dynfidl/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! An implementation of the [FIDL wire format] for laying out messages whose types are defined
//! at runtime.
//!
//! [FIDL wire format]: https://fuchsia.dev/fuchsia-src/reference/fidl/language/wire-format
/// A FIDL struct for encoding. Fields are defined in order.
#[derive(Default)]
pub struct Structure {
fields: Vec<Field>,
}
impl Structure {
fn alignment(&self) -> usize {
let mut alignment = 1;
for field in &self.fields {
if field.alignment() > alignment {
alignment = field.alignment();
}
}
alignment
}
/// Add a field and its value to this dynamic struct definition.
pub fn field(mut self, field: Field) -> Self {
self.fields.push(field);
self
}
/// Encode this struct into it's [persistent message encoding].
///
/// [persistent message encoding]: https://fuchsia.dev/fuchsia-src/contribute/governance/rfcs/0120_standalone_use_of_fidl_wire_format
pub fn encode_persistent(&self) -> Vec<u8> {
let mut buf = Vec::new();
// encode the persistent header:
buf.push(0); // disambiguator
buf.push(1); // current wire format magic number
buf.extend(2u16.to_le_bytes()); // v2 wire format
buf.extend([0; 4]); // reserved with zeroes
// encode the body of the message
self.encode(&mut buf);
buf
}
/// Encode this struct without any header.
pub fn encode(&self, buf: &mut Vec<u8>) {
self.encode_inline(buf);
// Externally, the structure is aligned on an 8-byte boundary, and may therefore contain
// final padding to meet that requirement.
buf.pad_to(8);
}
pub fn encode_inline(&self, buf: &mut Vec<u8>) {
self.encode_fields(buf);
}
pub fn encode_fields(&self, buf: &mut Vec<u8>) {
// encode the struct's fields:
if self.fields.is_empty() {
// A structure can be:
//
// * empty — it has no fields. Such a structure is 1 byte in size, with an alignment of
// 1 byte, and is exactly equivalent to a structure containing a uint8 with the value
// zero.
BasicField::UInt8(0).encode_inline(buf);
} else {
// encode primary objects first
for field in &self.fields {
field.encode_inline(buf);
}
for field in &self.fields {
field.encode_out_of_line(buf);
}
buf.pad_to(self.alignment());
}
}
}
/// A boxed struct. Boxes are encoded out of line, and are optional.
#[derive(Default)]
pub struct Box {
inner: Option<Structure>,
}
impl Box {
pub fn set_present(self) -> Self {
Box {
inner: match self.inner {
Some(s) => Some(s),
None => Some(Structure::default()),
},
}
}
/// Add a field and its value to this dynamic struct definition.
pub fn field(mut self, field: Field) -> Self {
self.inner = match self.inner {
Some(s) => Some(s.field(field)),
None => Some(Structure::default().field(field)),
};
self
}
fn alignment(&self) -> usize {
8
}
fn encode_inline(&self, buf: &mut Vec<u8>) {
// When encoded for transfer, `data` indicates presence of content:
// * `0`: struct is absent
// * `UINTPTR_MAX`: struct is present, data is the next out-of-line object */
match &self.inner {
None => buf.extend(0u64.to_le_bytes()),
Some(_) => buf.extend(u64::MAX.to_le_bytes()),
}
}
fn encode_out_of_line(&self, buf: &mut Vec<u8>) {
match &self.inner {
None => (),
Some(s) => s.encode_fields(buf),
}
}
}
/// A field of a FIDL struct.
pub enum Field {
Basic(BasicField),
Vector(VectorField),
Struct(Structure),
Box(Box),
}
impl Field {
fn alignment(&self) -> usize {
match self {
Self::Basic(b) => b.alignment(),
Self::Vector(l) => l.alignment(),
Self::Struct(s) => s.alignment(),
Self::Box(s) => s.alignment(),
}
}
fn encode_inline(&self, buf: &mut Vec<u8>) {
buf.pad_to(self.alignment());
match self {
Self::Basic(b) => b.encode_inline(buf),
Self::Vector(l) => l.encode_inline(buf),
Self::Struct(s) => s.encode_inline(buf),
Self::Box(s) => s.encode_inline(buf),
}
}
fn encode_out_of_line(&self, buf: &mut Vec<u8>) {
match self {
Self::Basic(_) => (),
Self::Vector(l) => {
// each secondary object must be padded to 8 bytes, as well as the primary
buf.pad_to(8);
l.encode_out_of_line(buf);
}
Self::Struct(_) => (),
Self::Box(s) => {
// each secondary object must be padded to 8 bytes, as well as the primary
buf.pad_to(8);
s.encode_out_of_line(buf)
}
}
}
}
pub enum BasicField {
Bool(bool),
UInt8(u8),
UInt16(u16),
UInt32(u32),
UInt64(u64),
Int8(i8),
Int16(i16),
Int32(i32),
Int64(i64),
}
impl BasicField {
fn encode_inline(&self, buf: &mut Vec<u8>) {
match self {
Self::Bool(b) => buf.push(if *b { 1u8 } else { 0u8 }),
Self::UInt8(n) => buf.push(*n),
Self::UInt16(n) => buf.extend(n.to_le_bytes()),
Self::UInt32(n) => buf.extend(n.to_le_bytes()),
Self::UInt64(n) => buf.extend(n.to_le_bytes()),
Self::Int8(n) => buf.extend(n.to_le_bytes()),
Self::Int16(n) => buf.extend(n.to_le_bytes()),
Self::Int32(n) => buf.extend(n.to_le_bytes()),
Self::Int64(n) => buf.extend(n.to_le_bytes()),
}
}
fn alignment(&self) -> usize {
match self {
Self::Bool(_) | Self::UInt8(_) | Self::Int8(_) => 1,
Self::UInt16(_) | Self::Int16(_) => 2,
Self::UInt32(_) | Self::Int32(_) => 4,
_ => 8,
}
}
}
pub enum VectorField {
/// A null vector is one that does not exist.
