input_pipeline/autorepeater.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO(https://fxbug.dev/42170553): Check what happens with the modifier keys - we should perhaps maintain
// them.
//! Implements hardware key autorepeat.
//!
//! The [Autorepeater] is a bit of an exception among the stages of the input pipeline. This
//! handler does not implement [input_pipeline::InputHandler], as it requires a different approach
//! to event processing.
//!
//! Specifically, it requires the ability to interleave the events it generates into the
//! flow of "regular" events through the input pipeline. While the [input_pipeline::InputHandler]
//! trait could in principle be modified to admit this sort of approach to event processing, in
//! practice the [Autorepeater] is for now the only stage that requires this approach, so it is
//! not cost effective to retrofit all other handlers just for the sake of this one. We may
//! revisit this decision if we grow more stages that need autorepeat.
use crate::input_device::{self, Handled, InputDeviceDescriptor, InputDeviceEvent, InputEvent};
use crate::input_handler::InputHandlerStatus;
use crate::keyboard_binding::KeyboardEvent;
use crate::metrics;
use anyhow::{anyhow, Context, Result};
use fidl_fuchsia_settings as fsettings;
use fidl_fuchsia_ui_input3::{self as finput3, KeyEventType, KeyMeaning};
use fuchsia_async::{MonotonicInstant, Task, Timer};
use fuchsia_inspect::health::Reporter;
use futures::channel::mpsc::{self, UnboundedReceiver, UnboundedSender};
use futures::StreamExt;
use metrics_registry::*;
use std::cell::RefCell;
use std::rc::Rc;
use zx::MonotonicDuration;
/// The value range reserved for the modifier key meanings. See the documentation for
/// `fuchsia.ui.input3/NonPrintableKey` for details.
const RESERVED_MODIFIER_RANGE: std::ops::Range<u32> = finput3::NonPrintableKey::Alt.into_primitive()
..finput3::NonPrintableKey::Enter.into_primitive();
/// Typed autorepeat settings. Use [Default::default()] and the `into_with_*`
/// to create a new instance.
#[derive(Debug, PartialEq, Clone, Copy)]
pub struct Settings {
// The time delay before autorepeat kicks in.
delay: MonotonicDuration,
// The average period between two successive autorepeats. A reciprocal of
// the autorepeat rate.
period: MonotonicDuration,
}
impl Default for Settings {
fn default() -> Self {
Settings {
delay: MonotonicDuration::from_millis(250),
period: MonotonicDuration::from_millis(50),
}
}
}
impl From<fsettings::Autorepeat> for Settings {
/// Conversion, since [fsettings::Autorepeat] has untyped delay and period.
fn from(s: fsettings::Autorepeat) -> Self {
Self {
delay: MonotonicDuration::from_nanos(s.delay),
period: MonotonicDuration::from_nanos(s.period),
}
}
}
impl Settings {
/// Modifies the delay.
pub fn into_with_delay(self, delay: MonotonicDuration) -> Self {
Self { delay, ..self }
}
/// Modifies the period.
pub fn into_with_period(self, period: MonotonicDuration) -> Self {
Self { period, ..self }
}
}
// Whether the key is repeatable.
enum Repeatability {
// The key may autorepeat.
Yes,
// The key may not autorepeat.
No,
}
/// Determines whether the given key meaning corresponds to a key effect that
/// should be repeated.
fn repeatability(key_meaning: Option<KeyMeaning>) -> Repeatability {
match key_meaning {
Some(KeyMeaning::Codepoint(0)) => Repeatability::No,
Some(KeyMeaning::Codepoint(_)) => Repeatability::Yes, // A code point.
Some(KeyMeaning::NonPrintableKey(k)) => {
if RESERVED_MODIFIER_RANGE.contains(&k.into_primitive()) {
Repeatability::No
} else {
Repeatability::Yes
}
}
None => Repeatability::Yes, // Printable with US QWERTY keymap.
