fuchsia_async/runtime/fuchsia/executor/
common.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use super::super::timer::Timers;
use super::packets::{PacketReceiver, PacketReceiverMap, ReceiverRegistration};
use super::scope::ScopeHandle;
use super::time::{BootInstant, MonotonicInstant};
use crate::atomic_future::{AtomicFuture, AttemptPollResult};
use crossbeam::queue::SegQueue;
use fuchsia_sync::Mutex;
use zx::BootDuration;

use std::any::Any;
use std::cell::{Cell, RefCell};
use std::future::Future;
use std::mem::ManuallyDrop;
use std::sync::atomic::{AtomicBool, AtomicI64, AtomicU32, AtomicU64, AtomicUsize, Ordering};
use std::sync::{Arc, Weak};
use std::task::{Context, RawWaker, RawWakerVTable, Waker};
use std::{fmt, u64, usize};

pub(crate) const TASK_READY_WAKEUP_ID: u64 = u64::MAX - 1;

/// The id of the main task, which is a virtual task that lives from construction
/// to destruction of the executor. The main task may correspond to multiple
/// main futures, in cases where the executor runs multiple times during its lifetime.
pub(crate) const MAIN_TASK_ID: usize = 0;

thread_local!(
    static EXECUTOR: RefCell<Option<ScopeHandle>> = const { RefCell::new(None) }
);

pub enum ExecutorTime {
    RealTime,
    /// Fake readings used in tests.
    FakeTime {
        // The fake monotonic clock reading.
        mono_reading_ns: AtomicI64,
        // An offset to add to mono_reading_ns to get the reading of the boot
        // clock, disregarding the difference in timelines.
        //
        // We disregard the fact that the reading and offset can not be
        // read atomically, this is usually not relevant in tests.
        mono_to_boot_offset_ns: AtomicI64,
    },
}

enum PollReadyTasksResult {
    NoneReady,
    MoreReady,
    MainTaskCompleted,
}

///  24           16           8            0
///  +------------+------------+------------+
///  |  foreign   |  notified  |  sleeping  |
///  +------------+------------+------------+
///
///  sleeping : the number of threads sleeping
///  notified : the number of notifications posted to wake sleeping threads
///  foreign  : the number of foreign threads processing tasks
#[derive(Clone, Copy, Eq, PartialEq)]
struct ThreadsState(u32);

impl ThreadsState {
    const fn sleeping(&self) -> u8 {
        self.0 as u8
    }

    const fn notified(&self) -> u8 {
        (self.0 >> 8) as u8
    }

    const fn with_sleeping(self, sleeping: u8) -> Self {
        Self((self.0 & !0xff) | sleeping as u32)
    }

    const fn with_notified(self, notified: u8) -> Self {
        Self(self.0 & !0xff00 | (notified as u32) << 8)
    }

    const fn with_foreign(self, foreign: u8) -> Self {
        Self(self.0 & !0xff0000 | (foreign as u32) << 16)
    }
}

#[cfg(test)]
static ACTIVE_EXECUTORS: AtomicUsize = AtomicUsize::new(0);

pub(crate) struct Executor {
    pub(super) port: zx::Port,
    monotonic_timers: Arc<Timers<MonotonicInstant>>,
    boot_timers: Arc<Timers<BootInstant>>,
    pub(super) done: AtomicBool,
    is_local: bool,
    receivers: Mutex<PacketReceiverMap<Arc<dyn PacketReceiver>>>,
    task_count: AtomicUsize,
    pub(super) ready_tasks: SegQueue<Arc<Task>>,
    time: ExecutorTime,
    // The low byte is the number of threads currently sleeping. The high byte is the number of
    // of wake-up notifications pending.
    pub(super) threads_state: AtomicU32,
    pub(super) num_threads: u8,
    pub(super) polled: AtomicU64,
    // Data that belongs to the user that can be accessed via EHandle::local(). See
    // `TestExecutor::poll_until_stalled`.
    pub(super) owner_data: Mutex<Option<Box<dyn Any + Send>>>,
}

impl Executor {
    pub fn new(time: ExecutorTime, is_local: bool, num_threads: u8) -> Self {
        #[cfg(test)]
        ACTIVE_EXECUTORS.fetch_add(1, Ordering::Relaxed);

        let mut receivers: PacketReceiverMap<Arc<dyn PacketReceiver>> = PacketReceiverMap::new();

