1use crate::approxeq::ApproxEq;
11use crate::trig::Trig;
12use core::cmp::{Eq, PartialEq};
13use core::hash::Hash;
14use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, Sub, SubAssign};
15use num_traits::{Float, FloatConst, NumCast, One, Zero};
16#[cfg(feature = "serde")]
17use serde::{Deserialize, Serialize};
18
19#[derive(Copy, Clone, Default, Debug, PartialEq, Eq, PartialOrd, Hash)]
21#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
22pub struct Angle<T> {
23 pub radians: T,
24}
25
26impl<T> Angle<T> {
27 #[inline]
28 pub fn radians(radians: T) -> Self {
29 Angle { radians }
30 }
31
32 #[inline]
33 pub fn get(self) -> T {
34 self.radians
35 }
36}
37
38impl<T> Angle<T>
39where
40 T: Trig,
41{
42 #[inline]
43 pub fn degrees(deg: T) -> Self {
44 Angle {
45 radians: T::degrees_to_radians(deg),
46 }
47 }
48
49 #[inline]
50 pub fn to_degrees(self) -> T {
51 T::radians_to_degrees(self.radians)
52 }
53}
54
55impl<T> Angle<T>
56where
57 T: Rem<Output = T> + Sub<Output = T> + Add<Output = T> + Zero + FloatConst + PartialOrd + Copy,
58{
59 pub fn positive(&self) -> Self {
61 let two_pi = T::PI() + T::PI();
62 let mut a = self.radians % two_pi;
63 if a < T::zero() {
64 a = a + two_pi;
65 }
66 Angle::radians(a)
67 }
68
69 pub fn signed(&self) -> Self {
71 Angle::pi() - (Angle::pi() - *self).positive()
72 }
73}
74
75impl<T> Angle<T>
76where
77 T: Rem<Output = T>
78 + Mul<Output = T>
79 + Sub<Output = T>
80 + Add<Output = T>
81 + One
82 + FloatConst
83 + Copy,
84{
85 pub fn angle_to(&self, to: Self) -> Self {
89 let two = T::one() + T::one();
90 let max = T::PI() * two;
91 let d = (to.radians - self.radians) % max;
92
93 Angle::radians(two * d % max - d)
94 }
95
96 pub fn lerp(&self, other: Self, t: T) -> Self {
98 *self + self.angle_to(other) * t
99 }
100}
101
102impl<T> Angle<T>
103where
104 T: Float,
105{
106 pub fn sin_cos(self) -> (T, T) {
108 self.radians.sin_cos()
109 }
110}
111
112impl<T> Angle<T>
113where
114 T: Zero,
115{
116 pub fn zero() -> Self {
117 Angle::radians(T::zero())
118 }
119}
120
121impl<T> Angle<T>
122where
123 T: FloatConst + Add<Output = T>,
124{
125 pub fn pi() -> Self {
126 Angle::radians(T::PI())
127 }
128
129 pub fn two_pi() -> Self {
130 Angle::radians(T::PI() + T::PI())
131 }
132
133 pub fn frac_pi_2() -> Self {
134 Angle::radians(T::FRAC_PI_2())
135 }
136
137 pub fn frac_pi_3() -> Self {
138 Angle::radians(T::FRAC_PI_3())
139 }
140
141 pub fn frac_pi_4() -> Self {
142 Angle::radians(T::FRAC_PI_4())
143 }
144}
145
146impl<T> Angle<T>
147where
148 T: NumCast + Copy,
149{
150 #[inline]
152 pub fn cast<NewT: NumCast>(&self) -> Angle<NewT> {
153 self.try_cast().unwrap()
154 }
155
156 pub fn try_cast<NewT: NumCast>(&self) -> Option<Angle<NewT>> {
158 NumCast::from(self.radians).map(|radians| Angle { radians })
159 }
160
161 #[inline]
165 pub fn to_f32(&self) -> Angle<f32> {
166 self.cast()
167 }
168
169 #[inline]
171 pub fn to_f64(&self) -> Angle<f64> {
172 self.cast()
173 }
174}
175
176impl<T: Add<T, Output = T>> Add for Angle<T> {
177 type Output = Angle<T>;
178 fn add(self, other: Angle<T>) -> Angle<T> {
179 Angle::radians(self.radians + other.radians)
180 }
181}
182
183impl<T: AddAssign<T>> AddAssign for Angle<T> {
184 fn add_assign(&mut self, other: Angle<T>) {
185 self.radians += other.radians;
186 }
187}
188
189impl<T: Sub<T, Output = T>> Sub<Angle<T>> for Angle<T> {
190 type Output = Angle<T>;
191 fn sub(self, other: Angle<T>) -> <Self as Sub>::Output {
192 Angle::radians(self.radians - other.radians)