}
}
// An events multiplexer.
#[derive(Debug, Clone)]
enum AnyEvent {
// A keyboard input event.
Keyboard(KeyboardEvent, InputDeviceDescriptor, zx::MonotonicInstant, Handled),
// An input event other than keyboard.
NonKeyboard(InputEvent),
// A timer event.
Timeout,
}
impl TryInto<InputEvent> for AnyEvent {
type Error = anyhow::Error;
fn try_into(self) -> Result<InputEvent> {
match self {
AnyEvent::NonKeyboard(ev) => Ok(ev),
AnyEvent::Keyboard(ev, device_descriptor, event_time, handled) => Ok(InputEvent {
device_event: InputDeviceEvent::Keyboard(ev.into_with_folded_event()),
device_descriptor: device_descriptor,
event_time,
handled,
trace_id: None,
}),
_ => Err(anyhow!("not an InputEvent: {:?}", &self)),
}
}
}
// The state of the autorepeat generator.
#[derive(Debug, Clone)]
enum State {
/// Autorepeat is not active.
Dormant,
/// Autorepeat is armed, we are waiting for a timer event to expire, and when
/// it does, we generate a repeat event.
Armed {
// The keyboard event that caused the state to become Armed.
armed_event: KeyboardEvent,
// The descriptor is used to reconstruct an InputEvent when needed.
armed_descriptor: InputDeviceDescriptor,
// The autorepeat timer is used in the various stages of autorepeat
// waits.
// Not used directly, but rather kept because of its side effect.
_delay_timer: Rc<Task<()>>,
},
}
impl Default for State {
fn default() -> Self {
State::Dormant
}
}
// Logs an `event` before sending to `sink` for debugging.
fn unbounded_send_logged<T>(sink: &UnboundedSender<T>, event: T) -> Result<()>
where
for<'a> &'a T: std::fmt::Debug,
T: 'static + Sync + Send,
{
log::debug!("unbounded_send_logged: {:?}", &event);
sink.unbounded_send(event)?;
Ok(())
}
/// Creates a new autorepeat timer task.
///
/// The task will wait for the amount of time given in `delay`, and then send
/// a [AnyEvent::Timeout] to `sink`; unless it is canceled.
fn new_autorepeat_timer(
sink: UnboundedSender<AnyEvent>,
delay: MonotonicDuration,
metrics_logger: metrics::MetricsLogger,
) -> Rc<Task<()>> {
let task = Task::local(async move {
Timer::new(MonotonicInstant::after(delay)).await;
log::debug!("autorepeat timeout");
unbounded_send_logged(&sink, AnyEvent::Timeout).unwrap_or_else(|e| {
metrics_logger.log_error(
InputPipelineErrorMetricDimensionEvent::AutorepeatCouldNotFireTimer,
std::format!("could not fire autorepeat timer: {:?}", e),
);
});
});
Rc::new(task)
}
/// Maintains the internal autorepeat state.
///
/// The autorepeat tracks key presses and generates autorepeat key events for
/// the keys that are eligible for autorepeat.
pub struct Autorepeater {
// Internal events are multiplexed into this sender. We may make multiple
// clones to serialize async events.
event_sink: UnboundedSender<AnyEvent>,
// This end is consumed to get the multiplexed ordered events.
event_source: RefCell<UnboundedReceiver<AnyEvent>>,
// The current autorepeat state.
state: RefCell<State>,
// The autorepeat settings.
settings: Settings,
// The task that feeds input events into the processing loop.
