crossbeam_queue/
array_queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
//! The implementation is based on Dmitry Vyukov's bounded MPMC queue.
//!
//! Source:
//!   - <http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue>
//!
//! Copyright & License:
//!   - Copyright (c) 2010-2011 Dmitry Vyukov
//!   - Simplified BSD License and Apache License, Version 2.0
//!   - <http://www.1024cores.net/home/code-license>

use alloc::boxed::Box;
use core::cell::UnsafeCell;
use core::fmt;
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::sync::atomic::{self, AtomicUsize, Ordering};

use crossbeam_utils::{Backoff, CachePadded};

/// A slot in a queue.
struct Slot<T> {
    /// The current stamp.
    ///
    /// If the stamp equals the tail, this node will be next written to. If it equals head + 1,
    /// this node will be next read from.
    stamp: AtomicUsize,

    /// The value in this slot.
    value: UnsafeCell<MaybeUninit<T>>,
}

/// A bounded multi-producer multi-consumer queue.
///
/// This queue allocates a fixed-capacity buffer on construction, which is used to store pushed
/// elements. The queue cannot hold more elements than the buffer allows. Attempting to push an
/// element into a full queue will fail. Having a buffer allocated upfront makes this queue a bit
/// faster than [`SegQueue`].
///
/// [`SegQueue`]: super::SegQueue
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::new(2);
///
/// assert_eq!(q.push('a'), Ok(()));
/// assert_eq!(q.push('b'), Ok(()));
/// assert_eq!(q.push('c'), Err('c'));
/// assert_eq!(q.pop(), Some('a'));
/// ```
pub struct ArrayQueue<T> {
    /// The head of the queue.
    ///
    /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a
    /// single `usize`. The lower bits represent the index, while the upper bits represent the lap.
    ///
    /// Elements are popped from the head of the queue.
    head: CachePadded<AtomicUsize>,

    /// The tail of the queue.
    ///
    /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a
    /// single `usize`. The lower bits represent the index, while the upper bits represent the lap.
    ///
    /// Elements are pushed into the tail of the queue.
    tail: CachePadded<AtomicUsize>,

    /// The buffer holding slots.
    buffer: *mut Slot<T>,

    /// The queue capacity.
    cap: usize,

    /// A stamp with the value of `{ lap: 1, index: 0 }`.
    one_lap: usize,

    /// Indicates that dropping an `ArrayQueue<T>` may drop elements of type `T`.
    _marker: PhantomData<T>,
}

unsafe impl<T: Send> Sync for ArrayQueue<T> {}
unsafe impl<T: Send> Send for ArrayQueue<T> {}

impl<T> ArrayQueue<T> {
    /// Creates a new bounded queue with the given capacity.
    ///
    /// # Panics
    ///
    /// Panics if the capacity is zero.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::ArrayQueue;
    ///
    /// let q = ArrayQueue::<i32>::new(100);
    /// ```
    pub fn new(cap: usize) -> ArrayQueue<T> {
        assert!(cap > 0, "capacity must be non-zero");

        // Head is initialized to `{ lap: 0, index: 0 }`.
        // Tail is initialized to `{ lap: 0, index: 0 }`.
        let head = 0;
        let tail = 0;

        // Allocate a buffer of `cap` slots initialized
        // with stamps.
        let buffer = {
            let mut boxed: Box<[Slot<T>]> = (0..cap)
                .map(|i| {
                    // Set the stamp to `{ lap: 0, index: i }`.
                    Slot {
                        stamp: AtomicUsize::new(i),
                        value: UnsafeCell::new(MaybeUninit::uninit()),
                    }
                })
                .collect();
            let ptr = boxed.as_mut_ptr();
            mem::forget(boxed);
            ptr
        };

        // One lap is the smallest power of two greater than `cap`.
        let one_lap = (cap + 1).next_power_of_two();

        ArrayQueue {
            buffer,
            cap,
            one_lap,
            head: CachePadded::new(AtomicUsize::new(head)),
            tail: CachePadded::new(AtomicUsize::new(tail)),
            _marker: PhantomData,
        }
    }

