euclid/
angle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::approxeq::ApproxEq;
use crate::trig::Trig;
use core::cmp::{Eq, PartialEq};
use core::hash::Hash;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, Sub, SubAssign};
use num_traits::{Float, FloatConst, NumCast, One, Zero};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

/// An angle in radians
#[derive(Copy, Clone, Default, Debug, PartialEq, Eq, PartialOrd, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Angle<T> {
    pub radians: T,
}

impl<T> Angle<T> {
    #[inline]
    pub fn radians(radians: T) -> Self {
        Angle { radians }
    }

    #[inline]
    pub fn get(self) -> T {
        self.radians
    }
}

impl<T> Angle<T>
where
    T: Trig,
{
    #[inline]
    pub fn degrees(deg: T) -> Self {
        Angle {
            radians: T::degrees_to_radians(deg),
        }
    }

    #[inline]
    pub fn to_degrees(self) -> T {
        T::radians_to_degrees(self.radians)
    }
}

impl<T> Angle<T>
where
    T: Rem<Output = T> + Sub<Output = T> + Add<Output = T> + Zero + FloatConst + PartialOrd + Copy,
{
    /// Returns this angle in the [0..2*PI[ range.
    pub fn positive(&self) -> Self {
        let two_pi = T::PI() + T::PI();
        let mut a = self.radians % two_pi;
        if a < T::zero() {
            a = a + two_pi;
        }
        Angle::radians(a)
    }

    /// Returns this angle in the ]-PI..PI] range.
    pub fn signed(&self) -> Self {
        Angle::pi() - (Angle::pi() - *self).positive()
    }
}

impl<T> Angle<T>
where
    T: Rem<Output = T>
        + Mul<Output = T>
        + Sub<Output = T>
        + Add<Output = T>
        + One
        + FloatConst
        + Copy,
{
    /// Returns the shortest signed angle between two angles.
    ///
    /// Takes wrapping and signs into account.
    pub fn angle_to(&self, to: Self) -> Self {
        let two = T::one() + T::one();
        let max = T::PI() * two;
        let d = (to.radians - self.radians) % max;

        Angle::radians(two * d % max - d)
    }

    /// Linear interpolation between two angles, using the shortest path.
    pub fn lerp(&self, other: Self, t: T) -> Self {
        *self + self.angle_to(other) * t
    }
}

impl<T> Angle<T>
where
    T: Float,
{
    /// Returns (sin(self), cos(self)).
    pub fn sin_cos(self) -> (T, T) {
        self.radians.sin_cos()
    }
}

impl<T> Angle<T>
where
    T: Zero,
{
    pub fn zero() -> Self {
        Angle::radians(T::zero())
    }
}

impl<T> Angle<T>
where
    T: FloatConst + Add<Output = T>,
{
    pub fn pi() -> Self {
        Angle::radians(T::PI())
    }

    pub fn two_pi() -> Self {
        Angle::radians(T::PI() + T::PI())
    }

    pub fn frac_pi_2() -> Self {
        Angle::radians(T::FRAC_PI_2())
    }

    pub fn frac_pi_3() -> Self {
        Angle::radians(T::FRAC_PI_3())
    }

    pub fn frac_pi_4() -> Self {
        Angle::radians(T::FRAC_PI_4())
    }
}

impl<T> Angle<T>
where
    T: NumCast + Copy,
{
    /// Cast from one numeric representation to another.
    #[inline]
    pub fn cast<NewT: NumCast>(&self) -> Angle<NewT> {
        self.try_cast().unwrap()
    }

    /// Fallible cast from one numeric representation to another.
    pub fn try_cast<NewT: NumCast>(&self) -> Option<Angle<NewT>> {
        NumCast::from(self.radians).map(|radians| Angle { radians })
    }

    // Convenience functions for common casts.

    /// Cast angle to `f32`.
    #[inline]
    pub fn to_f32(&self) -> Angle<f32> {
        self.cast()
    }

    /// Cast angle `f64`.
    #[inline]
    pub fn to_f64(&self) -> Angle<f64> {
        self.cast()
    }
}

impl<T: Add<T, Output = T>> Add for Angle<T> {
    type Output = Angle<T>;
    fn add(self, other: Angle<T>) -> Angle<T> {
        Angle::radians(self.radians + other.radians)
    }
}

impl<T: AddAssign<T>> AddAssign for Angle<T> {
    fn add_assign(&mut self, other: Angle<T>) {
        self.radians += other.radians;
    }
}

impl<T: Sub<T, Output = T>> Sub<Angle<T>> for Angle<T> {
    type Output = Angle<T>;
    fn sub(self, other: Angle<T>) -> <Self as Sub>::Output {
        Angle::radians(self.radians - other.radians)
    }
}