_event_feeder: Task<()>,
/// The inventory of this handler's Inspect status.
inspect_status: InputHandlerStatus,
// The metrics logger.
metrics_logger: metrics::MetricsLogger,
}
impl Autorepeater {
/// Creates a new [Autorepeater]. The `source` is a receiver end through which
/// the input pipeline events are sent. You must submit [Autorepeater::run]
/// to an executor to start the event processing.
pub fn new(
source: UnboundedReceiver<InputEvent>,
input_handlers_node: &fuchsia_inspect::Node,
metrics_logger: metrics::MetricsLogger,
) -> Rc<Self> {
Self::new_with_settings(source, Default::default(), input_handlers_node, metrics_logger)
}
fn new_with_settings(
mut source: UnboundedReceiver<InputEvent>,
settings: Settings,
input_handlers_node: &fuchsia_inspect::Node,
metrics_logger: metrics::MetricsLogger,
) -> Rc<Self> {
let (event_sink, event_source) = mpsc::unbounded();
let inspect_status = InputHandlerStatus::new(
input_handlers_node,
"autorepeater",
/* generates_events */ true,
);
let cloned_metrics_logger = metrics_logger.clone();
// We need a task to feed input events into the channel read by `run()`.
// The task will run until there is at least one sender. When there
// are no more senders, `source.next().await` will return None, and
// this task will exit. The task will close the `event_sink` to
// signal to the other end that it will send no more events, which can
// be used for orderly shutdown.
let event_feeder = {
let event_sink = event_sink.clone();
Task::local(async move {
while let Some(event) = source.next().await {
match event {
InputEvent {
device_event: InputDeviceEvent::Keyboard(k),
device_descriptor,
event_time,
handled,
trace_id: _,
} if handled == Handled::No => unbounded_send_logged(
&event_sink,
AnyEvent::Keyboard(k, device_descriptor, event_time, handled),
)
.context("while forwarding a keyboard event"),
InputEvent {
device_event: _,
device_descriptor: _,
event_time: _,
handled: _,
trace_id: _,
} => unbounded_send_logged(&event_sink, AnyEvent::NonKeyboard(event))
.context("while forwarding a non-keyboard event"),
}
.unwrap_or_else(|e| {
cloned_metrics_logger.log_error(
InputPipelineErrorMetricDimensionEvent::AutorepeatCouldNotRunAutorepeat,
std::format!("could not run autorepeat: {:?}", e),
);
});
}
event_sink.close_channel();
})
};
Rc::new(Autorepeater {
event_sink,
event_source: RefCell::new(event_source),
state: RefCell::new(Default::default()),
settings,
_event_feeder: event_feeder,
inspect_status,
metrics_logger,
})
}
/// Run this function in an executor to start processing events. The
/// transformed event stream is available in `output`.
pub async fn run(self: &Rc<Self>, output: UnboundedSender<InputEvent>) -> Result<()> {
log::info!("key autorepeater installed");
let src = &mut *(self.event_source.borrow_mut());
while let Some(event) = src.next().await {
match event {
// Anything not a keyboard or any handled event gets forwarded as is.
AnyEvent::NonKeyboard(input_event) => unbounded_send_logged(&output, input_event)?,
AnyEvent::Keyboard(_, _, _, _) => {
if let Ok(e) = event.clone().try_into() {
self.inspect_status.count_received_event(e);
}
self.process_event(event, &output).await?
}
AnyEvent::Timeout => self.process_event(event, &output).await?,
}
}
// If we got to here, that means `src` was closed.
// Ensure that the channel closure is propagated correctly.
output.close_channel();
// In production we never expect `src` to close as the autorepeater
// should be operating continuously, so if we're here and we're in prod
// this is unexpected. That is why we return an error.
//
// But, in tests it is acceptable to ignore this error and let the
// function return. An orderly shutdown will result.