        // Is this a fake-time executor?
        let is_fake = matches!(
            time,
            ExecutorTime::FakeTime { mono_reading_ns: _, mono_to_boot_offset_ns: _ }
        );
        let monotonic_timers = receivers.insert(|key| {
            let timers = Arc::new(Timers::<MonotonicInstant>::new(key, is_fake));
            (timers.clone(), timers)
        });
        let boot_timers = receivers.insert(|key| {
            let timers = Arc::new(Timers::<BootInstant>::new(key, is_fake));
            (timers.clone(), timers)
        });

        Executor {
            port: zx::Port::create(),
            monotonic_timers,
            boot_timers,
            done: AtomicBool::new(false),
            is_local,
            receivers: Mutex::new(receivers),
            task_count: AtomicUsize::new(MAIN_TASK_ID + 1),
            ready_tasks: SegQueue::new(),
            time,
            threads_state: AtomicU32::new(0),
            num_threads,
            polled: AtomicU64::new(0),
            owner_data: Mutex::new(None),
        }
    }

    pub fn set_local(root_scope: ScopeHandle) {
        EXECUTOR.with(|e| {
            let mut e = e.borrow_mut();
            assert!(e.is_none(), "Cannot create multiple Fuchsia Executors");
            *e = Some(root_scope);
        });
    }

    fn poll_ready_tasks(&self) -> PollReadyTasksResult {
        loop {
            for _ in 0..16 {
                let Some(task) = self.ready_tasks.pop() else {
                    return PollReadyTasksResult::NoneReady;
                };
                let complete = self.try_poll(&task);
                if complete && task.id == MAIN_TASK_ID {
                    return PollReadyTasksResult::MainTaskCompleted;
                }
                self.polled.fetch_add(1, Ordering::Relaxed);
            }
            // We didn't finish all the ready tasks. If there are sleeping threads, post a
            // notification to wake one up.
            let mut threads_state = ThreadsState(self.threads_state.load(Ordering::Relaxed));
            loop {
                if threads_state.sleeping() == 0 {
                    // All threads are awake now. Prevent starvation.
                    return PollReadyTasksResult::MoreReady;
                }
                if threads_state.notified() >= threads_state.sleeping() {
                    // All sleeping threads have been notified. Keep going and poll more tasks.
                    break;
                }
                match self.try_notify(threads_state) {
                    Ok(()) => break,
                    Err(s) => threads_state = s,
                }
            }
        }
    }

    pub fn spawn(self: &Arc<Self>, scope: &ScopeHandle, future: AtomicFuture<'static>) -> usize {
        let next_id = self.task_count.fetch_add(1, Ordering::Relaxed);
        let task = {
            let task = Task::new(next_id, scope.clone(), future);
            if !scope.insert_task(next_id, task.clone()) {
                return usize::MAX;
            }
            task
        };
        task.wake();
        next_id
    }

    pub fn spawn_local<F: Future<Output = R> + 'static, R: 'static>(
        self: &Arc<Self>,
        scope: &ScopeHandle,
        future: F,
        detached: bool,
    ) -> usize {
        if !self.is_local {
            panic!(
                "Error: called `spawn_local` on multithreaded executor. \
                 Use `spawn` or a `LocalExecutor` instead."
            );
        }

        // SAFETY: We've confirmed that the futures here will never be used across multiple threads,
        // so the Send requirements that `new_local` requires should be met.
        self.spawn(scope, unsafe { AtomicFuture::new_local(future, detached) })
    }

    /// Spawns the main future.
    pub fn spawn_main(self: &Arc<Self>, root_scope: &ScopeHandle, future: AtomicFuture<'static>) {
        let task = Task::new(MAIN_TASK_ID, root_scope.clone(), future);
        if !root_scope.insert_task(MAIN_TASK_ID, task.clone()) {
            panic!("Could not spawn main task");
        }
        task.wake();
    }

    pub fn notify_task_ready(&self) {
        // Only post if there's no thread running (or soon to be running). If we happen to be
        // running on a thread for this executor, then threads_state won't be equal to num_threads,
        // which means notifications only get fired if this is from a non-async thread, or a thread
        // that belongs to a different executor. We use SeqCst ordering here to make sure this load
        // happens *after* the change to ready_tasks and to synchronize with worker_lifecycle.
        let mut threads_state = ThreadsState(self.threads_state.load(Ordering::SeqCst));

