input_pipeline/
autorepeater.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// TODO(https://fxbug.dev/42170553): Check what happens with the modifier keys - we should perhaps maintain
// them.

//! Implements hardware key autorepeat.
//!
//! The [Autorepeater] is a bit of an exception among the stages of the input pipeline.  This
//! handler does not implement [input_pipeline::InputHandler], as it requires a different approach
//! to event processing.
//!
//! Specifically, it requires the ability to interleave the events it generates into the
//! flow of "regular" events through the input pipeline.  While the [input_pipeline::InputHandler]
//! trait could in principle be modified to admit this sort of approach to event processing, in
//! practice the [Autorepeater] is for now the only stage that requires this approach, so it is
//! not cost effective to retrofit all other handlers just for the sake of this one.  We may
//! revisit this decision if we grow more stages that need autorepeat.

use crate::input_device::{self, Handled, InputDeviceDescriptor, InputDeviceEvent, InputEvent};
use crate::input_handler::InputHandlerStatus;
use crate::keyboard_binding::KeyboardEvent;
use crate::metrics;
use anyhow::{anyhow, Context, Result};
use fidl_fuchsia_settings as fsettings;
use fidl_fuchsia_ui_input3::{self as finput3, KeyEventType, KeyMeaning};
use fuchsia_async::{MonotonicInstant, Task, Timer};
use fuchsia_inspect::health::Reporter;
use futures::channel::mpsc::{self, UnboundedReceiver, UnboundedSender};
use futures::StreamExt;
use metrics_registry::*;
use std::cell::RefCell;
use std::rc::Rc;
use zx::MonotonicDuration;

/// The value range reserved for the modifier key meanings.  See the documentation for
/// `fuchsia.ui.input3/NonPrintableKey` for details.
const RESERVED_MODIFIER_RANGE: std::ops::Range<u32> = finput3::NonPrintableKey::Alt.into_primitive()
    ..finput3::NonPrintableKey::Enter.into_primitive();

/// Typed autorepeat settings.  Use [Default::default()] and the `into_with_*`
/// to create a new instance.
#[derive(Debug, PartialEq, Clone, Copy)]
pub struct Settings {
    // The time delay before autorepeat kicks in.
    delay: MonotonicDuration,
    // The average period between two successive autorepeats.  A reciprocal of
    // the autorepeat rate.
    period: MonotonicDuration,
}

impl Default for Settings {
    fn default() -> Self {
        Settings {
            delay: MonotonicDuration::from_millis(250),
            period: MonotonicDuration::from_millis(50),
        }
    }
}

impl From<fsettings::Autorepeat> for Settings {
    /// Conversion, since [fsettings::Autorepeat] has untyped delay and period.
    fn from(s: fsettings::Autorepeat) -> Self {
        Self {
            delay: MonotonicDuration::from_nanos(s.delay),
            period: MonotonicDuration::from_nanos(s.period),
        }
    }
}

impl Settings {
    /// Modifies the delay.
    pub fn into_with_delay(self, delay: MonotonicDuration) -> Self {
        Self { delay, ..self }
    }

    /// Modifies the period.
    pub fn into_with_period(self, period: MonotonicDuration) -> Self {
        Self { period, ..self }
    }
}

// Whether the key is repeatable.
enum Repeatability {
    // The key may autorepeat.
    Yes,
    // The key may not autorepeat.
    No,
}

/// Determines whether the given key meaning corresponds to a key effect that
/// should be repeated.
fn repeatability(key_meaning: Option<KeyMeaning>) -> Repeatability {
    match key_meaning {
        Some(KeyMeaning::Codepoint(0)) => Repeatability::No,
        Some(KeyMeaning::Codepoint(_)) => Repeatability::Yes, // A code point.
        Some(KeyMeaning::NonPrintableKey(k)) => {
            if RESERVED_MODIFIER_RANGE.contains(&k.into_primitive()) {
                Repeatability::No
            } else {
                Repeatability::Yes
            }
        }
        None => Repeatability::Yes, // Printable with US QWERTY keymap.
    }
}

// An events multiplexer.
#[derive(Debug, Clone)]
enum AnyEvent {
    // A keyboard input event.
    Keyboard(KeyboardEvent, InputDeviceDescriptor, zx::MonotonicInstant, Handled),
    // An input event other than keyboard.
    NonKeyboard(InputEvent),
    // A timer event.
    Timeout,
}

impl TryInto<InputEvent> for AnyEvent {
    type Error = anyhow::Error;

    fn try_into(self) -> Result<InputEvent> {
        match self {
            AnyEvent::NonKeyboard(ev) => Ok(ev),
            AnyEvent::Keyboard(ev, device_descriptor, event_time, handled) => Ok(InputEvent {
                device_event: InputDeviceEvent::Keyboard(ev.into_with_folded_event()),
                device_descriptor: device_descriptor,
                event_time,
                handled,
                trace_id: None,
            }),
            _ => Err(anyhow!("not an InputEvent: {:?}", &self)),
        }
    }
}

// The state of the autorepeat generator.
#[derive(Debug, Clone)]
enum State {
    /// Autorepeat is not active.
    Dormant,
    /// Autorepeat is armed, we are waiting for a timer event to expire, and when
    /// it does, we generate a repeat event.
    Armed {
        // The keyboard event that caused the state to become Armed.
        armed_event: KeyboardEvent,
        // The descriptor is used to reconstruct an InputEvent when needed.
        armed_descriptor: InputDeviceDescriptor,
        // The autorepeat timer is used in the various stages of autorepeat
        // waits.
        // Not used directly, but rather kept because of its side effect.
        _delay_timer: Rc<Task<()>>,
    },
}

impl Default for State {
    fn default() -> Self {
        State::Dormant
    }
}