Err(anyhow!("recv loop is never supposed to terminate"))
}
pub fn set_handler_healthy(self: std::rc::Rc<Self>) {
self.inspect_status.health_node.borrow_mut().set_ok();
}
pub fn set_handler_unhealthy(self: std::rc::Rc<Self>, msg: &str) {
self.inspect_status.health_node.borrow_mut().set_unhealthy(msg);
}
// Replace the autorepeater state with a new one.
fn set_state(self: &Rc<Self>, state: State) {
log::debug!("set state: {:?}", &state);
self.state.replace(state);
}
// Get a copy of the current autorepeater state.
fn get_state(self: &Rc<Self>) -> State {
self.state.borrow().clone()
}
// Process a single `event`. Any forwarded or generated events are emitted
// into `output.
async fn process_event(
self: &Rc<Self>,
event: AnyEvent,
output: &UnboundedSender<InputEvent>,
) -> Result<()> {
let old_state = self.get_state();
log::debug!("process_event: current state: {:?}", &old_state);
log::debug!("process_event: inbound event: {:?}", &event);
match (old_state, event.clone()) {
// This is the initial state. We wait for a key event with a printable
// character, since those are autorepeatable.
(State::Dormant, AnyEvent::Keyboard(ev, descriptor, ..)) => {
match (ev.get_event_type_folded(), repeatability(ev.get_key_meaning())) {
// Only a printable key is a candidate for repeating.
// We start a delay timer and go to waiting.
(KeyEventType::Pressed, Repeatability::Yes) => {
let _delay_timer = new_autorepeat_timer(
self.event_sink.clone(),
self.settings.delay,
self.metrics_logger.clone(),
);
self.set_state(State::Armed {
armed_event: ev,
armed_descriptor: descriptor,
_delay_timer,
});
}
// Any other key type or key event does not get repeated.
(_, _) => {}
}
unbounded_send_logged(&output, event.try_into()?)?;
}
// A timeout comes while we are in dormant state. We expect
// no timeouts in this state. Perhaps this is a timer task
// that fired after it was canceled? In any case, do not act on it,
// but issue a warning.
(State::Dormant, AnyEvent::Timeout) => {
// This is unexpected, but not fatal. If you see this in the
// logs, we probably need to revisit the fuchsia_async::Task
// semantics.
log::warn!("spurious timeout in the autorepeater");
}
// A keyboard event comes in while autorepeat is armed.
//
// If the keyboard event comes in about the same key that was armed, we
// restart the repeat timer, to ensure repeated keypresses on the
// same key don't generate even more repetitions.
//
// If the keyboard event is about a different repeatable key, we
// restart the autorepeat timer with the new key. This means that
// an autorepeated sequence 'aaaaaabbbbbb' will pause for an
// additional repeat delay between the last 'a' and the first 'b'
// in the sequence.
//
// In all cases, pass the event onwards. No events are dropped
// from the event stream.
(State::Armed { armed_event, .. }, AnyEvent::Keyboard(ev, descriptor, ..)) => {
match (ev.get_event_type_folded(), repeatability(ev.get_key_meaning())) {
(KeyEventType::Pressed, Repeatability::Yes) => {
let _delay_timer = new_autorepeat_timer(
self.event_sink.clone(),
self.settings.delay,
self.metrics_logger.clone(),
);
self.set_state(State::Armed {
armed_event: ev,
armed_descriptor: descriptor,
_delay_timer,
});
}
(KeyEventType::Released, Repeatability::Yes) => {
// If the armed key was released, stop autorepeat.
// If the release was for another key, remain in the
// armed state.
if KeyboardEvent::same_key(&armed_event, &ev) {
self.set_state(State::Dormant);
}
}
// Any other event causes nothing special to happen.
_ => {}
}
unbounded_send_logged(&output, event.try_into()?)?;
}
// The timeout triggered while we are armed. This is an autorepeat!
(State::Armed { armed_event, armed_descriptor, .. }, AnyEvent::Timeout) => {
let _delay_timer = new_autorepeat_timer(
self.event_sink.clone(),
self.settings.period,
self.metrics_logger.clone(),
);
let new_event = armed_event
.clone()
.into_with_repeat_sequence(armed_event.get_repeat_sequence() + 1);
let new_event_time = input_device::event_time_or_now(None);
self.set_state(State::Armed {
armed_event: new_event.clone(),
armed_descriptor: armed_descriptor.clone(),
_delay_timer,
});
// Generate a new autorepeat event and ship it out.
let autorepeat_event =
AnyEvent::Keyboard(new_event, armed_descriptor, new_event_time, Handled::No);
unbounded_send_logged(&output, autorepeat_event.try_into()?)?;
}
// Forward all other events unmodified.