        // We only want to notify if there are no pending notifications and there are no other
        // threads running.
        while threads_state == ThreadsState(0).with_sleeping(self.num_threads) {
            match self.try_notify(threads_state) {
                Ok(()) => break,
                Err(s) => threads_state = s,
            }
        }
    }

    /// Tries to notify a thread to wake up. Returns threads_state if it fails.
    fn try_notify(&self, old_threads_state: ThreadsState) -> Result<(), ThreadsState> {
        self.threads_state
            .compare_exchange_weak(
                old_threads_state.0,
                old_threads_state.0 + ThreadsState(0).with_notified(1).0,
                Ordering::Relaxed,
                Ordering::Relaxed,
            )
            .map(|_| self.notify_id(TASK_READY_WAKEUP_ID))
            .map_err(ThreadsState)
    }

    pub fn wake_one_thread(&self) {
        let mut threads_state = ThreadsState(self.threads_state.load(Ordering::Relaxed));
        let current_sleeping = threads_state.sleeping();
        if current_sleeping == 0 {
            return;
        }
        while threads_state.notified() == 0 && threads_state.sleeping() >= current_sleeping {
            match self.try_notify(threads_state) {
                Ok(()) => break,
                Err(s) => threads_state = s,
            }
        }
    }

    pub fn notify_id(&self, id: u64) {
        let up = zx::UserPacket::from_u8_array([0; 32]);
        let packet = zx::Packet::from_user_packet(id, 0 /* status??? */, up);
        if let Err(e) = self.port.queue(&packet) {
            // TODO: logging
            eprintln!("Failed to queue notify in port: {:?}", e);
        }
    }

    pub fn deliver_packet(&self, key: u64, packet: zx::Packet) {
        let receiver = match self.receivers.lock().get(key) {
            // Clone the `Arc` so that we don't hold the lock
            // any longer than absolutely necessary.
            // The `receive_packet` impl may be arbitrarily complex.
            Some(receiver) => receiver.clone(),
            None => return,
        };
        receiver.receive_packet(packet);
    }

    /// Returns the current reading of the monotonic clock.
    ///
    /// For test executors running in fake time, returns the reading of the
    /// fake monotonic clock.
    pub fn now(&self) -> MonotonicInstant {
        match &self.time {
            ExecutorTime::RealTime => MonotonicInstant::from_zx(zx::MonotonicInstant::get()),
            ExecutorTime::FakeTime { mono_reading_ns: t, .. } => {
                MonotonicInstant::from_nanos(t.load(Ordering::Relaxed))
            }
        }
    }

    /// Returns the current reading of the boot clock.
    ///
    /// For test executors running in fake time, returns the reading of the
    /// fake boot clock.
    pub fn boot_now(&self) -> BootInstant {
        match &self.time {
            ExecutorTime::RealTime => BootInstant::from_zx(zx::BootInstant::get()),

            ExecutorTime::FakeTime { mono_reading_ns: t, mono_to_boot_offset_ns } => {
                // The two atomic values are loaded one after the other. This should
                // not normally be an issue in tests.
                let fake_mono_now = MonotonicInstant::from_nanos(t.load(Ordering::Relaxed));
                let boot_offset_ns = mono_to_boot_offset_ns.load(Ordering::Relaxed);
                BootInstant::from_nanos(fake_mono_now.into_nanos() + boot_offset_ns)
            }
        }
    }

    /// Sets the reading of the fake monotonic clock.
    ///
    /// # Panics
    ///
    /// If called on an executor that runs in real time.
    pub fn set_fake_time(&self, new: MonotonicInstant) {
        let boot_offset_ns = match &self.time {
            ExecutorTime::RealTime => {
                panic!("Error: called `set_fake_time` on an executor using actual time.")
            }
            ExecutorTime::FakeTime { mono_reading_ns: t, mono_to_boot_offset_ns } => {
                t.store(new.into_nanos(), Ordering::Relaxed);
                mono_to_boot_offset_ns.load(Ordering::Relaxed)
            }
        };
        self.monotonic_timers.maybe_notify(new);

        // Changing fake time also affects boot time.  Notify boot clocks as well.
        let new_boot_time = BootInstant::from_nanos(new.into_nanos() + boot_offset_ns);
        self.boot_timers.maybe_notify(new_boot_time);
    }

