use crate::approxeq::ApproxEq;
use crate::trig::Trig;
use core::cmp::{Eq, PartialEq};
use core::hash::Hash;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, Sub, SubAssign};
use num_traits::{Float, FloatConst, NumCast, One, Zero};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Copy, Clone, Default, Debug, PartialEq, Eq, PartialOrd, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Angle<T> {
pub radians: T,
}
impl<T> Angle<T> {
#[inline]
pub fn radians(radians: T) -> Self {
Angle { radians }
}
#[inline]
pub fn get(self) -> T {
self.radians
}
}
impl<T> Angle<T>
where
T: Trig,
{
#[inline]
pub fn degrees(deg: T) -> Self {
Angle {
radians: T::degrees_to_radians(deg),
}
}
#[inline]
pub fn to_degrees(self) -> T {
T::radians_to_degrees(self.radians)
}
}
impl<T> Angle<T>
where
T: Rem<Output = T> + Sub<Output = T> + Add<Output = T> + Zero + FloatConst + PartialOrd + Copy,
{
pub fn positive(&self) -> Self {
let two_pi = T::PI() + T::PI();
let mut a = self.radians % two_pi;
if a < T::zero() {
a = a + two_pi;
}
Angle::radians(a)
}
pub fn signed(&self) -> Self {
Angle::pi() - (Angle::pi() - *self).positive()
}
}
impl<T> Angle<T>
where
T: Rem<Output = T>
+ Mul<Output = T>
+ Sub<Output = T>
+ Add<Output = T>
+ One
+ FloatConst
+ Copy,
{
pub fn angle_to(&self, to: Self) -> Self {
let two = T::one() + T::one();
let max = T::PI() * two;
let d = (to.radians - self.radians) % max;
Angle::radians(two * d % max - d)
}
pub fn lerp(&self, other: Self, t: T) -> Self {
*self + self.angle_to(other) * t
}
}
impl<T> Angle<T>
where
T: Float,
{
pub fn sin_cos(self) -> (T, T) {
self.radians.sin_cos()
}
}
impl<T> Angle<T>
where
T: Zero,
{
pub fn zero() -> Self {
Angle::radians(T::zero())
}
}
impl<T> Angle<T>
where
T: FloatConst + Add<Output = T>,
{
pub fn pi() -> Self {
Angle::radians(T::PI())
}
pub fn two_pi() -> Self {
Angle::radians(T::PI() + T::PI())
}
pub fn frac_pi_2() -> Self {
Angle::radians(T::FRAC_PI_2())
}
pub fn frac_pi_3() -> Self {
Angle::radians(T::FRAC_PI_3())
}
pub fn frac_pi_4() -> Self {
Angle::radians(T::FRAC_PI_4())
}
}
impl<T> Angle<T>
where
T: NumCast + Copy,
{
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Angle<NewT> {
self.try_cast().unwrap()
}
pub fn try_cast<NewT: NumCast>(&self) -> Option<Angle<NewT>> {
NumCast::from(self.radians).map(|radians| Angle { radians })
}
#[inline]
pub fn to_f32(&self) -> Angle<f32> {
self.cast()
}
#[inline]
pub fn to_f64(&self) -> Angle<f64> {
self.cast()
}
}
impl<T: Add<T, Output = T>> Add for Angle<T> {
type Output = Angle<T>;
fn add(self, other: Angle<T>) -> Angle<T> {
Angle::radians(self.radians + other.radians)
}
}
impl<T: AddAssign<T>> AddAssign for Angle<T> {
fn add_assign(&mut self, other: Angle<T>) {
self.radians += other.radians;
}
}
impl<T: Sub<T, Output = T>> Sub<Angle<T>> for Angle<T> {
type Output = Angle<T>;
fn sub(self, other: Angle<T>) -> <Self as Sub>::Output {
Angle::radians(self.radians - other.radians)
}
}
impl<T: SubAssign<T>> SubAssign for Angle<T> {