(_, AnyEvent::NonKeyboard(event)) => {
unbounded_send_logged(&output, event)?;
}
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::testing_utilities;
use fidl_fuchsia_input::Key;
use fuchsia_async::TestExecutor;
use futures::Future;
use pretty_assertions::assert_eq;
use std::pin::pin;
use std::task::Poll;
// Default autorepeat settings used for test. If these settings are changed,
// any tests may fail, since the tests are tuned to the precise timing that
// is set here.
fn default_settings() -> Settings {
Settings {
delay: MonotonicDuration::from_millis(500),
period: MonotonicDuration::from_seconds(1),
}
}
// Creates a new keyboard event for testing.
fn new_event(
key: Key,
event_type: KeyEventType,
key_meaning: Option<KeyMeaning>,
repeat_sequence: u32,
) -> InputEvent {
testing_utilities::create_keyboard_event_with_key_meaning_and_repeat_sequence(
key,
event_type,
/*modifiers=*/ None,
/*event_time*/ zx::MonotonicInstant::ZERO,
&InputDeviceDescriptor::Fake,
/*keymap=*/ None,
key_meaning,
repeat_sequence,
)
}
fn new_handled_event(
key: Key,
event_type: KeyEventType,
key_meaning: Option<KeyMeaning>,
repeat_sequence: u32,
) -> InputEvent {
let event = new_event(key, event_type, key_meaning, repeat_sequence);
// Somewhat surprisingly, this works.
InputEvent { handled: Handled::Yes, ..event }
}
// A shorthand for blocking the specified number of milliseconds, asynchronously.
async fn wait_for_millis(millis: i64) {
wait_for_duration(zx::MonotonicDuration::from_millis(millis)).await;
}
async fn wait_for_duration(duration: MonotonicDuration) {
fuchsia_async::Timer::new(MonotonicInstant::after(duration)).await;
}
// Strip event time for these events, for comparison. The event times are
// unpredictable since they are read off of the real time monotonic clock,
// and will be different in every run.
fn remove_event_time(events: Vec<InputEvent>) -> Vec<InputEvent> {
events
.into_iter()
.map(
|InputEvent {
device_event,
device_descriptor,
event_time: _,
handled,
trace_id: _,
}| {
InputEvent {
device_event,
device_descriptor,
event_time: zx::MonotonicInstant::ZERO,
handled,
trace_id: None,
}
},
)
.collect()
}
// Wait for this long (in fake time) before asserting events to ensure
// that all events have been drained and all timers have fired.
const SLACK_DURATION: MonotonicDuration = zx::MonotonicDuration::from_millis(5000);
// Checks whether the events read from `output` match supplied `expected` events.
async fn assert_events(output: UnboundedReceiver<InputEvent>, expected: Vec<InputEvent>) {
// Spends a little while longer in the processing loop to ensure that all events have been
// drained before we take the events out. The wait is in fake time, so it does not
// introduce nondeterminism into the tests.
wait_for_duration(SLACK_DURATION).await;
assert_eq!(
remove_event_time(output.take(expected.len()).collect::<Vec<InputEvent>>().await),
expected
);
}
// Run the future `main_fut` in fake time. The fake time is being advanced
// in relatively small increments until a specified `total_duration` has
// elapsed.
//
// This complication is needed to ensure that any expired
// timers are awoken in the correct sequence because the test executor does
// not automatically wake the timers. For the fake time execution to
// be comparable to a real time execution, we need each timer to have the
// chance of waking up, so that we can properly process the consequences
// of that timer firing.