    // Sets a new offset between boot and monotonic time.
    //
    // Only works for executors operating in fake time.
    // The change in the fake offset will wake expired boot timers.
    pub fn set_fake_boot_to_mono_offset(&self, offset: BootDuration) {
        let mono_now_ns = match &self.time {
            ExecutorTime::RealTime => {
                panic!("Error: called `set_fake_boot_to_mono_offset` on an executor using actual time.")
            }
            ExecutorTime::FakeTime { mono_reading_ns: t, mono_to_boot_offset_ns: b } => {
                // We ignore the non-atomic update between b and t, it is likely
                // not relevant in tests.
                b.store(offset.into_nanos(), Ordering::Relaxed);
                t.load(Ordering::Relaxed)
            }
        };
        let new_boot_now = BootInstant::from_nanos(mono_now_ns) + offset;
        self.boot_timers.maybe_notify(new_boot_now);
    }

    /// Returns `true` if this executor is running in real time.  Returns
    /// `false` if this executor si running in fake time.
    pub fn is_real_time(&self) -> bool {
        matches!(self.time, ExecutorTime::RealTime)
    }

    /// Must be called before `on_parent_drop`.
    ///
    /// Done flag must be set before dropping packet receivers
    /// so that future receivers that attempt to deregister themselves
    /// know that it's okay if their entries are already missing.
    pub fn mark_done(&self) {
        self.done.store(true, Ordering::SeqCst);

        // Make sure there's at least one notification outstanding per thread to wake up all
        // workers. This might be more notifications than required, but this way we don't have to
        // worry about races where tasks are just about to sleep; when a task receives the
        // notification, it will check done and terminate.
        let mut threads_state = ThreadsState(self.threads_state.load(Ordering::Relaxed));
        let num_threads = self.num_threads;
        loop {
            let notified = threads_state.notified();
            if notified >= num_threads {
                break;
            }
            match self.threads_state.compare_exchange_weak(
                threads_state.0,
                threads_state.with_notified(num_threads).0,
                Ordering::Relaxed,
                Ordering::Relaxed,
            ) {
                Ok(_) => {
                    for _ in notified..num_threads {
                        self.notify_id(TASK_READY_WAKEUP_ID);
                    }
                    return;
                }
                Err(old) => threads_state = ThreadsState(old),
            }
        }
    }

    /// Notes about the lifecycle of an Executor.
    ///
    /// a) The Executor stands as the only way to run a reactor based on a Fuchsia port, but the
    /// lifecycle of the port itself is not currently tied to it. Executor vends clones of its
    /// inner Arc structure to all receivers, so we don't have a type-safe way of ensuring that
    /// the port is dropped alongside the Executor as it should.
    /// TODO(https://fxbug.dev/42154828): Ensure the port goes away with the executor.
    ///
    /// b) The Executor's lifetime is also tied to the thread-local variable pointing to the
    /// "current" executor being set, and that's unset when the executor is dropped.
    ///
    /// Point (a) is related to "what happens if I use a receiver after the executor is dropped",
    /// and point (b) is related to "what happens when I try to create a new receiver when there
    /// is no executor".
    ///
    /// Tokio, for example, encodes the lifetime of the reactor separately from the thread-local
    /// storage [1]. And the reactor discourages usage of strong references to it by vending weak
    /// references to it [2] instead of strong.
    ///
    /// There are pros and cons to both strategies. For (a), tokio encourages (but doesn't
    /// enforce [3]) type-safety by vending weak pointers, but those add runtime overhead when
    /// upgrading pointers. For (b) the difference mostly stand for "when is it safe to use IO
    /// objects/receivers". Tokio says it's only safe to use them whenever a guard is in scope.
    /// Fuchsia-async says it's safe to use them when a fuchsia_async::Executor is still in scope
    /// in that thread.
    ///
    /// This acts as a prelude to the panic encoded in Executor::drop when receivers haven't
    /// unregistered themselves when the executor drops. The choice to panic was made based on
    /// patterns in fuchsia-async that may come to change:
    ///
    /// - Executor vends strong references to itself and those references are *stored* by most
    /// receiver implementations (as opposed to reached out on TLS every time).
    /// - Fuchsia-async objects return zx::Status on wait calls, there isn't an appropriate and
    /// easy to understand error to return when polling on an extinct executor.
    /// - All receivers are implemented in this crate and well-known.
    ///
    /// [1]: https://docs.rs/tokio/1.5.0/tokio/runtime/struct.Runtime.html#method.enter
    /// [2]: https://github.com/tokio-rs/tokio/blob/b42f21ec3e212ace25331d0c13889a45769e6006/tokio/src/signal/unix/driver.rs#L35
    /// [3]: by returning an upgraded Arc, tokio trusts callers to not "use it for too long", an
    /// opaque non-clone-copy-or-send guard would be stronger than this. See:
    /// https://github.com/tokio-rs/tokio/blob/b42f21ec3e212ace25331d0c13889a45769e6006/tokio/src/io/driver/mod.rs#L297
    pub fn on_parent_drop(&self, root_scope: &ScopeHandle) {
        // Drop all tasks.
        // Any use of fasync::unblock can involve a waker. Wakers hold weak references to tasks, but
        // as part of waking, there's an upgrade to a strong reference, so for a small amount of
        // time `fasync::unblock` can hold a strong reference to a task which in turn holds the
        // future for the task which in turn could hold references to receivers, which, if we did
        // nothing about it, would trip the assertion below. For that reason, we forcibly drop the
        // task futures here.
        root_scope.drop_all_tasks();

