dynfidl/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! An implementation of the [FIDL wire format] for laying out messages whose types are defined
//! at runtime.
//!
//! [FIDL wire format]: https://fuchsia.dev/fuchsia-src/reference/fidl/language/wire-format

/// A FIDL struct for encoding. Fields are defined in order.

#[derive(Default)]
pub struct Structure {
    fields: Vec<Field>,
}

impl Structure {
    fn alignment(&self) -> usize {
        let mut alignment = 1;
        for field in &self.fields {
            if field.alignment() > alignment {
                alignment = field.alignment();
            }
        }
        alignment
    }

    /// Add a field and its value to this dynamic struct definition.
    pub fn field(mut self, field: Field) -> Self {
        self.fields.push(field);
        self
    }

    /// Encode this struct into it's [persistent message encoding].
    ///
    /// [persistent message encoding]: https://fuchsia.dev/fuchsia-src/contribute/governance/rfcs/0120_standalone_use_of_fidl_wire_format
    pub fn encode_persistent(&self) -> Vec<u8> {
        let mut buf = Vec::new();

        // encode the persistent header:
        buf.push(0); // disambiguator
        buf.push(1); // current wire format magic number
        buf.extend(2u16.to_le_bytes()); // v2 wire format
        buf.extend([0; 4]); // reserved with zeroes

        // encode the body of the message
        self.encode(&mut buf);

        buf
    }

    /// Encode this struct without any header.
    pub fn encode(&self, buf: &mut Vec<u8>) {
        self.encode_inline(buf);
        // Externally, the structure is aligned on an 8-byte boundary, and may therefore contain
        // final padding to meet that requirement.
        buf.pad_to(8);
    }

    pub fn encode_inline(&self, buf: &mut Vec<u8>) {
        self.encode_fields(buf);
    }

    pub fn encode_fields(&self, buf: &mut Vec<u8>) {
        // encode the struct's fields:
        if self.fields.is_empty() {
            // A structure can be:
            //
            // * empty — it has no fields. Such a structure is 1 byte in size, with an alignment of
            // 1 byte, and is exactly equivalent to a structure containing a uint8 with the value
            // zero.
            BasicField::UInt8(0).encode_inline(buf);
        } else {
            // encode primary objects first
            for field in &self.fields {
                field.encode_inline(buf);
            }

            for field in &self.fields {
                field.encode_out_of_line(buf);
            }
            buf.pad_to(self.alignment());
        }
    }
}

/// A boxed struct. Boxes are encoded out of line, and are optional.
#[derive(Default)]
pub struct Box {
    inner: Option<Structure>,
}

impl Box {
    pub fn set_present(self) -> Self {
        Box {
            inner: match self.inner {
                Some(s) => Some(s),
                None => Some(Structure::default()),
            },
        }
    }
    /// Add a field and its value to this dynamic struct definition.
    pub fn field(mut self, field: Field) -> Self {
        self.inner = match self.inner {
            Some(s) => Some(s.field(field)),
            None => Some(Structure::default().field(field)),
        };
        self
    }

    fn alignment(&self) -> usize {
        8
    }

    fn encode_inline(&self, buf: &mut Vec<u8>) {
        // When encoded for transfer, `data` indicates presence of content:
        //   * `0`: struct is absent
        //   * `UINTPTR_MAX`: struct is present, data is the next out-of-line object */
        match &self.inner {
            None => buf.extend(0u64.to_le_bytes()),
            Some(_) => buf.extend(u64::MAX.to_le_bytes()),
        }
    }

    fn encode_out_of_line(&self, buf: &mut Vec<u8>) {
        match &self.inner {
            None => (),
            Some(s) => s.encode_fields(buf),
        }
    }
}

/// A field of a FIDL struct.
pub enum Field {
    Basic(BasicField),
    Vector(VectorField),
    Struct(Structure),
    Box(Box),
}

impl Field {
    fn alignment(&self) -> usize {
        match self {
            Self::Basic(b) => b.alignment(),
            Self::Vector(l) => l.alignment(),
            Self::Struct(s) => s.alignment(),
            Self::Box(s) => s.alignment(),
        }
    }

    fn encode_inline(&self, buf: &mut Vec<u8>) {
        buf.pad_to(self.alignment());
        match self {
            Self::Basic(b) => b.encode_inline(buf),
            Self::Vector(l) => l.encode_inline(buf),
            Self::Struct(s) => s.encode_inline(buf),
            Self::Box(s) => s.encode_inline(buf),
        }
    }

    fn encode_out_of_line(&self, buf: &mut Vec<u8>) {
        match self {
            Self::Basic(_) => (),
            Self::Vector(l) => {
                // each secondary object must be padded to 8 bytes, as well as the primary
                buf.pad_to(8);
                l.encode_out_of_line(buf);
            }
            Self::Struct(_) => (),
            Self::Box(s) => {
                // each secondary object must be padded to 8 bytes, as well as the primary
                buf.pad_to(8);
                s.encode_out_of_line(buf)
            }
        }
    }
}