    /// Attempts to push an element into the queue.
    ///
    /// If the queue is full, the element is returned back as an error.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::ArrayQueue;
    ///
    /// let q = ArrayQueue::new(1);
    ///
    /// assert_eq!(q.push(10), Ok(()));
    /// assert_eq!(q.push(20), Err(20));
    /// ```
    pub fn push(&self, value: T) -> Result<(), T> {
        let backoff = Backoff::new();
        let mut tail = self.tail.load(Ordering::Relaxed);

        loop {
            // Deconstruct the tail.
            let index = tail & (self.one_lap - 1);
            let lap = tail & !(self.one_lap - 1);

            // Inspect the corresponding slot.
            let slot = unsafe { &*self.buffer.add(index) };
            let stamp = slot.stamp.load(Ordering::Acquire);

            // If the tail and the stamp match, we may attempt to push.
            if tail == stamp {
                let new_tail = if index + 1 < self.cap {
                    // Same lap, incremented index.
                    // Set to `{ lap: lap, index: index + 1 }`.
                    tail + 1
                } else {
                    // One lap forward, index wraps around to zero.
                    // Set to `{ lap: lap.wrapping_add(1), index: 0 }`.
                    lap.wrapping_add(self.one_lap)
                };

                // Try moving the tail.
                match self.tail.compare_exchange_weak(
                    tail,
                    new_tail,
                    Ordering::SeqCst,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        // Write the value into the slot and update the stamp.
                        unsafe {
                            slot.value.get().write(MaybeUninit::new(value));
                        }
                        slot.stamp.store(tail + 1, Ordering::Release);
                        return Ok(());
                    }
                    Err(t) => {
                        tail = t;
                        backoff.spin();
                    }
                }
            } else if stamp.wrapping_add(self.one_lap) == tail + 1 {
                atomic::fence(Ordering::SeqCst);
                let head = self.head.load(Ordering::Relaxed);

                // If the head lags one lap behind the tail as well...
                if head.wrapping_add(self.one_lap) == tail {
                    // ...then the queue is full.
                    return Err(value);
                }

                backoff.spin();
                tail = self.tail.load(Ordering::Relaxed);
            } else {
                // Snooze because we need to wait for the stamp to get updated.
                backoff.snooze();
                tail = self.tail.load(Ordering::Relaxed);
            }
        }
    }

    /// Attempts to pop an element from the queue.
    ///
    /// If the queue is empty, `None` is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::ArrayQueue;
    ///
    /// let q = ArrayQueue::new(1);
    /// assert_eq!(q.push(10), Ok(()));
    ///
    /// assert_eq!(q.pop(), Some(10));
    /// assert!(q.pop().is_none());
    /// ```
    pub fn pop(&self) -> Option<T> {
        let backoff = Backoff::new();
        let mut head = self.head.load(Ordering::Relaxed);

        loop {
            // Deconstruct the head.
            let index = head & (self.one_lap - 1);
            let lap = head & !(self.one_lap - 1);

            // Inspect the corresponding slot.
            let slot = unsafe { &*self.buffer.add(index) };
            let stamp = slot.stamp.load(Ordering::Acquire);

            // If the the stamp is ahead of the head by 1, we may attempt to pop.
            if head + 1 == stamp {
                let new = if index + 1 < self.cap {
                    // Same lap, incremented index.
                    // Set to `{ lap: lap, index: index + 1 }`.
                    head + 1
                } else {
                    // One lap forward, index wraps around to zero.
                    // Set to `{ lap: lap.wrapping_add(1), index: 0 }`.
                    lap.wrapping_add(self.one_lap)
                };

                // Try moving the head.
                match self.head.compare_exchange_weak(
                    head,
                    new,
                    Ordering::SeqCst,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        // Read the value from the slot and update the stamp.
                        let msg = unsafe { slot.value.get().read().assume_init() };
                        slot.stamp
                            .store(head.wrapping_add(self.one_lap), Ordering::Release);
                        return Some(msg);
                    }
                    Err(h) => {
                        head = h;
                        backoff.spin();
                    }
                }
            } else if stamp == head {
                atomic::fence(Ordering::SeqCst);
                let tail = self.tail.load(Ordering::Relaxed);