193 }
194}
195
196impl<T: SubAssign<T>> SubAssign for Angle<T> {
197 fn sub_assign(&mut self, other: Angle<T>) {
198 self.radians -= other.radians;
199 }
200}
201
202impl<T: Div<T, Output = T>> Div<Angle<T>> for Angle<T> {
203 type Output = T;
204 #[inline]
205 fn div(self, other: Angle<T>) -> T {
206 self.radians / other.radians
207 }
208}
209
210impl<T: Div<T, Output = T>> Div<T> for Angle<T> {
211 type Output = Angle<T>;
212 #[inline]
213 fn div(self, factor: T) -> Angle<T> {
214 Angle::radians(self.radians / factor)
215 }
216}
217
218impl<T: DivAssign<T>> DivAssign<T> for Angle<T> {
219 fn div_assign(&mut self, factor: T) {
220 self.radians /= factor;
221 }
222}
223
224impl<T: Mul<T, Output = T>> Mul<T> for Angle<T> {
225 type Output = Angle<T>;
226 #[inline]
227 fn mul(self, factor: T) -> Angle<T> {
228 Angle::radians(self.radians * factor)
229 }
230}
231
232impl<T: MulAssign<T>> MulAssign<T> for Angle<T> {
233 fn mul_assign(&mut self, factor: T) {
234 self.radians *= factor;
235 }
236}
237
238impl<T: Neg<Output = T>> Neg for Angle<T> {
239 type Output = Self;
240 fn neg(self) -> Self {
241 Angle::radians(-self.radians)
242 }
243}
244
245impl<T: ApproxEq<T>> ApproxEq<T> for Angle<T> {
246 #[inline]
247 fn approx_epsilon() -> T {
248 T::approx_epsilon()
249 }
250
251 #[inline]
252 fn approx_eq_eps(&self, other: &Angle<T>, approx_epsilon: &T) -> bool {
253 self.radians.approx_eq_eps(&other.radians, approx_epsilon)
254 }
255}
256
257#[test]
258fn wrap_angles() {
259 use core::f32::consts::{FRAC_PI_2, PI};
260
261 assert!(Angle::radians(0.0).positive().approx_eq(&Angle::zero()));
262 assert!(Angle::radians(FRAC_PI_2)
263 .positive()
264 .approx_eq(&Angle::frac_pi_2()));
265 assert!(Angle::radians(-FRAC_PI_2)
266 .positive()
267 .approx_eq(&Angle::radians(3.0 * FRAC_PI_2)));
268 assert!(Angle::radians(3.0 * FRAC_PI_2)
269 .positive()
270 .approx_eq(&Angle::radians(3.0 * FRAC_PI_2)));
271 assert!(Angle::radians(5.0 * FRAC_PI_2)
272 .positive()
273 .approx_eq(&Angle::frac_pi_2()));
274 assert!(Angle::radians(2.0 * PI)
275 .positive()
276 .approx_eq(&Angle::zero()));
277 assert!(Angle::radians(-2.0 * PI)
278 .positive()
279 .approx_eq(&Angle::zero()));
280 assert!(Angle::radians(PI).positive().approx_eq(&Angle::pi()));
281 assert!(Angle::radians(-PI).positive().approx_eq(&Angle::pi()));
282
283 assert!(Angle::radians(FRAC_PI_2)
284 .signed()
285 .approx_eq(&Angle::frac_pi_2()));
286 assert!(Angle::radians(3.0 * FRAC_PI_2)
287 .signed()
288 .approx_eq(&-Angle::frac_pi_2()));
289 assert!(Angle::radians(5.0 * FRAC_PI_2)
290 .signed()
291 .approx_eq(&Angle::frac_pi_2()));
292 assert!(Angle::radians(2.0 * PI).signed().approx_eq(&Angle::zero()));
293 assert!(Angle::radians(-2.0 * PI).signed().approx_eq(&Angle::zero()));
294 assert!(Angle::radians(-PI).signed().approx_eq(&Angle::pi()));
295 assert!(Angle::radians(PI).signed().approx_eq(&Angle::pi()));
296}
297
298#[test]
299fn lerp() {
300 type A = Angle<f32>;
301
302 let a = A::radians(1.0);
303 let b = A::radians(2.0);
304 assert!(a.lerp(b, 0.25).approx_eq(&Angle::radians(1.25)));
305 assert!(a.lerp(b, 0.5).approx_eq(&Angle::radians(1.5)));
306 assert!(a.lerp(b, 0.75).approx_eq(&Angle::radians(1.75)));
307 assert!(a
308 .lerp(b + A::two_pi(), 0.75)
309 .approx_eq(&Angle::radians(1.75)));
310 assert!(a
311 .lerp(b - A::two_pi(), 0.75)
312 .approx_eq(&Angle::radians(1.75)));
313 assert!(a
314 .lerp(b + A::two_pi() * 5.0, 0.75)
315 .approx_eq(&Angle::radians(1.75)));
316}