impl<T: SubAssign<T>> SubAssign for Angle<T> {
    fn sub_assign(&mut self, other: Angle<T>) {
        self.radians -= other.radians;
    }
}

impl<T: Div<T, Output = T>> Div<Angle<T>> for Angle<T> {
    type Output = T;
    #[inline]
    fn div(self, other: Angle<T>) -> T {
        self.radians / other.radians
    }
}

impl<T: Div<T, Output = T>> Div<T> for Angle<T> {
    type Output = Angle<T>;
    #[inline]
    fn div(self, factor: T) -> Angle<T> {
        Angle::radians(self.radians / factor)
    }
}

impl<T: DivAssign<T>> DivAssign<T> for Angle<T> {
    fn div_assign(&mut self, factor: T) {
        self.radians /= factor;
    }
}

impl<T: Mul<T, Output = T>> Mul<T> for Angle<T> {
    type Output = Angle<T>;
    #[inline]
    fn mul(self, factor: T) -> Angle<T> {
        Angle::radians(self.radians * factor)
    }
}

impl<T: MulAssign<T>> MulAssign<T> for Angle<T> {
    fn mul_assign(&mut self, factor: T) {
        self.radians *= factor;
    }
}

impl<T: Neg<Output = T>> Neg for Angle<T> {
    type Output = Self;
    fn neg(self) -> Self {
        Angle::radians(-self.radians)
    }
}

impl<T: ApproxEq<T>> ApproxEq<T> for Angle<T> {
    #[inline]
    fn approx_epsilon() -> T {
        T::approx_epsilon()
    }

    #[inline]
    fn approx_eq_eps(&self, other: &Angle<T>, approx_epsilon: &T) -> bool {
        self.radians.approx_eq_eps(&other.radians, approx_epsilon)
    }
}

#[test]
fn wrap_angles() {
    use core::f32::consts::{FRAC_PI_2, PI};

    assert!(Angle::radians(0.0).positive().approx_eq(&Angle::zero()));
    assert!(Angle::radians(FRAC_PI_2)
        .positive()
        .approx_eq(&Angle::frac_pi_2()));
    assert!(Angle::radians(-FRAC_PI_2)
        .positive()
        .approx_eq(&Angle::radians(3.0 * FRAC_PI_2)));
    assert!(Angle::radians(3.0 * FRAC_PI_2)
        .positive()
        .approx_eq(&Angle::radians(3.0 * FRAC_PI_2)));
    assert!(Angle::radians(5.0 * FRAC_PI_2)
        .positive()
        .approx_eq(&Angle::frac_pi_2()));
    assert!(Angle::radians(2.0 * PI)
        .positive()
        .approx_eq(&Angle::zero()));
    assert!(Angle::radians(-2.0 * PI)
        .positive()
        .approx_eq(&Angle::zero()));
    assert!(Angle::radians(PI).positive().approx_eq(&Angle::pi()));
    assert!(Angle::radians(-PI).positive().approx_eq(&Angle::pi()));

    assert!(Angle::radians(FRAC_PI_2)
        .signed()
        .approx_eq(&Angle::frac_pi_2()));
    assert!(Angle::radians(3.0 * FRAC_PI_2)
        .signed()
        .approx_eq(&-Angle::frac_pi_2()));
    assert!(Angle::radians(5.0 * FRAC_PI_2)
        .signed()
        .approx_eq(&Angle::frac_pi_2()));
    assert!(Angle::radians(2.0 * PI).signed().approx_eq(&Angle::zero()));
    assert!(Angle::radians(-2.0 * PI).signed().approx_eq(&Angle::zero()));
    assert!(Angle::radians(-PI).signed().approx_eq(&Angle::pi()));
    assert!(Angle::radians(PI).signed().approx_eq(&Angle::pi()));
}

#[test]
fn lerp() {
    type A = Angle<f32>;

    let a = A::radians(1.0);
    let b = A::radians(2.0);
    assert!(a.lerp(b, 0.25).approx_eq(&Angle::radians(1.25)));
    assert!(a.lerp(b, 0.5).approx_eq(&Angle::radians(1.5)));
    assert!(a.lerp(b, 0.75).approx_eq(&Angle::radians(1.75)));
    assert!(a
        .lerp(b + A::two_pi(), 0.75)
        .approx_eq(&Angle::radians(1.75)));
    assert!(a
        .lerp(b - A::two_pi(), 0.75)
        .approx_eq(&Angle::radians(1.75)));
    assert!(a
        .lerp(b + A::two_pi() * 5.0, 0.75)
        .approx_eq(&Angle::radians(1.75)));
}