                // If the tail equals the head, that means the channel is empty.
                if tail == head {
                    return None;
                }

                backoff.spin();
                head = self.head.load(Ordering::Relaxed);
            } else {
                // Snooze because we need to wait for the stamp to get updated.
                backoff.snooze();
                head = self.head.load(Ordering::Relaxed);
            }
        }
    }

    /// Returns the capacity of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::ArrayQueue;
    ///
    /// let q = ArrayQueue::<i32>::new(100);
    ///
    /// assert_eq!(q.capacity(), 100);
    /// ```
    pub fn capacity(&self) -> usize {
        self.cap
    }

    /// Returns `true` if the queue is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::ArrayQueue;
    ///
    /// let q = ArrayQueue::new(100);
    ///
    /// assert!(q.is_empty());
    /// q.push(1).unwrap();
    /// assert!(!q.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        let head = self.head.load(Ordering::SeqCst);
        let tail = self.tail.load(Ordering::SeqCst);

        // Is the tail lagging one lap behind head?
        // Is the tail equal to the head?
        //
        // Note: If the head changes just before we load the tail, that means there was a moment
        // when the channel was not empty, so it is safe to just return `false`.
        tail == head
    }

    /// Returns `true` if the queue is full.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::ArrayQueue;
    ///
    /// let q = ArrayQueue::new(1);
    ///
    /// assert!(!q.is_full());
    /// q.push(1).unwrap();
    /// assert!(q.is_full());
    /// ```
    pub fn is_full(&self) -> bool {
        let tail = self.tail.load(Ordering::SeqCst);
        let head = self.head.load(Ordering::SeqCst);

        // Is the head lagging one lap behind tail?
        //
        // Note: If the tail changes just before we load the head, that means there was a moment
        // when the queue was not full, so it is safe to just return `false`.
        head.wrapping_add(self.one_lap) == tail
    }

    /// Returns the number of elements in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_queue::ArrayQueue;
    ///
    /// let q = ArrayQueue::new(100);
    /// assert_eq!(q.len(), 0);
    ///
    /// q.push(10).unwrap();
    /// assert_eq!(q.len(), 1);
    ///
    /// q.push(20).unwrap();
    /// assert_eq!(q.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        loop {
            // Load the tail, then load the head.
            let tail = self.tail.load(Ordering::SeqCst);
            let head = self.head.load(Ordering::SeqCst);

            // If the tail didn't change, we've got consistent values to work with.
            if self.tail.load(Ordering::SeqCst) == tail {
                let hix = head & (self.one_lap - 1);
                let tix = tail & (self.one_lap - 1);

                return if hix < tix {
                    tix - hix
                } else if hix > tix {
                    self.cap - hix + tix
                } else if tail == head {
                    0
                } else {
                    self.cap
                };
            }
        }
    }
}

impl<T> Drop for ArrayQueue<T> {
    fn drop(&mut self) {
        // Get the index of the head.
        let hix = self.head.load(Ordering::Relaxed) & (self.one_lap - 1);

        // Loop over all slots that hold a message and drop them.
        for i in 0..self.len() {
            // Compute the index of the next slot holding a message.
            let index = if hix + i < self.cap {
                hix + i
            } else {
                hix + i - self.cap
            };

            unsafe {
                let p = {
                    let slot = &mut *self.buffer.add(index);
                    let value = &mut *slot.value.get();
                    value.as_mut_ptr()
                };
                p.drop_in_place();
            }
        }

        // Finally, deallocate the buffer, but don't run any destructors.
        unsafe {
            // Create a slice from the buffer to make
            // a fat pointer. Then, use Box::from_raw
            // to deallocate it.
            let ptr = core::slice::from_raw_parts_mut(self.buffer, self.cap) as *mut [Slot<T>];
            Box::from_raw(ptr);
        }
    }
}

impl<T> fmt::Debug for ArrayQueue<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("ArrayQueue { .. }")
    }
}