        // Drop all of the uncompleted tasks
        while let Some(_) = self.ready_tasks.pop() {}

        // Unregister the timer receivers so that we can perform the check below.
        self.receivers.lock().remove(self.monotonic_timers.port_key());
        self.receivers.lock().remove(self.boot_timers.port_key());

        // Do not allow any receivers to outlive the executor. That's very likely a bug waiting to
        // happen. See discussion above.
        //
        // If you're here because you hit this panic check your code for:
        //
        // - A struct that contains a fuchsia_async::Executor NOT in the last position (last
        // position gets dropped last: https://doc.rust-lang.org/reference/destructors.html).
        //
        // - A function scope that contains a fuchsia_async::Executor NOT in the first position
        // (first position in function scope gets dropped last:
        // https://doc.rust-lang.org/reference/destructors.html?highlight=scope#drop-scopes).
        //
        // - A function that holds a `fuchsia_async::Executor` in scope and whose last statement
        // contains a temporary (temporaries are dropped after the function scope:
        // https://doc.rust-lang.org/reference/destructors.html#temporary-scopes). This usually
        // looks like a `match` statement at the end of the function without a semicolon.
        //
        // - Storing channel and FIDL objects in static variables.
        //
        // - fuchsia_async::unblock calls that move channels or FIDL objects to another thread.
        assert!(
            self.receivers.lock().mapping.is_empty(),
            "receivers must not outlive their executor"
        );

        // Remove the thread-local executor set in `new`.
        EHandle::rm_local();
    }

    // The debugger looks for this function on the stack, so if its (fully-qualified) name changes,
    // the debugger needs to be updated.
    // LINT.IfChange
    pub fn worker_lifecycle<const UNTIL_STALLED: bool>(self: &Arc<Executor>) {
        // LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
        loop {
            // Keep track of whether we are considered asleep.
            let mut sleeping = false;

            match self.poll_ready_tasks() {
                PollReadyTasksResult::NoneReady => {
                    // No more tasks, indicate we are sleeping. We use SeqCst ordering because we
                    // want this change here to happen *before* we check ready_tasks below. This
                    // synchronizes with notify_task_ready which is called *after* a task is added
                    // to ready_tasks.
                    const ONE_SLEEPING: ThreadsState = ThreadsState(0).with_sleeping(1);
                    self.threads_state.fetch_add(ONE_SLEEPING.0, Ordering::SeqCst);
                    // Check ready tasks again. If a task got posted, wake up. This has to be done
                    // because a notification won't get sent if there is at least one active thread
                    // so there's a window between the preceding two lines where a task could be
                    // made ready and a notification is not sent because it looks like there is at
                    // least one thread running.
                    if self.ready_tasks.is_empty() {
                        sleeping = true;
                    } else {
                        // We lost a race, we're no longer sleeping.
                        self.threads_state.fetch_sub(ONE_SLEEPING.0, Ordering::Relaxed);
                    }
                }
                PollReadyTasksResult::MoreReady => {}
                PollReadyTasksResult::MainTaskCompleted => return,
            }

