surpass/layout/
slice_cache.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// IMPORTANT: Upon any code-related modification to this file, please ensure that all commented-out
//            tests that start with `fails_` actually fail to compile *independently* from one
//            another.

use std::marker::PhantomData;
use std::ops::{Bound, Deref, DerefMut, RangeBounds};
use std::ptr::NonNull;
use std::{fmt, hint, mem, slice};

use crossbeam_utils::atomic::AtomicCell;

// `SliceCache` is virtually identical to a `Vec<Range<usize>>` whose range are statically
// guaranteed not to overlap or overflow the initial `slice` that the object has been made with.
//
// This is achieved by forcing the user to produce `Span`s in a closure provided to the constructor
// from a root `Span` that cannot escape the closure.
//
// In `SliceCache::access`, we make sure that the slice doesn't overflow the `len` passed in
// `SliceCache::new` and then save the pointer to the global `ROOT` that is then guarded until the
// `Ref` is dropped.

#[repr(transparent)]
#[derive(Clone, Copy, Eq, PartialEq)]
struct SendNonNull<T> {
    ptr: NonNull<T>,
}

unsafe impl<T> Send for SendNonNull<T> {}

impl<T> From<NonNull<T>> for SendNonNull<T> {
    fn from(ptr: NonNull<T>) -> Self {
        Self { ptr }
    }
}

static ROOT: AtomicCell<Option<SendNonNull<()>>> = AtomicCell::new(None);

/// A [`prim@slice`] wrapper produced by [`SliceCache::access`].
#[repr(C)]
pub struct Slice<'a, T> {
    offset: isize,
    len: usize,
    _phantom: PhantomData<&'a mut [T]>,
}

// Since this type is equivalent to `&mut [T]`, it also implements `Send`.
unsafe impl<'a, T: Send> Send for Slice<'a, T> {}

// Since this type is equivalent to `&mut [T]`, it also implements `Sync`.
unsafe impl<'a, T: Sync> Sync for Slice<'a, T> {}

impl<'a, T> Deref for Slice<'a, T> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &'a Self::Target {
        let root: NonNull<T> = ROOT.load().unwrap().ptr.cast();

        // `Slice`s should only be dereferences when tainted with the `'s` lifetime from the
        // `SliceCache::access` method. This ensures that the slice that results from derefrencing
        // here will also be constrained by the same lifetime.
        //
        // This also expects the `ROOT` pointer to be correctly set up in `SliceCache::access`.
        unsafe { slice::from_raw_parts(root.as_ptr().offset(self.offset), self.len) }
    }
}

impl<'a, T> DerefMut for Slice<'a, T> {
    #[inline]
    fn deref_mut(&mut self) -> &'a mut Self::Target {
        let root: NonNull<T> = ROOT.load().unwrap().ptr.cast();

        // `Slice`s should only be dereferences when tainted with the `'s` lifetime from the
        // `SliceCache::access` method. This ensures that the slice that results from derefrencing
        // here will also be constrained by the same lifetime.
        //
        // This also expects the `ROOT` pointer to be correctly set up in `SliceCache::access`.
        unsafe { slice::from_raw_parts_mut(root.as_ptr().offset(self.offset), self.len) }
    }
}

impl<T: fmt::Debug> fmt::Debug for Slice<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

/// A marker produced by [`SliceCache`] that ensures that all resulting `Span`s will be mutually
/// non-overlapping.
///
/// # Examples
///
/// ```
/// # use surpass::layout::SliceCache;
/// let mut cache = SliceCache::new(4, |span| {
///     Box::new([span])
/// });
/// ```
#[repr(transparent)]
pub struct Span<'a>(Slice<'a, ()>);

impl<'a> Span<'a> {
    fn from_slice(slice: &Slice<'a, ()>) -> Self {
        Self(Slice { offset: slice.offset, len: slice.len, _phantom: PhantomData })
    }

