rand_pcg/pcg128.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright 2018 Developers of the Rand project.
// Copyright 2017 Paul Dicker.
// Copyright 2014-2017 Melissa O'Neill and PCG Project contributors
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! PCG random number generators
// This is the default multiplier used by PCG for 64-bit state.
const MULTIPLIER: u128 = 2549297995355413924u128 << 64 | 4865540595714422341;
use core::fmt;
use core::mem::transmute;
use rand_core::{RngCore, SeedableRng, Error, le};
/// A PCG random number generator (XSL 128/64 (MCG) variant).
///
/// Permuted Congruential Generator with 128-bit state, internal Multiplicative
/// Congruential Generator, and 64-bit output via "xorshift low (bits),
/// random rotation" output function.
///
/// This is a 128-bit MCG with the PCG-XSL-RR output function.
/// Note that compared to the standard `pcg64` (128-bit LCG with PCG-XSL-RR
/// output function), this RNG is faster, also has a long cycle, and still has
/// good performance on statistical tests.
///
/// Note: this RNG is only available using Rust 1.26 or later.
#[derive(Clone)]
#[cfg_attr(feature="serde1", derive(Serialize,Deserialize))]
pub struct Mcg128Xsl64 {
state: u128,
}
/// A friendly name for `Mcg128Xsl64`.
pub type Pcg64Mcg = Mcg128Xsl64;
impl Mcg128Xsl64 {
/// Construct an instance compatible with PCG seed.
///
/// Note that PCG specifies a default value for the parameter:
///
/// - `state = 0xcafef00dd15ea5e5`
pub fn new(state: u128) -> Self {
// Force low bit to 1, as in C version (C++ uses `state | 3` instead).
Mcg128Xsl64 { state: state | 1 }
}
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for Mcg128Xsl64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Mcg128Xsl64 {{}}")
}
}
/// We use a single 126-bit seed to initialise the state and select a stream.
/// Two `seed` bits (lowest order of last byte) are ignored.
impl SeedableRng for Mcg128Xsl64 {
type Seed = [u8; 16];
fn from_seed(seed: Self::Seed) -> Self {
// Read as if a little-endian u128 value:
let mut seed_u64 = [0u64; 2];
le::read_u64_into(&seed, &mut seed_u64);
let state = (seed_u64[0] as u128) |
(seed_u64[1] as u128) << 64;
Mcg128Xsl64::new(state)
}
}
impl RngCore for Mcg128Xsl64 {
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
// prepare the LCG for the next round
let state = self.state.wrapping_mul(MULTIPLIER);
self.state = state;
// Output function XSL RR ("xorshift low (bits), random rotation")
// Constants are for 128-bit state, 64-bit output
const XSHIFT: u32 = 64; // (128 - 64 + 64) / 2
const ROTATE: u32 = 122; // 128 - 6
let rot = (state >> ROTATE) as u32;
let xsl = ((state >> XSHIFT) as u64) ^ (state as u64);
xsl.rotate_right(rot)
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
// specialisation of impls::fill_bytes_via_next; approx 3x faster
let mut left = dest;
while left.len() >= 8 {
let (l, r) = {left}.split_at_mut(8);
left = r;
let chunk: [u8; 8] = unsafe {
transmute(self.next_u64().to_le())
};
l.copy_from_slice(&chunk);
}
let n = left.len();
if n > 0 {
let chunk: [u8; 8] = unsafe {
transmute(self.next_u64().to_le())
};
left.copy_from_slice(&chunk[..n]);
}
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
Ok(self.fill_bytes(dest))
}
}
#[cfg(test)]
mod tests {
use ::rand_core::{RngCore, SeedableRng};
use super::*;
#[test]
fn test_mcg128xsl64_construction() {
// Test that various construction techniques produce a working RNG.
let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
let mut rng1 = Mcg128Xsl64::from_seed(seed);
assert_eq!(rng1.next_u64(), 7071994460355047496);
let mut rng2 = Mcg128Xsl64::from_rng(&mut rng1).unwrap();
assert_eq!(rng2.next_u64(), 12300796107712034932);
let mut rng3 = Mcg128Xsl64::seed_from_u64(0);
assert_eq!(rng3.next_u64(), 6198063878555692194);
// This is the same as Mcg128Xsl64, so we only have a single test:
let mut rng4 = Pcg64Mcg::seed_from_u64(0);
assert_eq!(rng4.next_u64(), 6198063878555692194);
}
#[test]
fn test_mcg128xsl64_true_values() {
// Numbers copied from official test suite (C version).
let mut rng = Mcg128Xsl64::new(42);
let mut results = [0u64; 6];
for i in results.iter_mut() { *i = rng.next_u64(); }
let expected: [u64; 6] = [0x63b4a3a813ce700a, 0x382954200617ab24,
0xa7fd85ae3fe950ce, 0xd715286aa2887737, 0x60c92fee2e59f32c, 0x84c4e96beff30017];
assert_eq!(results, expected);
}
#[cfg(feature="serde1")]
#[test]
fn test_mcg128xsl64_serde() {
use bincode;
use std::io::{BufWriter, BufReader};
let mut rng = Mcg128Xsl64::seed_from_u64(0);
let buf: Vec<u8> = Vec::new();
let mut buf = BufWriter::new(buf);
bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
let buf = buf.into_inner().unwrap();
let mut read = BufReader::new(&buf[..]);
let mut deserialized: Mcg128Xsl64 = bincode::deserialize_from(&mut read).expect("Could not deserialize");
assert_eq!(rng.state, deserialized.state);
for _ in 0..16 {
assert_eq!(rng.next_u64(), deserialized.next_u64());
}
}
}