1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use {
    arbitrary::Arbitrary,
    fidl_fuchsia_wlan_ieee80211 as fidl_ieee80211,
    std::{
        borrow::Cow,
        fmt,
        ops::{Deref, Index},
        slice::SliceIndex,
        str,
    },
    thiserror::Error,
};

#[derive(Debug, Error)]
#[cfg_attr(test, derive(PartialEq, Eq))]
#[non_exhaustive]
pub enum SsidError {
    #[error("Invalid SSID length: {0} bytes (maximum is {})", fidl_ieee80211::MAX_SSID_BYTE_LEN)]
    Size(usize),
}

/// A newtype wrapping a boxed slice with bytes representing an SSID
/// element as defined by IEEE 802.11-2016 9.4.2.2.
///
/// Bytes representing an SSID read from a FIDL struct or persistent
/// storage should be immediately wrapped by this type to ensure proper
/// type-checking for their use as an SSID elsewhere in WLAN components.
///
/// The wrapped bytes are kept private to enforce the use of defined
/// methods to create a value of type [`Ssid`]. This ensures an [`Ssid`]
/// never contains more than the limit of 32 bytes.
///
/// [`Ssid`]: crate::ssid::Ssid
///
/// # Examples
///
/// Usage:
/// ```
/// let ssid: Ssid = Ssid::try_from("foo").unwrap();
/// assert_eq!(ssid, Ssid([0x66, 0x6F, 0x6F].into()));
///
/// let ssid: Ssid = Ssid::try_from([1, 2, 3, 4, 5]).unwrap();
/// assert_eq!(ssid, Ssid([0x01, 0x02, 0x03, 0x04, 0x05].into()));
///
/// let ssid: Ssid = Ssid::try_from(vec![1, 2, 3, 4, 5]).unwrap();
/// assert_eq!(ssid, Ssid([0x01, 0x02, 0x03, 0x04, 0x05].into()));
///
/// assert_eq!(ssid, [0x01, 0x02, 0x03, 0x04, 0x05]);
/// assert_eq!(ssid, vec![0x01, 0x02, 0x03, 0x04, 0x05]);
/// ```
#[derive(Arbitrary)] // Derive Arbitrary for fuzzer
#[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Ssid(Box<[u8]>);

impl AsRef<[u8]> for Ssid {
    fn as_ref(&self) -> &[u8] {
        &self.0[..]
    }
}

impl Deref for Ssid {
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        &self.0
    }
}

impl fmt::Display for Ssid {
    /// Return an SSID formatted as <ssid-BYTES> where BYTES are the bytes of the
    /// SSID encoded as uppercase hexadecimal characters.
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "<ssid-{}>", hex::encode(self.0.clone()))
    }
}

impl From<Ssid> for String {
    fn from(ssid: Ssid) -> String {
        ssid.to_string()
    }
}

impl From<Ssid> for Vec<u8> {
    fn from(ssid: Ssid) -> Vec<u8> {
        ssid.0.into_vec()
    }
}

impl<Idx> Index<Idx> for Ssid
where
    Idx: SliceIndex<[u8]>,
{
    type Output = Idx::Output;

    fn index(&self, index: Idx) -> &Self::Output {
        &self.0[index]
    }
}

impl PartialEq<Ssid> for Vec<u8> {
    fn eq(&self, other: &Ssid) -> bool {
        Ssid::deref(other)[..] == self[..]
    }
}

impl PartialEq<Vec<u8>> for Ssid {
    fn eq(&self, other: &Vec<u8>) -> bool {
        Ssid::deref(self)[..] == other[..]
    }
}

impl<const N: usize> PartialEq<[u8; N]> for Ssid {
    fn eq(&self, other: &[u8; N]) -> bool {
        Ssid::deref(self)[..] == other[..]
    }
}

impl<const N: usize> PartialEq<Ssid> for [u8; N] {
    fn eq(&self, other: &Ssid) -> bool {
        Ssid::deref(other)[..] == self[..]
    }
}

impl PartialEq<[u8]> for Ssid {
    fn eq(&self, other: &[u8]) -> bool {
        Ssid::deref(self)[..] == other[..]
    }
}

impl PartialEq<Ssid> for [u8] {
    fn eq(&self, other: &Ssid) -> bool {
        Ssid::deref(other)[..] == self[..]
    }
}

impl TryFrom<Box<[u8]>> for Ssid {
    type Error = SsidError;