Null,
BoolVector(Vec<bool>),
UInt8Vector(Vec<u8>),
UInt16Vector(Vec<u16>),
UInt32Vector(Vec<u32>),
UInt64Vector(Vec<u64>),
Int8Vector(Vec<i8>),
Int16Vector(Vec<i16>),
Int32Vector(Vec<i32>),
Int64Vector(Vec<i64>),
// TODO(https://fxbug.dev/42169377) figure out a better api for nested vectors
UInt8VectorVector(Vec<Vec<u8>>),
}
impl VectorField {
fn alignment(&self) -> usize {
8
}
fn encode_inline(&self, buf: &mut Vec<u8>) {
// Stored as a 16 byte record consisting of:
// * `size`: 64-bit unsigned number of elements
// * `data`: 64-bit presence indication or pointer to out-of-line element data
let size = match self {
Self::Null => 0,
Self::BoolVector(v) => v.len(),
Self::UInt8Vector(v) => v.len(),
Self::UInt16Vector(v) => v.len(),
Self::UInt32Vector(v) => v.len(),
Self::UInt64Vector(v) => v.len(),
Self::Int8Vector(v) => v.len(),
Self::Int16Vector(v) => v.len(),
Self::Int32Vector(v) => v.len(),
Self::Int64Vector(v) => v.len(),
Self::UInt8VectorVector(v) => v.len(),
} as u64;
buf.extend(size.to_le_bytes());
// When encoded for transfer, `data` indicates presence of content:
// * `0`: vector is absent
// * `UINTPTR_MAX`: vector is present, data is the next out-of-line object */
match self {
Self::Null => buf.extend(0u64.to_le_bytes()),
_ => buf.extend(u64::MAX.to_le_bytes()),
}
}
fn encode_out_of_line(&self, buf: &mut Vec<u8>) {
match self {
Self::Null => (),
Self::BoolVector(v) => {
for b in v {
BasicField::Bool(*b).encode_inline(buf);
}
}
Self::UInt8Vector(v) => buf.extend(v),
Self::UInt16Vector(v) => {
for n in v {
BasicField::UInt16(*n).encode_inline(buf);
}
}
Self::UInt32Vector(v) => {
for n in v {
BasicField::UInt32(*n).encode_inline(buf);
}
}
Self::UInt64Vector(v) => {
for n in v {
BasicField::UInt64(*n).encode_inline(buf);
}
}
Self::Int8Vector(v) => {
for n in v {
BasicField::Int8(*n).encode_inline(buf);
}
}
Self::Int16Vector(v) => {
for n in v {
BasicField::Int16(*n).encode_inline(buf);
}
}
Self::Int32Vector(v) => {
for n in v {
BasicField::Int32(*n).encode_inline(buf);
}
}
Self::Int64Vector(v) => {
for n in v {
BasicField::Int64(*n).encode_inline(buf);
}
}
Self::UInt8VectorVector(outer) => {
let as_fields = outer
.iter()
.map(|v| Field::Vector(VectorField::UInt8Vector(v.clone())))
.collect::<Vec<_>>();
for field in &as_fields {
field.encode_inline(buf);
}
for field in &as_fields {
field.encode_out_of_line(buf);
}
}
}
}
}
trait Padding {
fn pad_to(&mut self, align: usize);
}
impl Padding for Vec<u8> {
fn pad_to(&mut self, align: usize) {
let start_len = self.len();
let num_bytes = (align - (start_len % align)) % align;
self.resize(start_len + num_bytes, 0);
}
}