            // Check done here after updating threads_state to avoid shutdown races.
            if self.done.load(Ordering::SeqCst) {
                return;
            }

            enum Work {
                None,
                Packet(zx::Packet),
                Stalled,
            }

            let mut notified = false;
            let work = {
                // If we're considered awake choose INFINITE_PAST which will make the wait call
                // return immediately.  Otherwise, wait until a packet arrives.
                let deadline = if !sleeping || UNTIL_STALLED {
                    zx::Instant::INFINITE_PAST
                } else {
                    zx::Instant::INFINITE
                };

                match self.port.wait(deadline) {
                    Ok(packet) => {
                        if packet.key() == TASK_READY_WAKEUP_ID {
                            notified = true;
                            Work::None
                        } else {
                            Work::Packet(packet)
                        }
                    }
                    Err(zx::Status::TIMED_OUT) => {
                        if !UNTIL_STALLED || !sleeping {
                            Work::None
                        } else {
                            Work::Stalled
                        }
                    }
                    Err(status) => {
                        panic!("Error calling port wait: {:?}", status);
                    }
                }
            };

            let threads_state_sub =
                ThreadsState(0).with_sleeping(sleeping as u8).with_notified(notified as u8);
            if threads_state_sub.0 > 0 {
                self.threads_state.fetch_sub(threads_state_sub.0, Ordering::Relaxed);
            }

            match work {
                Work::Packet(packet) => {
                    self.deliver_packet(packet.key(), packet);
                }
                Work::None => {}
                Work::Stalled => return,
            }
        }
    }

    /// Drops the main task.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that the executor isn't running.
    pub(super) unsafe fn drop_main_task(&self, root_scope: &ScopeHandle) {
        root_scope.drop_task_unchecked(MAIN_TASK_ID);
    }

    fn try_poll(&self, task: &Arc<Task>) -> bool {
        // SAFETY: We meet the contract for RawWaker/RawWakerVtable.
        let task_waker = unsafe {
            Waker::from_raw(RawWaker::new(Arc::as_ptr(task) as *const (), &BORROWED_VTABLE))
        };
        let poll_result = Task::set_current_with(&*task, || {
            task.future.try_poll(&mut Context::from_waker(&task_waker))
        });
        match poll_result {
            AttemptPollResult::Yield => {
                self.ready_tasks.push(task.clone());
                false
            }
            AttemptPollResult::IFinished | AttemptPollResult::Cancelled => {
                task.scope.task_did_finish(task.id);
                true
            }
            _ => false,
        }
    }

    /// Returns the monotonic timers.
    pub fn monotonic_timers(&self) -> &Timers<MonotonicInstant> {
        &self.monotonic_timers
    }

    /// Returns the boot timers.
    pub fn boot_timers(&self) -> &Timers<BootInstant> {
        &self.boot_timers
    }

    fn poll_tasks(&self, callback: impl FnOnce()) {
        assert!(!self.is_local);

        // Increment the count of foreign threads.
        const ONE_FOREIGN: ThreadsState = ThreadsState(0).with_foreign(1);
        self.threads_state.fetch_add(ONE_FOREIGN.0, Ordering::Relaxed);

        callback();

        // Poll up to 16 tasks.
        for _ in 0..16 {
            let Some(task) = self.ready_tasks.pop() else {
                break;
            };
            if self.try_poll(&task) && task.id == MAIN_TASK_ID {
                break;
            }
            self.polled.fetch_add(1, Ordering::Relaxed);
        }

        let mut threads_state = ThreadsState(
            self.threads_state.fetch_sub(ONE_FOREIGN.0, Ordering::SeqCst) - ONE_FOREIGN.0,
        );

        if !self.ready_tasks.is_empty() {
            // There are tasks still ready to run, so wake up a thread if all the other threads are
            // sleeping.
            while threads_state == ThreadsState(0).with_sleeping(self.num_threads) {
                match self.try_notify(threads_state) {
                    Ok(()) => break,
                    Err(s) => threads_state = s,
                }
            }
        }
    }
}

#[cfg(test)]
impl Drop for Executor {
    fn drop(&mut self) {
        ACTIVE_EXECUTORS.fetch_sub(1, Ordering::Relaxed);
    }
}

/// A handle to an executor.
#[derive(Clone)]
pub struct EHandle {
    // LINT.IfChange
    pub(super) root_scope: ScopeHandle,
    // LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
}

impl fmt::Debug for EHandle {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("EHandle").field("port", &self.inner().port).finish()
    }
}

impl EHandle {
    /// Returns the thread-local executor.
    ///
    /// # Panics
    ///
    /// If called outside the context of an active async executor.
    pub fn local() -> Self {
        let root_scope = EXECUTOR
            .with(|e| e.borrow().as_ref().map(|x| x.clone()))
            .expect("Fuchsia Executor must be created first");