    fn try_from(bytes: Box<[u8]>) -> Result<Self, Self::Error> {
        Ssid::check(&bytes)?;
        Ok(Ssid(bytes))
    }
}

impl<const N: usize> TryFrom<[u8; N]> for Ssid {
    type Error = SsidError;

    fn try_from(bytes: [u8; N]) -> Result<Self, Self::Error> {
        Ssid::check(&bytes)?;
        Ok(Ssid(bytes.into()))
    }
}

impl TryFrom<Box<str>> for Ssid {
    type Error = SsidError;

    fn try_from(s: Box<str>) -> Result<Self, Self::Error> {
        s.into_boxed_bytes().try_into()
    }
}

impl TryFrom<String> for Ssid {
    type Error = SsidError;

    fn try_from(s: String) -> Result<Self, Self::Error> {
        s.into_boxed_str().try_into()
    }
}

impl TryFrom<Vec<u8>> for Ssid {
    type Error = SsidError;

    fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
        bytes.into_boxed_slice().try_into()
    }
}

impl TryFrom<&str> for Ssid {
    type Error = SsidError;

    fn try_from(s: &str) -> Result<Self, Self::Error> {
        Ssid::check(s.as_bytes())?;
        Ok(Ssid(String::from(s).into_boxed_str().into_boxed_bytes()))
    }
}

impl TryFrom<&[u8]> for Ssid {
    type Error = SsidError;

    fn try_from(s: &[u8]) -> Result<Self, Self::Error> {
        Ssid::check(s)?;
        Ok(Ssid(s.to_vec().into_boxed_slice()))
    }
}

impl Ssid {
    /// Returns an `Ssid` for `ssid_bytes` from a source that already enforces the size of
    /// bytes does not exceed fidl_ieee80211::MAX_SSID_BYTE_LEN. This function should only
    /// be used when the caller is certain the limit is not exceeded since the check is
    /// intentionally skipped.
    ///
    /// For example, fuchsia.wlan.* FIDL messages use the fuchsia.wlan.ieee80211/Ssid alias
    /// for all messages that accept or return an SSID. This alias imposes the required
    /// maximum limit on SSID in the FIDL message itself and is therefore impossible to
    /// exceed.
    pub fn from_bytes_unchecked(ssid_bytes: Vec<u8>) -> Ssid {
        Ssid(ssid_bytes.into_boxed_slice())
    }

    /// Return an SSID formatted as a UTF-8 string, or <ssid-BYTES> if a UTF-8 error
    /// is encountered.
    pub fn to_string_not_redactable(&self) -> Cow<'_, str> {
        str::from_utf8(self.as_ref()).map(From::from).unwrap_or_else(|_| self.to_string().into())
    }

    pub fn empty() -> Ssid {
        Ssid([].into())
    }

    pub fn len(&self) -> usize {
        self.0.len()
    }

    pub fn to_vec(&self) -> Vec<u8> {
        self.0.clone().into()
    }

    fn check(bytes: &[u8]) -> Result<(), SsidError> {
        if bytes.len() > (fidl_ieee80211::MAX_SSID_BYTE_LEN as usize) {
            return Err(SsidError::Size(bytes.len()));
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use lazy_static::lazy_static;

    lazy_static! {
        static ref SSID_12345: Ssid = Ssid::try_from([0x01, 0x02, 0x03, 0x04, 0x05]).unwrap();
        static ref SSID_FOO: Ssid = Ssid::try_from([0x66, 0x6F, 0x6F]).unwrap();
    }

    #[test]
    fn ssid_check() {
        assert_eq!(Ok(()), Ssid::check(&[0x2; 0]));
        assert_eq!(Ok(()), Ssid::check(&[0x2; 20]));
        assert_eq!(Ok(()), Ssid::check(&[0x2; 32]));
        assert_eq!(Err(SsidError::Size(33)), Ssid::check(&[0x2; 33]));
    }

    #[test]
    fn ssid_as_ref() {
        let array_12345: [u8; 5] = [0x01, 0x02, 0x03, 0x04, 0x05];
        assert_eq!((*SSID_12345).as_ref(), array_12345.as_ref());
    }

    #[test]
    fn ssid_deref() {
        let array_12345: [u8; 5] = [0x01, 0x02, 0x03, 0x04, 0x05];
        assert_eq!(**SSID_12345, array_12345);
    }