    /// cache span at `mid`. Analogous to [`slice::split_at`].
    ///
    /// # Examples
    ///
    /// ```
    /// # use surpass::layout::SliceCache;
    /// let mut cache = SliceCache::new(4, |span| {
    ///     let (left, right) = span.split_at(2);
    ///     Box::new([left, right])
    /// });
    /// ```
    #[inline]
    pub fn slice<R: RangeBounds<usize>>(&self, range: R) -> Option<Self> {
        let start = match range.start_bound() {
            Bound::Included(&i) => i,
            Bound::Excluded(&i) => i + 1,
            Bound::Unbounded => 0,
        };
        let end = match range.end_bound() {
            Bound::Included(&i) => i + 1,
            Bound::Excluded(&i) => i,
            Bound::Unbounded => self.0.len,
        };

        (start <= end && end <= self.0.len)
            .then(|| Span(Slice { offset: self.0.offset + start as isize, len: end, ..self.0 }))
    }

    /// cache span at `mid`. Analogous to [`slice::split_at`].
    ///
    /// # Examples
    ///
    /// ```
    /// # use surpass::layout::SliceCache;
    /// let mut cache = SliceCache::new(4, |span| {
    ///     let (left, right) = span.split_at(2);
    ///     Box::new([left, right])
    /// });
    /// ```
    #[inline]
    pub fn split_at(&self, mid: usize) -> (Self, Self) {
        assert!(mid <= self.0.len);

        (
            Span(Slice { len: mid, ..self.0 }),
            Span(Slice { offset: self.0.offset + mid as isize, len: self.0.len - mid, ..self.0 }),
        )
    }

    /// Returns an [Iterator](Chunks) over `chunk_size` elements of thr slice. Analogous to [`slice::chunks`].
    ///
    /// # Examples
    ///
    /// ```
    /// # use surpass::layout::SliceCache;
    /// let mut cache = SliceCache::new(4, |span| {
    ///     span.chunks(2).collect()
    /// });
    /// ```
    #[inline]
    pub fn chunks(self, chunk_size: usize) -> Chunks<'a> {
        Chunks { slice: self.0, size: chunk_size }
    }
}

impl fmt::Debug for Span<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.offset.fmt(f)?;
        write!(f, "..")?;
        self.0.len.fmt(f)?;

        Ok(())
    }
}

/// An [iterator](std::iter::Iterator) returned by [`Span::chunks`].
pub struct Chunks<'a> {
    slice: Slice<'a, ()>,
    size: usize,
}

impl<'a> Iterator for Chunks<'a> {
    type Item = Span<'a>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        (self.slice.len > 0).then(|| {
            let span = Span(Slice { len: self.size.min(self.slice.len), ..self.slice });

            self.slice.offset += self.size as isize;
            self.slice.len = self.slice.len.saturating_sub(self.size);

            span
        })
    }
}

impl fmt::Debug for Chunks<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Chunks")
            .field("span", &Span::from_slice(&self.slice))
            .field("size", &self.size)
            .finish()
    }
}

/// A [reference] wrapper returned by [`SliceCache::access`].
#[repr(transparent)]
#[derive(Debug)]
pub struct Ref<'a, T: ?Sized>(&'a mut T);

impl<'a, T: ?Sized> Ref<'a, T> {
    pub fn get(&'a mut self) -> &'a mut T {
        self.0
    }
}

impl<T: ?Sized> Deref for Ref<'_, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.0
    }
}

impl<T: ?Sized> DerefMut for Ref<'_, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.0
    }
}

impl<T: ?Sized> Drop for Ref<'_, T> {
    #[inline]
    fn drop(&mut self) {
        ROOT.store(None);
    }
}