        EHandle { root_scope }
    }

    pub(super) fn rm_local() {
        EXECUTOR.with(|e| *e.borrow_mut() = None);
    }

    /// The root scope of the executor.
    ///
    /// This can be used to spawn tasks that live as long as the executor, and
    /// to create shorter-lived child scopes.
    ///
    /// Most users should create an owned scope with
    /// [`Scope::new`][crate::Scope::new] instead of using this method.
    pub fn global_scope(&self) -> &ScopeHandle {
        &self.root_scope
    }

    /// Get a reference to the Fuchsia `zx::Port` being used to listen for events.
    pub fn port(&self) -> &zx::Port {
        &self.inner().port
    }

    /// Registers a `PacketReceiver` with the executor and returns a registration.
    /// The `PacketReceiver` will be deregistered when the `Registration` is dropped.
    pub fn register_receiver<T>(&self, receiver: Arc<T>) -> ReceiverRegistration<T>
    where
        T: PacketReceiver,
    {
        self.inner().receivers.lock().insert(|key| {
            (receiver.clone(), ReceiverRegistration { ehandle: self.clone(), key, receiver })
        })
    }

    #[inline(always)]
    pub(crate) fn inner(&self) -> &Arc<Executor> {
        &self.root_scope.executor()
    }

    pub(crate) fn deregister_receiver(&self, key: u64) {
        let mut lock = self.inner().receivers.lock();
        if lock.contains(key) {
            lock.remove(key);
        } else {
            // The executor is shutting down and already removed the entry.
            assert!(self.inner().done.load(Ordering::SeqCst), "Missing receiver to deregister");
        }
    }

    /// See `Inner::spawn`.
    pub(crate) fn spawn<R: Send + 'static>(
        &self,
        scope: &ScopeHandle,
        future: impl Future<Output = R> + Send + 'static,
    ) -> usize {
        self.inner().spawn(scope, AtomicFuture::new(future, false))
    }

    /// Spawn a new task to be run on this executor.
    ///
    /// Tasks spawned using this method must be thread-safe (implement the `Send` trait), as they
    /// may be run on either a singlethreaded or multithreaded executor.
    pub fn spawn_detached(&self, future: impl Future<Output = ()> + Send + 'static) {
        self.inner().spawn(self.global_scope(), AtomicFuture::new(future, true));
    }

    /// See `Inner::spawn_local`.
    pub(crate) fn spawn_local<R: 'static>(
        &self,
        scope: &ScopeHandle,
        future: impl Future<Output = R> + 'static,
    ) -> usize {
        self.inner().spawn_local(scope, future, false)
    }

    /// Spawn a new task to be run on this executor.
    ///
    /// This is similar to the `spawn_detached` method, but tasks spawned using this method do not
    /// have to be threads-safe (implement the `Send` trait). In return, this method requires that
    /// this executor is a LocalExecutor.
    pub fn spawn_local_detached(&self, future: impl Future<Output = ()> + 'static) {
        self.inner().spawn_local(self.global_scope(), future, true);
    }

    pub(crate) fn mono_timers(&self) -> &Arc<Timers<MonotonicInstant>> {
        &self.inner().monotonic_timers
    }

    pub(crate) fn boot_timers(&self) -> &Arc<Timers<BootInstant>> {
        &self.inner().boot_timers
    }

    /// Calls `callback` in the context of the executor and then polls (a limited number of) tasks
    /// that are ready to run.  If tasks remain ready and no other threads are running, a thread
    /// will be woken.  This can end up being a performance win in the case that the queue can be
    /// cleared without needing to wake any other thread.
    ///
    /// # Panics
    ///
    /// If called on a single-threaded executor or if this thread is a thread managed by the
    /// executor.
    pub fn poll_tasks(&self, callback: impl FnOnce()) {
        EXECUTOR.with(|e| {
            assert!(
                e.borrow_mut().replace(self.root_scope.clone()).is_none(),
                "This thread is already associated with an executor"
            );
        });

        self.inner().poll_tasks(callback);