    #[test]
    fn ssid_to_string() {
        assert_eq!(Ssid::empty().to_string(), "<ssid->");
        assert_eq!(SSID_FOO.to_string(), "<ssid-666f6f>");
        assert_eq!(SSID_12345.to_string(), "<ssid-0102030405>");
    }

    #[test]
    fn format_ssid() {
        assert_eq!(format!("{}", *SSID_12345), "<ssid-0102030405>");
    }

    #[test]
    fn ssid_into_vec() {
        assert_eq!(
            <Ssid as Into<Vec<u8>>>::into(SSID_12345.clone()),
            vec![0x01, 0x02, 0x03, 0x04, 0x05]
        );
    }

    #[test]
    fn ssid_try_from_boxed_slice_ok() {
        let ssid: Ssid =
            <Ssid as TryFrom<Box<[u8]>>>::try_from(Box::from([0x01, 0x02, 0x03, 0x04, 0x05]))
                .expect("Failed to convert Box<[u8]> to Ssid");
        assert_eq!(ssid, *SSID_12345);
    }

    #[test]
    fn ssid_try_from_array_ok() {
        let array = [0x01, 0x02, 0x03, 0x04, 0x05];
        let ssid: Ssid =
            <Ssid as TryFrom<[u8; 5]>>::try_from(array).expect("Failed to convert [u8; 5] to Ssid");
        assert_eq!(ssid, *SSID_12345);
    }

    #[test]
    fn ssid_try_from_boxed_str_ok() {
        let ssid: Ssid =
            <Ssid as TryFrom<Box<str>>>::try_from(String::from("foo").into_boxed_str())
                .expect("Failed to convert Box<str> to Ssid");
        assert_eq!(ssid, *SSID_FOO);
    }

    #[test]
    fn ssid_try_from_string_ok() {
        let ssid: Ssid = <Ssid as TryFrom<String>>::try_from(String::from("foo"))
            .expect("Failed to convert String to Ssid");
        assert_eq!(ssid, *SSID_FOO);
    }

    #[test]
    fn ssid_try_from_vec_ok() {
        let ssid: Ssid = <Ssid as TryFrom<Vec<u8>>>::try_from(vec![0x01, 0x02, 0x03, 0x04, 0x05])
            .expect("Failed to convert Vec<u8> to Ssid");
        assert_eq!(ssid, *SSID_12345);
    }

    #[test]
    fn ssid_try_from_str_ok() {
        let ssid: Ssid =
            <Ssid as TryFrom<&str>>::try_from("foo").expect("Failed to convert &str to Ssid");
        assert_eq!(ssid, *SSID_FOO);
    }

    #[test]
    fn ssid_try_from_slice_ok() {
        let ssid: Ssid = <Ssid as TryFrom<&[u8]>>::try_from(&[0x01, 0x02, 0x03, 0x04, 0x05])
            .expect("Failed to convert &[u8] to Ssid");
        assert_eq!(ssid, *SSID_12345);
    }

    #[test]
    fn ssid_try_from_array_err() {
        let ssid: Result<Ssid, SsidError> = <Ssid as TryFrom<[u8; 32]>>::try_from([0x03; 32]);
        assert!(matches!(ssid, Ok(_)));
        let ssid: Result<Ssid, SsidError> = <Ssid as TryFrom<[u8; 50]>>::try_from([0x03; 50]);
        assert!(matches!(ssid, Err(SsidError::Size(50))));
    }

    #[test]
    fn ssid_try_from_string_err() {
        let ssid: Result<Ssid, SsidError> =
            <Ssid as TryFrom<String>>::try_from(String::from("12345678901234567890123456789012"));
        assert!(matches!(ssid, Ok(_)));
        let ssid: Result<Ssid, SsidError> =
            <Ssid as TryFrom<String>>::try_from(String::from("123456789012345678901234567890123"));
        assert!(matches!(ssid, Err(SsidError::Size(33))));
    }

    #[test]
    fn ssid_try_from_vec_err() {
        let ssid: Result<Ssid, SsidError> = <Ssid as TryFrom<Vec<u8>>>::try_from(vec![0x07; 32]);
        assert!(matches!(ssid, Ok(_)));
        let ssid: Result<Ssid, SsidError> = <Ssid as TryFrom<Vec<u8>>>::try_from(vec![0x07; 100]);
        assert!(matches!(ssid, Err(SsidError::Size(100))));
    }