pub enum BasicField {
    Bool(bool),
    UInt8(u8),
    UInt16(u16),
    UInt32(u32),
    UInt64(u64),
    Int8(i8),
    Int16(i16),
    Int32(i32),
    Int64(i64),
}

impl BasicField {
    fn encode_inline(&self, buf: &mut Vec<u8>) {
        match self {
            Self::Bool(b) => buf.push(if *b { 1u8 } else { 0u8 }),
            Self::UInt8(n) => buf.push(*n),
            Self::UInt16(n) => buf.extend(n.to_le_bytes()),
            Self::UInt32(n) => buf.extend(n.to_le_bytes()),
            Self::UInt64(n) => buf.extend(n.to_le_bytes()),
            Self::Int8(n) => buf.extend(n.to_le_bytes()),
            Self::Int16(n) => buf.extend(n.to_le_bytes()),
            Self::Int32(n) => buf.extend(n.to_le_bytes()),
            Self::Int64(n) => buf.extend(n.to_le_bytes()),
        }
    }

    fn alignment(&self) -> usize {
        match self {
            Self::Bool(_) | Self::UInt8(_) | Self::Int8(_) => 1,
            Self::UInt16(_) | Self::Int16(_) => 2,
            Self::UInt32(_) | Self::Int32(_) => 4,
            _ => 8,
        }
    }
}

pub enum VectorField {
    /// A null vector is one that does not exist.
    Null,
    BoolVector(Vec<bool>),
    UInt8Vector(Vec<u8>),
    UInt16Vector(Vec<u16>),
    UInt32Vector(Vec<u32>),
    UInt64Vector(Vec<u64>),
    Int8Vector(Vec<i8>),
    Int16Vector(Vec<i16>),
    Int32Vector(Vec<i32>),
    Int64Vector(Vec<i64>),
    // TODO(https://fxbug.dev/42169377) figure out a better api for nested vectors
    UInt8VectorVector(Vec<Vec<u8>>),
}

impl VectorField {
    fn alignment(&self) -> usize {
        8
    }

    fn encode_inline(&self, buf: &mut Vec<u8>) {
        // Stored as a 16 byte record consisting of:
        //   * `size`: 64-bit unsigned number of elements
        //   * `data`: 64-bit presence indication or pointer to out-of-line element data
        let size = match self {
            Self::Null => 0,
            Self::BoolVector(v) => v.len(),
            Self::UInt8Vector(v) => v.len(),
            Self::UInt16Vector(v) => v.len(),
            Self::UInt32Vector(v) => v.len(),
            Self::UInt64Vector(v) => v.len(),
            Self::Int8Vector(v) => v.len(),
            Self::Int16Vector(v) => v.len(),
            Self::Int32Vector(v) => v.len(),
            Self::Int64Vector(v) => v.len(),
            Self::UInt8VectorVector(v) => v.len(),
        } as u64;
        buf.extend(size.to_le_bytes());

        // When encoded for transfer, `data` indicates presence of content:
        //   * `0`: vector is absent
        //   * `UINTPTR_MAX`: vector is present, data is the next out-of-line object */
        match self {
            Self::Null => buf.extend(0u64.to_le_bytes()),
            _ => buf.extend(u64::MAX.to_le_bytes()),
        }
    }

    fn encode_out_of_line(&self, buf: &mut Vec<u8>) {
        match self {
            Self::Null => (),
            Self::BoolVector(v) => {
                for b in v {
                    BasicField::Bool(*b).encode_inline(buf);
                }
            }
            Self::UInt8Vector(v) => buf.extend(v),
            Self::UInt16Vector(v) => {
                for n in v {
                    BasicField::UInt16(*n).encode_inline(buf);
                }
            }
            Self::UInt32Vector(v) => {
                for n in v {
                    BasicField::UInt32(*n).encode_inline(buf);
                }
            }
            Self::UInt64Vector(v) => {
                for n in v {
                    BasicField::UInt64(*n).encode_inline(buf);
                }
            }
            Self::Int8Vector(v) => {
                for n in v {
                    BasicField::Int8(*n).encode_inline(buf);
                }
            }
            Self::Int16Vector(v) => {
                for n in v {
                    BasicField::Int16(*n).encode_inline(buf);
                }
            }
            Self::Int32Vector(v) => {
                for n in v {
                    BasicField::Int32(*n).encode_inline(buf);
                }
            }
            Self::Int64Vector(v) => {
                for n in v {
                    BasicField::Int64(*n).encode_inline(buf);
                }
            }
            Self::UInt8VectorVector(outer) => {
                let as_fields = outer
                    .iter()
                    .map(|v| Field::Vector(VectorField::UInt8Vector(v.clone())))
                    .collect::<Vec<_>>();

                for field in &as_fields {
                    field.encode_inline(buf);
                }
                for field in &as_fields {
                    field.encode_out_of_line(buf);
                }
            }
        }
    }
}

trait Padding {
    fn pad_to(&mut self, align: usize);
}

impl Padding for Vec<u8> {
    fn pad_to(&mut self, align: usize) {
        let start_len = self.len();
        let num_bytes = (align - (start_len % align)) % align;
        self.resize(start_len + num_bytes, 0);
    }
}