/// A cache of non-overlapping mutable sub-slices of that enforces lifetimes dynamically.
///
/// This type is useful when you have to give up on the mutable reference to a slice but need
/// a way to cache mutable sub-slices deriving from it.
///
/// # Examples
///
/// ```
/// # use surpass::layout::SliceCache;
/// let mut array = [1, 2, 3];
///
/// let mut cache = SliceCache::new(3, |span| {
///     let (left, right) = span.split_at(1);
///     Box::new([left, right])
/// });
///
/// for slice in cache.access(&mut array).unwrap().iter_mut() {
///     for val in slice.iter_mut() {
///         *val += 1;
///     }
/// }
///
/// assert_eq!(array, [2, 3, 4]);
/// ```
pub struct SliceCache {
    len: usize,
    slices: Box<[Slice<'static, ()>]>,
}

impl SliceCache {
    /// Creates a new slice cache by storing sub-spans created from a root passed to the closure
    /// `f`. `len` is the minimum slice length that can then be passed to [`access`](Self::access).
    ///
    /// # Examples
    ///
    /// ```
    /// # use surpass::layout::SliceCache;
    /// let mut cache = SliceCache::new(3, |span| {
    ///     let (left, right) = span.split_at(1);
    ///     // All returned sub-spans stem from the span passed above.
    ///     Box::new([left, right])
    /// });
    /// ```
    #[inline]
    pub fn new<F>(len: usize, f: F) -> Self
    where
        F: Fn(Span<'_>) -> Box<[Span<'_>]> + 'static,
    {
        let span = Span(Slice { offset: 0, len, _phantom: PhantomData });

        // `Span<'_>` is transparent over `Slice<'_, ()>`. Since the `'_` above is used just to
        // trap the span inside the closure, transmuting to `Slice<'static, ()>` does not make any
        // difference.
        Self { len, slices: unsafe { mem::transmute(f(span)) } }
    }

    /// Accesses the `slice` by returning all the sub-slices equivalent to the previously created
    /// [spans](Span) in the closure passed to [`new`](Self::new).
    ///
    /// If the `slice` does not have a length at least as large as the one passed to
    /// [`new`](Self::new), this function returns `None`.
    ///
    /// Note: this method should not be called concurrently with any other `access` calls since it
    /// will wait for the previously returned [`Ref`] to be dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # use surpass::layout::SliceCache;
    /// let mut array = [1, 2, 3];
    ///
    /// let mut cache = SliceCache::new(3, |span| {
    ///     let (left, right) = span.split_at(1);
    ///     Box::new([left, right])
    /// });
    ///
    /// let mut copy = array;
    /// let skipped_one = cache.access(&mut array).unwrap();
    ///
    /// assert_eq!(&*skipped_one[1], &copy[1..]);
    /// ```
    #[inline]
    pub fn access<'c, 's, T>(&'c mut self, slice: &'s mut [T]) -> Option<Ref<'c, [Slice<'s, T>]>> {
        if slice.len() >= self.len {
            while ROOT
                .compare_exchange(
                    None,
                    Some(NonNull::new(slice.as_mut_ptr()).unwrap().cast().into()),
                )
                .is_err()
            {
                // This spin lock here is mostly for being able to run tests in parallel. Being
                // able to render to `forma::Composition`s in parallel is currently not supported
                // and might poor performance due to priority inversion.
                hint::spin_loop();
            }

            // Generic `Slice<'static, ()>` are transmuted to `Slice<'s, T>`, enforcing the
            // original `slice`'s lifetime. Since slices are simply pairs of `(offset, len)`,
            // transmuting `()` to `T` relies on the `ROOT` being set up above with the correct pointer.
            return Some(unsafe { mem::transmute(&mut *self.slices) });
        }

        None
    }

    #[cfg(test)]
    fn try_access<'c, 's, T>(&'c mut self, slice: &'s mut [T]) -> Option<Ref<'c, [Slice<'s, T>]>> {
        if slice.len() >= self.len
            && ROOT
                .compare_exchange(
                    None,
                    Some(NonNull::new(slice.as_mut_ptr()).unwrap().cast().into()),
                )
                .is_ok()
        {
            // Generic `Slice<'static, ()>` are transmuted to `Slice<'s, T>`, enforcing the
            // original `slice`'s lifetime. Since slices are simply pairs of `(offset, len)`,
            // transmuting `()` to `T` relies on the `ROOT` being set up above with the correct pointer.
            return Some(unsafe { mem::transmute(&mut *self.slices) });
        }