//
// We require that `main_fut` has completed at `total_duration`, and panic
// if it has not. This ensures that we never block forever in fake time.
//
// This method could possibly be implemented in [TestExecutor] for those
// test executor users who do not care to wake the timers in any special
// way.
fn run_in_fake_time<F>(
executor: &mut TestExecutor,
main_fut: &mut F,
total_duration: MonotonicDuration,
) where
F: Future<Output = ()> + Unpin,
{
const INCREMENT: MonotonicDuration = zx::MonotonicDuration::from_millis(13);
// Run the loop for a bit longer than the fake time needed to pump all
// the events, to allow the event queue to drain.
let total_duration = total_duration + SLACK_DURATION;
let mut current = zx::MonotonicDuration::from_millis(0);
let mut poll_status = Poll::Pending;
// We run until either the future completes or the timeout is reached,
// whichever comes first.
// Running the future after it returns Poll::Ready is not allowed, so
// we must exit the loop then.
while current < total_duration && poll_status == Poll::Pending {
executor.set_fake_time(MonotonicInstant::after(INCREMENT));
executor.wake_expired_timers();
poll_status = executor.run_until_stalled(main_fut);
current = current + INCREMENT;
}
assert_eq!(
poll_status,
Poll::Ready(()),
"the main future did not complete, perhaps increase total_duration?"
);
}
// A general note for all the tests here.
//
// The autorepeat generator is tightly coupled with the real time clock. Such
// a system would be hard to test robustly if we relied on the passage of
// real time, since we can not do precise pauses, and are sensitive to
// the scheduling delays in the emulators that run the tests.
//
// Instead, we use an executor with fake time: we have to advance the fake
// time manually, and poke the executor such that we eventually run through
// the predictable sequence of scheduled asynchronous events.
//
// The first few tests in this suite will have extra comments that explain
// the general testing techniques. Repeated uses of the same techniques
// will not be specially pointed out in the later tests.
// This test pushes a regular key press and release through the autorepeat
// handler. It is used more to explain how the event processing works, than
// it is exercising a specific feature of the autorepeat handler.
#[test]
fn basic_press_and_release_only() {
// TestExecutor puts itself as the thread local executor. Any local
// task spawned from here on will run on the test executor in fake time,
// and will need `run_with_fake_time` to drive it to completion.
let mut executor = TestExecutor::new_with_fake_time();
// `input` is where the test fixture will inject the fake input events.
// `receiver` is where the autorepeater will read these events from.
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
// The autorepeat handler takes a receiver end of one channel to get
// the input from, and the send end of another channel to place the
// output into. Since we must formally start the handling process in
// an async task, the API requires you to call `run` to
// start the process and supply the sender side of the output.
//
// This API ensures that the handler is fully configured when started,
// all the while leaving the user with an option of when and how exactly
// to start the handler, including not immediately upon creation.
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
// `sender` is where the autorepeat handler will send processed input
// events into. `output` is where we will read the results of the
// autorepeater's work.
let (sender, output) = mpsc::unbounded();
// It is up to the caller to decide where to spawn the handler task.
let handler_task = Task::local(async move { handler.run(sender).await });
// `main_fut` is the task that exercises the handler.
let main_fut = async move {
// Inject a keyboard event into the autorepeater.
//
// The mpsc channel of which 'input' is the receiver will be closed when all consumers
// go out of scope.
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
// This will wait in fake time. The tests are not actually delayed because of this
// call.
wait_for_millis(1).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
// Assertions are also here in the async domain since reading from
// output must be asynchronous.
assert_events(
output,
vec![
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
],
)
.await;
};
// Drive both the test fixture task and the handler task in parallel,
// and both in fake time. `run_in_fake_time` advances the fake time from
// zero in increments of about 10ms until all futures complete.
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
#[test]
fn basic_sync_and_cancel_only() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Sync,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(1).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Cancel,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
assert_events(
output,
vec![
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
],
)
.await;
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
// Ensures that we forward but not act on handled events.