    #[test]
    fn ssid_try_from_str_err() {
        let ssid: Result<Ssid, SsidError> =
            <Ssid as TryFrom<&str>>::try_from("12345678901234567890123456789012");
        assert!(matches!(ssid, Ok(_)));
        let ssid: Result<Ssid, SsidError> =
            <Ssid as TryFrom<&str>>::try_from("123456789012345678901234567890123");
        assert!(matches!(ssid, Err(SsidError::Size(33))));
    }

    #[test]
    fn ssid_try_from_slice_err() {
        let ssid: Result<Ssid, SsidError> = <Ssid as TryFrom<&[u8]>>::try_from(&[0x01; 32]);
        assert!(matches!(ssid, Ok(_)));
        let ssid: Result<Ssid, SsidError> = <Ssid as TryFrom<&[u8]>>::try_from(&[0x01; 33]);
        assert!(matches!(ssid, Err(SsidError::Size(33))));
    }

    #[test]
    fn ssid_index() {
        assert_eq!(SSID_12345[0], 0x01);
        assert_eq!(SSID_12345[1], 0x02);
        assert_eq!(SSID_12345[2], 0x03);
        assert_eq!(SSID_12345[3], 0x04);
        assert_eq!(SSID_12345[4], 0x05);
    }

    #[test]
    fn ssid_partial_eq_vec() {
        assert_eq!(vec![], Ssid::empty());
        assert_eq!(Ssid::empty(), vec![]);

        assert_eq!(vec![1, 2, 3], Ssid::try_from([1, 2, 3]).unwrap());
        assert_eq!(Ssid::try_from([1, 2, 3]).unwrap(), vec![1, 2, 3]);

        assert_ne!(vec![1, 2], Ssid::try_from([1, 2, 3]).unwrap());
        assert_ne!(Ssid::try_from([1, 2, 3]).unwrap(), vec![1, 2]);
    }

    #[test]
    fn ssid_partial_eq_array() {
        assert_eq!([], Ssid::empty());
        assert_eq!(Ssid::empty(), []);

        assert_eq!([1, 2, 3], Ssid::try_from([1, 2, 3]).unwrap());
        assert_eq!(Ssid::try_from([1, 2, 3]).unwrap(), [1, 2, 3]);

        assert_ne!([1, 2], Ssid::try_from([1, 2, 3]).unwrap());
        assert_ne!(Ssid::try_from([1, 2, 3]).unwrap(), [1, 2]);
    }

    #[test]
    fn ssid_partial_eq_slice() {
        assert_eq!(&b""[..], &Ssid::empty());
        assert_eq!(&Ssid::empty(), &b""[..]);

        assert_eq!(&[1, 2, 3][..], &Ssid::try_from([1, 2, 3]).unwrap());
        assert_eq!(&Ssid::try_from([1, 2, 3]).unwrap(), &[1, 2, 3][..]);

        assert_ne!(&[1, 2][..], &Ssid::try_from([1, 2, 3]).unwrap());
        assert_ne!(&Ssid::try_from([1, 2, 3]).unwrap(), &[1, 2][..]);
    }

    #[test]
    fn ssid_to_string_not_redactable() {
        assert_eq!(Ssid::empty().to_string_not_redactable(), "");

        let sparkle_heart_ssid: Ssid = Ssid::try_from("💖").unwrap();
        assert_eq!(sparkle_heart_ssid.to_string_not_redactable(), "💖");

        let invalid_utf8_ssid: Ssid = Ssid::try_from([0x00, 0x9f, 0x92, 0x96]).unwrap();
        assert_eq!(invalid_utf8_ssid.to_string_not_redactable(), "<ssid-009f9296>");
    }

    #[test]
    fn ssid_empty() {
        assert_eq!(Ssid::empty(), Ssid::try_from([]).unwrap());
        assert_eq!(vec![], Ssid::empty());
        assert_eq!(Ssid::empty().to_string(), "<ssid->");
        assert_eq!(Ssid::empty().to_string_not_redactable(), "");
    }

    #[test]
    fn ssid_len() {
        assert_eq!(Ssid::empty().len(), 0);
        assert_eq!(SSID_FOO.len(), 3);
        assert_eq!(SSID_12345.len(), 5);
    }

    #[test]
    fn ssid_to_vec() {
        let ssid = SSID_12345.clone();
        assert_eq!(ssid.to_vec(), vec![0x01, 0x02, 0x03, 0x04, 0x05]);
        // ssid not dropped
        assert_eq!(<Ssid as Into<Vec<u8>>>::into(ssid), vec![0x01, 0x02, 0x03, 0x04, 0x05]);
    }
}