        None
    }
}

impl fmt::Debug for SliceCache {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list().entries(self.slices.iter().map(Span::from_slice)).finish()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn split_at() {
        let mut cache = SliceCache::new(5, |span| {
            let (left, right) = span.split_at(2);
            Box::new([left, right])
        });
        let mut array = [1, 2, 3, 4, 5];

        for slice in cache.access(&mut array).unwrap().iter_mut() {
            for val in slice.iter_mut() {
                *val += 1;
            }
        }

        assert_eq!(array, [2, 3, 4, 5, 6]);
    }

    #[test]
    fn chunks() {
        let mut cache = SliceCache::new(5, |span| span.chunks(2).collect());
        let mut array = [1, 2, 3, 4, 5];

        for slice in cache.access(&mut array).unwrap().iter_mut() {
            for val in slice.iter_mut() {
                *val += 1;
            }
        }

        assert_eq!(array, [2, 3, 4, 5, 6]);
    }

    #[test]
    fn ref_twice() {
        let mut cache = SliceCache::new(5, |span| {
            let (left, right) = span.split_at(2);
            Box::new([left, right])
        });
        let mut array = [1, 2, 3, 4, 5];

        for slice in cache.access(&mut array).unwrap().iter_mut() {
            for val in slice.iter_mut() {
                *val += 1;
            }
        }

        for slice in cache.access(&mut array).unwrap().iter_mut() {
            for val in slice.iter_mut() {
                *val += 1;
            }
        }

        assert_eq!(array, [3, 4, 5, 6, 7]);
    }

    #[test]
    fn access_twice() {
        let mut cache0 = SliceCache::new(5, |span| Box::new([span]));
        let mut cache1 = SliceCache::new(5, |span| Box::new([span]));

        let mut array0 = [1, 2, 3, 4, 5];
        let mut array1 = [1, 2, 3, 4, 5];

        let _slices = cache0.access(&mut array0).unwrap();

        assert!(matches!(cache1.try_access(&mut array1), None));
    }

    // #[test]
    // fn fails_due_to_too_short_lifetime() {
    //     let mut cache = SliceCache::new(16, |span| Box::new([span]));

    //     let slices = {
    //         let mut buffer = [0u8; 16];

    //         let slices = cache.access(&mut buffer).unwrap();
    //         let slice = &mut *slices[0];

    //         slice
    //     };

    //     &slices[0];
    // }

    // #[test]
    // fn fails_due_to_mixed_spans() {
    //     SliceCache::new(16, |span0| {
    //         let (left, right) = span0.split_at(2);

    //         SliceCache::new(4, |span1| {
    //             Box::new([left])
    //         });

    //         Box::new([right])
    //     });
    // }

    // #[test]
    // fn fails_due_to_t_not_being_send() {
    //     use std::rc::Rc;

    //     use rayon::prelude::*;

    //     let mut array = [Rc::new(1), Rc::new(2), Rc::new(3)];

    //     let mut cache = SliceCache::new(3, |span| {
    //         let (left, right) = span.split_at(1);
    //         Box::new([left, right])
    //     });

    //     cache.access(&mut array).unwrap().par_iter_mut().for_each(|slice| {
    //         for val in slice.iter_mut() {
    //             *val += 1;
    //         }
    //     });
    // }

    // #[test]
    // fn fails_to_export_span() {
    //     let mut leaked = None;

    //     let mut cache0 = SliceCache::new(1, |span| {
    //         leaked = Some(span);
    //         Box::new([])
    //     });

    //     let mut cache1 = SliceCache::new(1, |span| {
    //         Box::new([leaked.take().unwrap()])
    //     });
    // }

    // #[test]
    // fn fails_due_to_dropped_slice() {
    //     let mut array = [1, 2, 3];

    //     let mut cache = SliceCache::new(3, |span| {
    //         let (left, right) = span.split_at(1);
    //         Box::new([left, right])
    //     });

    //     let slices = cache.access(&mut array).unwrap();

    //     std::mem::drop(array);

    //     slices[0][0] = 0;
    // }
}