fn sub_assign(&mut self, other: Angle<T>) {
self.radians -= other.radians;
}
}
impl<T: Div<T, Output = T>> Div<Angle<T>> for Angle<T> {
type Output = T;
#[inline]
fn div(self, other: Angle<T>) -> T {
self.radians / other.radians
}
}
impl<T: Div<T, Output = T>> Div<T> for Angle<T> {
type Output = Angle<T>;
#[inline]
fn div(self, factor: T) -> Angle<T> {
Angle::radians(self.radians / factor)
}
}
impl<T: DivAssign<T>> DivAssign<T> for Angle<T> {
fn div_assign(&mut self, factor: T) {
self.radians /= factor;
}
}
impl<T: Mul<T, Output = T>> Mul<T> for Angle<T> {
type Output = Angle<T>;
#[inline]
fn mul(self, factor: T) -> Angle<T> {
Angle::radians(self.radians * factor)
}
}
impl<T: MulAssign<T>> MulAssign<T> for Angle<T> {
fn mul_assign(&mut self, factor: T) {
self.radians *= factor;
}
}
impl<T: Neg<Output = T>> Neg for Angle<T> {
type Output = Self;
fn neg(self) -> Self {
Angle::radians(-self.radians)
}
}
impl<T: ApproxEq<T>> ApproxEq<T> for Angle<T> {
#[inline]
fn approx_epsilon() -> T {
T::approx_epsilon()
}
#[inline]
fn approx_eq_eps(&self, other: &Angle<T>, approx_epsilon: &T) -> bool {
self.radians.approx_eq_eps(&other.radians, approx_epsilon)
}
}
#[test]
fn wrap_angles() {
use core::f32::consts::{FRAC_PI_2, PI};
assert!(Angle::radians(0.0).positive().approx_eq(&Angle::zero()));
assert!(Angle::radians(FRAC_PI_2)
.positive()
.approx_eq(&Angle::frac_pi_2()));
assert!(Angle::radians(-FRAC_PI_2)
.positive()
.approx_eq(&Angle::radians(3.0 * FRAC_PI_2)));
assert!(Angle::radians(3.0 * FRAC_PI_2)
.positive()
.approx_eq(&Angle::radians(3.0 * FRAC_PI_2)));
assert!(Angle::radians(5.0 * FRAC_PI_2)
.positive()
.approx_eq(&Angle::frac_pi_2()));
assert!(Angle::radians(2.0 * PI)
.positive()
.approx_eq(&Angle::zero()));
assert!(Angle::radians(-2.0 * PI)
.positive()
.approx_eq(&Angle::zero()));
assert!(Angle::radians(PI).positive().approx_eq(&Angle::pi()));
assert!(Angle::radians(-PI).positive().approx_eq(&Angle::pi()));
assert!(Angle::radians(FRAC_PI_2)
.signed()
.approx_eq(&Angle::frac_pi_2()));
assert!(Angle::radians(3.0 * FRAC_PI_2)
.signed()
.approx_eq(&-Angle::frac_pi_2()));
assert!(Angle::radians(5.0 * FRAC_PI_2)
.signed()
.approx_eq(&Angle::frac_pi_2()));
assert!(Angle::radians(2.0 * PI).signed().approx_eq(&Angle::zero()));
assert!(Angle::radians(-2.0 * PI).signed().approx_eq(&Angle::zero()));
assert!(Angle::radians(-PI).signed().approx_eq(&Angle::pi()));
assert!(Angle::radians(PI).signed().approx_eq(&Angle::pi()));
}
#[test]
fn lerp() {
type A = Angle<f32>;
let a = A::radians(1.0);
let b = A::radians(2.0);
assert!(a.lerp(b, 0.25).approx_eq(&Angle::radians(1.25)));
assert!(a.lerp(b, 0.5).approx_eq(&Angle::radians(1.5)));
assert!(a.lerp(b, 0.75).approx_eq(&Angle::radians(1.75)));
assert!(a
.lerp(b + A::two_pi(), 0.75)
.approx_eq(&Angle::radians(1.75)));
assert!(a
.lerp(b - A::two_pi(), 0.75)
.approx_eq(&Angle::radians(1.75)));
assert!(a
.lerp(b + A::two_pi() * 5.0, 0.75)
.approx_eq(&Angle::radians(1.75)));
}