#[test]
fn handled_events_are_forwarded() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_handled_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_handled_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
assert_events(
output,
vec![
new_handled_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
new_handled_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
],
)
.await;
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
// In this test, we wait with a pressed key for long enough that the default
// settings should trigger the autorepeat.
#[test]
fn autorepeat_simple() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
// The total fake time during which the autorepeat key was actuated
// was 2 seconds. By default the delay to first autorepeat is 500ms,
// then 1000ms for each additional autorepeat. This means we should
// see three `Pressed` events: one at the outset, a second one after
// 500ms, and a third one after 1500ms.
assert_events(
output,
vec![
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
1,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
2,
),
new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
],
)
.await;
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
// This test is the same as above, but we hold the autorepeat for a little
// while longer and check that the autorepeat event stream has grown
// accordingly.
#[test]
fn autorepeat_simple_longer() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(3000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
assert_events(
output,
vec![
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
1,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
2,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
3,
),
new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
],
)
.await;
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
// In this test, keys A and B compete for autorepeat:
//
// @0ms ->|<- 1.6s ->|<- 2s ->|<- 1s ->|
// A """""""""\___________________/"""""""""""""
// : : :
// B """"""""""""""""""""\_________________/""""
#[test]
fn autorepeat_takeover() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(1600).await;
input
.unbounded_send(new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(1000).await;
input
.unbounded_send(new_event(
Key::B,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
))
.unwrap();
assert_events(
output,
vec![
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
1,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
2,
),
new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
),
new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
1,
),
new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
2,
),
new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
3,
),
new_event(
Key::B,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
),
],
)
.await;
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
// In this test, keys A and B compete for autorepeat:
//
// @0ms ->|<- 2s ->|<- 2s ->|<- 2s ->|
// A """""""""\__________________________/""""
// : : : :
// B """"""""""""""""""\________/"""""""""""""
#[test]
fn autorepeat_takeover_and_back() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::B,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
// Try to elicit autorepeat. There won't be any.
wait_for_millis(2000).await;
assert_events(
output,
vec![
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
1,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
2,
),
new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
),
new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
1,
),
new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
2,
),
new_event(
Key::B,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
),
// No autorepeat after B is released.
new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
),
],
)
.await;
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
#[test]
fn no_autorepeat_for_left_shift() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::LeftShift,
KeyEventType::Pressed,
// Keys that do not contribute to text editing have code
// point set to zero. We use this as a discriminator for
// which keys may or may not repeat.
Some(KeyMeaning::Codepoint(0)),
0,
))
.unwrap();
wait_for_millis(5000).await;
input
.unbounded_send(new_event(
Key::LeftShift,
KeyEventType::Released,
Some(KeyMeaning::Codepoint(0)),
0,
))
.unwrap();
assert_events(
output,
vec![
new_event(
Key::LeftShift,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint(0)),
0,
),
new_event(
Key::LeftShift,
KeyEventType::Released,
Some(KeyMeaning::Codepoint(0)),
0,
),
],
)
.await;
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
// @0ms ->|<- 2s ->|<- 2s ->|<- 2s ->|
// A """"""""""""\________/"""""""""""""
// LeftShift """\__________________________/""""
#[test]
fn shift_a_encapsulated() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::LeftShift,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint(0)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('A' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::LeftShift,
KeyEventType::Released,
Some(KeyMeaning::Codepoint(0)),
0,
))
.unwrap();
assert_events(
output,
vec![
new_event(
Key::LeftShift,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint(0)),
0,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
0,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
1,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
2,
),
new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('A' as u32)),
0,
),
new_event(
Key::LeftShift,
KeyEventType::Released,
Some(KeyMeaning::Codepoint(0)),
0,
),
],
)
.await;
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
// @0ms ->|<- 2s ->|<- 2s ->|<- 2s ->|
// A """"""""""""\_________________/""
// LeftShift """\_________________/"""""""""""
#[test]
fn shift_a_interleaved() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("test_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&test_node,
metrics::MetricsLogger::default(),
);
let (sender, output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::LeftShift,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint(0)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::LeftShift,
KeyEventType::Released,
Some(KeyMeaning::Codepoint(0)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('A' as u32)),
0,
))
.unwrap();
assert_events(
output,
vec![
new_event(
Key::LeftShift,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint(0)),
0,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
0,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
1,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
2,
),
new_event(
Key::LeftShift,
KeyEventType::Released,
Some(KeyMeaning::Codepoint(0)),
0,
),
// This will continue autorepeating capital A, but we'd need
// to autorepeat 'a'. May need to reapply the keymap at
// this point, but this may require redoing the keymap stage.
