, &Ref::bytes(&header), buffer.as_ref());
        if checksum != [0, 0] {
            return debug_err!(
                Err(ParseError::Checksum),
                "invalid checksum, got 0x{:x?}",
                prefix.checksum
            );
        }

        if prefix.msg_type != M::TYPE.into() {
            return debug_err!(Err(ParseError::NotExpected), "unexpected message type");
        }

        let body = M::parse_body(&header, buffer)?;

        Ok(IgmpMessage { prefix, header, body })
    }
}

/// Peek at an IGMP header to see what message type is present.
///
/// Since `IgmpPacket` is statically typed with the message type expected, this
/// type must be known ahead of time before calling `parse`. If multiple
/// different types are valid in a given parsing context, and so the caller
/// cannot know ahead of time which type to use, `peek_message_type` can be used
/// to peek at the header first to figure out which static type should be used
/// in a subsequent call to `parse`.
///
/// Because IGMP reuses the message type field for different semantic
/// meanings between IGMP v2 and v3, `peek_message_type` also returns a boolean
/// indicating if it's a "long message", which should direct parsers into parsing
/// an IGMP v3 message.
///
/// Note that `peek_message_type` only inspects certain fields in the header,
/// and so `peek_message_type` succeeding does not guarantee that a subsequent
/// call to `parse` will also succeed.
pub fn peek_message_type<MessageType: TryFrom<u8>>(
    bytes: &[u8],
) -> Result<(MessageType, bool), ParseError> {
    // a long message is any message for which the size exceeds the common HeaderPrefix +
    // a single Ipv4Address
    let long_message =
        bytes.len() > (core::mem::size_of::<HeaderPrefix>() + core::mem::size_of::<Ipv4Addr>());
    let (header, _) = Ref::<_, HeaderPrefix>::from_prefix(bytes).map_err(Into::into).map_err(
        |_: zerocopy::SizeError<_, _>| debug_err!(ParseError::Format, "too few bytes for header"),
    )?;
    let msg_type = MessageType::try_from(header.msg_type).map_err(|_| {
        debug_err!(ParseError::NotSupported, "unrecognized message type: {:x}", header.msg_type,)
    })?;
    Ok((msg_type, long_message))
}

#[cfg(test)]
mod tests {

    use packet::{ParseBuffer, Serializer};

    use super::*;
    use crate::igmp::messages::*;
    use crate::ip::Ipv4Proto;
    use crate::ipv4::options::Ipv4Option;
    use crate::ipv4::{Ipv4Header, Ipv4Packet, Ipv4PacketBuilder, Ipv4PacketBuilderWithOptions};

    fn serialize_to_bytes<
        B: SplitByteSlice + Debug,
        M: MessageType<B, VariableBody = ()> + Debug,
    >(
        igmp: &IgmpMessage<B, M>,
        src_ip: Ipv4Addr,
        dst_ip: Ipv4Addr,
    ) -> Vec<u8> {
        let ipv4 = Ipv4PacketBuilder::new(src_ip, dst_ip, 1, Ipv4Proto::Igmp);
        let with_options =
            Ipv4PacketBuilderWithOptions::new(ipv4, &[Ipv4Option::RouterAlert { data: 0 }])
                .unwrap();

        igmp.builder()
            .into_serializer()
            .encapsulate(with_options)
            .serialize_vec_outer()
            .unwrap()
            .as_ref()
            .to_vec()
    }

    fn test_parse_and_serialize<
        M: for<'a> MessageType<&'a [u8], VariableBody = ()> + Debug,
        F: for<'a> FnOnce(&Ipv4Packet<&'a [u8]>),
        G: for<'a> FnOnce(&IgmpMessage<&'a [u8], M>),
    >(
        mut pkt: &[u8],
        check_ip: F,
        check_igmp: G,
    ) {
        let orig_req = pkt;

        let ip = pkt.parse_with::<_, Ipv4Packet<_>>(()).unwrap();
        let src_ip = ip.src_ip();
        let dst_ip = ip.dst_ip();
        check_ip(&ip);
        let mut req: &[u8] = pkt;
        let igmp = req.parse_with::<_, IgmpMessage<_, M>>(()).unwrap();
        check_igmp(&igmp);

        let data = serialize_to_bytes(&igmp, src_ip, dst_ip);
        assert_eq!(&data[..], orig_req);
    }

    // The following tests are basically still testing serialization and
    // parsing of IGMP messages. Besides IGMP messages themselves, the
    // following tests also test whether the RTRALRT option in the enclosing
    // IPv4 packet can be parsed/serialized correctly.

    #[test]
    fn test_parse_and_serialize_igmpv2_report_with_options() {
        use crate::testdata::igmpv2_membership::report::*;
        test_parse_and_serialize::<IgmpMembershipReportV2, _, _>(
            IP_PACKET_BYTES,
            |ip| {
                assert_eq!(ip.ttl(), 1);
                assert_eq!(ip.iter_options().count(), 1);
                let option = ip.iter_options().next().unwrap();
                assert_eq!(option, Ipv4Option::RouterAlert { data: 0 });
                assert_eq!(ip.header_len(), 24);
                assert_eq!(ip.src_ip(), SOURCE);
                assert_eq!(ip.dst_ip(), MULTICAST);
            },
            |igmp| {
                assert_eq!(*igmp.header, MULTICAST);
            },
        )
    }

    #[test]
    fn test_parse_and_serialize_igmpv2_query_with_options() {
        use crate::testdata::igmpv2_membership::query::*;
        test_parse_and_serialize::<IgmpMembershipQueryV2, _, _>(
            IP_PACKET_BYTES,
            |ip| {
                assert_eq!(ip.ttl(), 1);
                assert_eq!(ip.iter_options().count(), 1);
                let option = ip.iter_options().next().unwrap();
                assert_eq!(option, Ipv4Option::RouterAlert { data: 0 });
                assert_eq!(ip.header_len(), 24);
                assert_eq!(ip.src_ip(), SOURCE);
                assert_eq!(ip.dst_ip(), MULTICAST);
            },
            |igmp| {
                assert_eq!(*igmp.header, MULTICAST);
            },
        )
    }

    #[test]
    fn test_parse_and_serialize_igmpv2_leave_with_options() {
        use crate::testdata::igmpv2_membership::leave::*;
        test_parse_and_serialize::<IgmpLeaveGroup, _, _>(
            IP_PACKET_BYTES,
            |ip| {
                assert_eq!(ip.ttl(), 1);
                assert_eq!(ip.iter_options().count(), 1);
                let option = ip.iter_options().next().unwrap();
                assert_eq!(option, Ipv4Option::RouterAlert { data: 0 });
                assert_eq!(ip.header_len(), 24);
                assert_eq!(ip.src_ip(), SOURCE);
                assert_eq!(ip.dst_ip(), DESTINATION);
            },
            |igmp| {
                assert_eq!(*igmp.header, MULTICAST);
            },
        )
    }
}