        EXECUTOR.with(|e| *e.borrow_mut() = None);
    }
}

pub(super) struct Task {
    id: usize,
    pub(super) future: AtomicFuture<'static>,
    pub(super) scope: ScopeHandle,
}

impl Task {
    fn new(id: usize, scope: ScopeHandle, future: AtomicFuture<'static>) -> Arc<Self> {
        let this = Arc::new(Self { id, future, scope });

        // Take a weak reference now to be used as a waker.
        let _ = Arc::downgrade(&this).into_raw();

        this
    }

    pub(super) fn wake(self: &Arc<Self>) {
        if self.future.mark_ready() {
            self.scope.executor().ready_tasks.push(self.clone());
            self.scope.executor().notify_task_ready();
        }
    }
}

impl Drop for Task {
    fn drop(&mut self) {
        // SAFETY: This balances the `into_raw` in `new`.
        unsafe {
            // TODO(https://fxbug.dev/328126836): We might need to revisit this when pointer
            // provenance lands.
            Weak::from_raw(self);
        }
    }
}

thread_local! {
    static CURRENT_TASK: Cell<*const Task> = const { Cell::new(std::ptr::null()) };
}

impl Task {
    pub(crate) fn with_current<R>(f: impl FnOnce(Option<&Task>) -> R) -> R {
        CURRENT_TASK.with(|cur| {
            let cur = cur.get();
            let cur = unsafe { cur.as_ref() };
            f(cur)
        })
    }

    fn set_current_with<R>(task: &Task, f: impl FnOnce() -> R) -> R {
        CURRENT_TASK.with(|cur| {
            cur.set(task);
            let result = f();
            cur.set(std::ptr::null());
            result
        })
    }
}

// This vtable is used for the waker that exists for the lifetime of the task, which gets dropped
// above, so these functions never drop.
static BORROWED_VTABLE: RawWakerVTable =
    RawWakerVTable::new(waker_clone, waker_wake_by_ref, waker_wake_by_ref, waker_noop);

static VTABLE: RawWakerVTable =
    RawWakerVTable::new(waker_clone, waker_wake, waker_wake_by_ref, waker_drop);

fn waker_clone(weak_raw: *const ()) -> RawWaker {
    // SAFETY: `weak_raw` comes from a previous call to `into_raw`.
    let weak = ManuallyDrop::new(unsafe { Weak::from_raw(weak_raw as *const Task) });
    RawWaker::new((*weak).clone().into_raw() as *const _, &VTABLE)
}

fn waker_wake(weak_raw: *const ()) {
    // SAFETY: `weak_raw` comes from a previous call to `into_raw`.
    if let Some(task) = unsafe { Weak::from_raw(weak_raw as *const Task) }.upgrade() {
        task.wake();
    }
}

fn waker_wake_by_ref(weak_raw: *const ()) {
    // SAFETY: `weak_raw` comes from a previous call to `into_raw`.
    if let Some(task) =
        ManuallyDrop::new(unsafe { Weak::from_raw(weak_raw as *const Task) }).upgrade()
    {
        task.wake();
    }
}

fn waker_noop(_weak_raw: *const ()) {}

fn waker_drop(weak_raw: *const ()) {
    // SAFETY: `weak_raw` comes from a previous call to `into_raw`.
    unsafe {
        Weak::from_raw(weak_raw as *const Task);
    }
}

#[cfg(test)]
mod tests {
    use super::{EHandle, ACTIVE_EXECUTORS};
    use crate::SendExecutor;
    use std::sync::atomic::{AtomicU64, Ordering};
    use std::sync::Arc;

    #[test]
    fn test_no_leaks() {
        std::thread::spawn(|| SendExecutor::new(1).run(async {})).join().unwrap();

        assert_eq!(ACTIVE_EXECUTORS.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn poll_tasks() {
        SendExecutor::new(1).run(async {
            let ehandle = EHandle::local();

            // This will tie up the executor's only running thread which ensures that the task
            // we spawn below can only run on the foreign thread.
            std::thread::spawn(move || {
                let ran = Arc::new(AtomicU64::new(0));
                ehandle.poll_tasks(|| {
                    let ran = ran.clone();
                    ehandle.spawn_detached(async move {
                        ran.fetch_add(1, Ordering::Relaxed);
                    });
                });

                // The spawned task should have run in this thread.
                assert_eq!(ran.load(Ordering::Relaxed), 1);
            })
            .join()
            .unwrap();
        });
    }
}