// Alternative - stop autorepeat, would be easier.
// The current behavior may be enough, however.
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
3,
),
new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('A' as u32)),
4,
),
new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('A' as u32)),
0,
),
],
)
.await;
};
let mut joined_fut = pin!(async move {
let _r = futures::join!(main_fut, handler_task);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
#[test]
fn autorepeater_initialized_with_inspect_node() {
let _executor = TestExecutor::new_with_fake_time();
let (_, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let fake_handlers_node = inspector.root().create_child("input_handlers_node");
let _autorepeater =
Autorepeater::new(receiver, &fake_handlers_node, metrics::MetricsLogger::default());
diagnostics_assertions::assert_data_tree!(inspector, root: {
input_handlers_node: {
autorepeater: {
events_received_count: 0u64,
events_handled_count: 0u64,
last_received_timestamp_ns: 0u64,
"fuchsia.inspect.Health": {
status: "STARTING_UP",
// Timestamp value is unpredictable and not relevant in this context,
// so we only assert that the property is present.
start_timestamp_nanos: diagnostics_assertions::AnyProperty
},
}
}
});
}
#[test]
fn autorepeat_inspect_counts_events() {
let mut executor = TestExecutor::new_with_fake_time();
let (input, receiver) = mpsc::unbounded();
let inspector = fuchsia_inspect::Inspector::default();
let fake_handlers_node = inspector.root().create_child("input_handlers_node");
let handler = Autorepeater::new_with_settings(
receiver,
default_settings(),
&fake_handlers_node,
metrics::MetricsLogger::default(),
);
let (sender, _output) = mpsc::unbounded();
let handler_task = Task::local(async move { handler.run(sender).await });
let main_fut = async move {
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(1600).await;
input
.unbounded_send(new_event(
Key::B,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
))
.unwrap();
wait_for_millis(2000).await;
input
.unbounded_send(new_event(
Key::A,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('a' as u32)),
0,
))
.unwrap();
wait_for_millis(1000).await;
input
.unbounded_send(new_handled_event(
Key::C,
KeyEventType::Pressed,
Some(KeyMeaning::Codepoint('c' as u32)),
0,
))
.unwrap();
input
.unbounded_send(new_event(
Key::B,
KeyEventType::Released,
Some(KeyMeaning::Codepoint('b' as u32)),
0,
))
.unwrap();
wait_for_duration(SLACK_DURATION).await;
// Inspect should only count unhandled events received from driver, not generated
// autorepeat events or already handled input events.
diagnostics_assertions::assert_data_tree!(inspector, root: {
input_handlers_node: {
autorepeater: {
events_received_count: 4u64,
events_handled_count: 0u64,
last_received_timestamp_ns: 0u64,
"fuchsia.inspect.Health": {
status: "STARTING_UP",
// Timestamp value is unpredictable and not relevant in this context,
// so we only assert that the property is present.
start_timestamp_nanos: diagnostics_assertions::AnyProperty
},
}
}
});
};
let mut joined_fut = Task::local(async move {
let _r = futures::join!(handler_task, main_fut);
});
run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
}
}