work_queue/
state.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use super::{Closed, TryMerge};
use futures::channel::oneshot;
use futures::future::{Either, Ready, Shared};
use futures::prelude::*;
use pin_project::pin_project;
use std::collections::VecDeque;
use std::pin::Pin;
use std::task::{Context, Poll};

#[pin_project]
pub(crate) struct TaskFuture<O> {
    #[pin]
    fut: Either<oneshot::Receiver<O>, Ready<Result<O, oneshot::Canceled>>>,
}

impl<O> Future for TaskFuture<O> {
    type Output = Result<O, Closed>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        match self.project().fut.poll(cx) {
            Poll::Pending => Poll::Pending,
            Poll::Ready(res) => Poll::Ready(res.map_err(|oneshot::Canceled| Closed)),
        }
    }
}

/// Shared state for a pending work item. Contains the context parameter to be provided to the task
/// when running it and other metadata present when running the task.
pub struct PendingWorkInfo<C, O> {
    context: C,
    running: RunningWorkInfo<O>,
}

/// Shared state for a single running work item. Contains the sending end of the shared future for sending
/// the result of the task and the clonable shared future that will resolve to that result.
pub struct RunningWorkInfo<O> {
    cb: oneshot::Sender<O>,
    fut: Shared<TaskFuture<O>>,
}

/// Metadata about pending and running instances of a task.
pub struct TaskVariants<C, O> {
    running: Option<RunningWorkInfo<O>>,
    pending: VecDeque<PendingWorkInfo<C, O>>,
}

impl<C, O> TaskVariants<C, O>
where
    C: TryMerge,
    O: Clone,
{
    /// Creates a new TaskVariants with a single, pending instance of this task, returning Self and
    /// the completion future for the initial instance of the task.
    pub(crate) fn new(context: C) -> (Self, Shared<TaskFuture<O>>) {
        let mut res = Self { running: None, pending: VecDeque::new() };
        let fut = res.push_back(context);
        (res, fut)
    }

    /// Attempts to merge the given context with an existing pending instance of this task, or
    /// enqueues a new instance of this task with the given context. Returns the completion future
    /// for the instance of the task.
    pub(crate) fn push(&mut self, mut context: C) -> Shared<TaskFuture<O>> {
        // First try to merge this task with another queued or running task.
        for info in self.pending.iter_mut() {
            if let Err(unmerged) = info.context.try_merge(context) {
                context = unmerged;
            } else {
                return info.running.fut.clone();
            }
        }

        // Otherwise, enqueue a new task.
        self.push_back(context)
    }

    fn push_back(&mut self, context: C) -> Shared<TaskFuture<O>> {
        let (sender, fut) = make_broadcast_pair();

        self.pending.push_back(PendingWorkInfo {
            context,
            running: RunningWorkInfo { cb: sender, fut: fut.clone() },
        });
        fut
    }
}

impl<C, O> TaskVariants<C, O> {
    /// Returns true iff an instance of the task is running.
    pub(crate) fn running(&self) -> bool {
        self.running.is_some()
    }

    /// Returns the number of pending instances of the task.
    pub(crate) fn pending(&self) -> usize {
        self.pending.len()
    }
}

impl<C, O> TaskVariants<C, O> {
    /// Starts the first instance of this task, claiming its context.
    ///
    /// # Panics
    ///
    /// Panics if the task has already been started.
    pub(crate) fn start(&mut self) -> C {
        self.try_start().expect("context to not yet be claimed")
    }

    /// Completes the running instance of this task, notifying waiters of the result and returning
    /// the context for the next instance of this task, if one exists.
    ///
    /// # Panics
    ///
    /// Panics if this method has previously returned `None`.
    pub(crate) fn done(&mut self, res: O) -> Option<C> {
        let cb = self.running.take().expect("running item to mark done").cb;

        // As the shared future was just removed from the running task, if all clones of that
        // future have also been dropped, this send can fail. Silently ignore that error.
        let _ = cb.send(res);

        // If further work for this key is queued, take and return its context.
        self.try_start()
    }

    fn try_start(&mut self) -> Option<C> {
        assert!(self.running.is_none());
        if let Some(PendingWorkInfo { context, running }) = self.pending.pop_front() {
            self.running = Some(running);
            Some(context)
        } else {
            None
        }
    }
}

/// Creates a sender and clonable receiver channel pair, where the receiver maps Canceled errors to
/// a [crate::TaskError].
pub(crate) fn make_broadcast_pair<O>() -> (oneshot::Sender<O>, Shared<TaskFuture<O>>)
where
    O: Clone,
{
    let (sender, receiver) = oneshot::channel();
    let fut = TaskFuture { fut: Either::Left(receiver) }.shared();

    (sender, fut)
}

/// Creates a clonable receiver of the same type as the receiving end of a broadcast receiver that
/// always reports that the task was canceled.
pub(crate) fn make_canceled_receiver<O>() -> Shared<TaskFuture<O>>
where
    O: Clone,
{
    TaskFuture { fut: Either::Right(futures::future::err(oneshot::Canceled)) }.shared()
}

#[cfg(test)]
mod tests {
    use super::super::tests::MergeEqual;
    use super::*;
    use futures::executor::block_on;

    #[test]
    fn merges() {
        let (mut infos, fut0_a) = TaskVariants::<MergeEqual, i32>::new(MergeEqual(0));

        let fut0_b = infos.push(MergeEqual(0));
        let fut1 = infos.push(MergeEqual(1));
        let fut0_c = infos.push(MergeEqual(0));
        let fut2 = infos.push(MergeEqual(2));

        // Start the first task. Start a dup of the first task that won't be merged.
        assert_eq!(infos.start(), MergeEqual(0));
        let fut0_d = infos.push(MergeEqual(0));

        // Complete the first instance and verify futures resolve.
        assert_eq!(infos.done(0), Some(MergeEqual(1)));
        assert_eq!(block_on(fut0_a), Ok(0));
        assert_eq!(block_on(fut0_b), Ok(0));
        assert_eq!(block_on(fut0_c), Ok(0));

        // Completing the second instance starts the third.
        assert_eq!(infos.done(1), Some(MergeEqual(2)));
        assert_eq!(block_on(fut1), Ok(1));

        // Completing the third instance starts the unmerged dup of the first.
        assert_eq!(infos.done(2), Some(MergeEqual(0)));
        assert_eq!(block_on(fut2), Ok(2));

        // The unmerged dup resolves with the result here, and no work is left.
        assert_eq!(infos.done(3), None);
        assert_eq!(block_on(fut0_d), Ok(3));
    }

    #[test]
    fn task_variants() {
        let (mut infos, fut1) = TaskVariants::<(), ()>::new(());
        let fut2 = infos.push(());

        let () = infos.start();
        assert_eq!(infos.done(()), None);

        block_on(async move {
            assert_eq!(fut1.await, Ok(()));
            assert_eq!(fut2.await, Ok(()));
        });
    }
}