// Logs an `event` before sending to `sink` for debugging.
fn unbounded_send_logged<T>(sink: &UnboundedSender<T>, event: T) -> Result<()>
where
    for<'a> &'a T: std::fmt::Debug,
    T: 'static + Sync + Send,
{
    tracing::debug!("unbounded_send_logged: {:?}", &event);
    sink.unbounded_send(event)?;
    Ok(())
}

/// Creates a new autorepeat timer task.
///
/// The task will wait for the amount of time given in `delay`, and then send
/// a [AnyEvent::Timeout] to `sink`; unless it is canceled.
fn new_autorepeat_timer(
    sink: UnboundedSender<AnyEvent>,
    delay: MonotonicDuration,
    metrics_logger: metrics::MetricsLogger,
) -> Rc<Task<()>> {
    let task = Task::local(async move {
        Timer::new(MonotonicInstant::after(delay)).await;
        tracing::debug!("autorepeat timeout");
        unbounded_send_logged(&sink, AnyEvent::Timeout).unwrap_or_else(|e| {
            metrics_logger.log_error(
                InputPipelineErrorMetricDimensionEvent::AutorepeatCouldNotFireTimer,
                std::format!("could not fire autorepeat timer: {:?}", e),
            );
        });
    });
    Rc::new(task)
}

/// Maintains the internal autorepeat state.
///
/// The autorepeat tracks key presses and generates autorepeat key events for
/// the keys that are eligible for autorepeat.
pub struct Autorepeater {
    // Internal events are multiplexed into this sender.  We may make multiple
    // clones to serialize async events.
    event_sink: UnboundedSender<AnyEvent>,

    // This end is consumed to get the multiplexed ordered events.
    event_source: RefCell<UnboundedReceiver<AnyEvent>>,

    // The current autorepeat state.
    state: RefCell<State>,

    // The autorepeat settings.
    settings: Settings,

    // The task that feeds input events into the processing loop.
    _event_feeder: Task<()>,

    /// The inventory of this handler's Inspect status.
    inspect_status: InputHandlerStatus,

    // The metrics logger.
    metrics_logger: metrics::MetricsLogger,
}

impl Autorepeater {
    /// Creates a new [Autorepeater].  The `source` is a receiver end through which
    /// the input pipeline events are sent.  You must submit [Autorepeater::run]
    /// to an executor to start the event processing.
    pub fn new(
        source: UnboundedReceiver<InputEvent>,
        input_handlers_node: &fuchsia_inspect::Node,
        metrics_logger: metrics::MetricsLogger,
    ) -> Rc<Self> {
        Self::new_with_settings(source, Default::default(), input_handlers_node, metrics_logger)
    }

    fn new_with_settings(
        mut source: UnboundedReceiver<InputEvent>,
        settings: Settings,
        input_handlers_node: &fuchsia_inspect::Node,
        metrics_logger: metrics::MetricsLogger,
    ) -> Rc<Self> {
        let (event_sink, event_source) = mpsc::unbounded();
        let inspect_status = InputHandlerStatus::new(
            input_handlers_node,
            "autorepeater",
            /* generates_events */ true,
        );
        let cloned_metrics_logger = metrics_logger.clone();

        // We need a task to feed input events into the channel read by `run()`.
        // The task will run until there is at least one sender. When there
        // are no more senders, `source.next().await` will return None, and
        // this task will exit.  The task will close the `event_sink` to
        // signal to the other end that it will send no more events, which can
        // be used for orderly shutdown.
        let event_feeder = {
            let event_sink = event_sink.clone();
            Task::local(async move {
                while let Some(event) = source.next().await {
                    match event {
                        InputEvent {
                            device_event: InputDeviceEvent::Keyboard(k),
                            device_descriptor,
                            event_time,
                            handled,
                            trace_id: _,
                        } if handled == Handled::No => unbounded_send_logged(
                            &event_sink,
                            AnyEvent::Keyboard(k, device_descriptor, event_time, handled),
                        )
                        .context("while forwarding a keyboard event"),
                        InputEvent {
                            device_event: _,
                            device_descriptor: _,
                            event_time: _,
                            handled: _,
                            trace_id: _,
                        } => unbounded_send_logged(&event_sink, AnyEvent::NonKeyboard(event))
                            .context("while forwarding a non-keyboard event"),
                    }
                    .unwrap_or_else(|e| {
                        cloned_metrics_logger.log_error(
                            InputPipelineErrorMetricDimensionEvent::AutorepeatCouldNotRunAutorepeat,
                            std::format!("could not run autorepeat: {:?}", e),
                        );
                    });
                }
                event_sink.close_channel();
            })
        };

        Rc::new(Autorepeater {
            event_sink,
            event_source: RefCell::new(event_source),
            state: RefCell::new(Default::default()),
            settings,
            _event_feeder: event_feeder,
            inspect_status,
            metrics_logger,
        })
    }

    /// Run this function in an executor to start processing events. The
    /// transformed event stream is available in `output`.
    pub async fn run(self: &Rc<Self>, output: UnboundedSender<InputEvent>) -> Result<()> {
        tracing::info!("key autorepeater installed");
        let src = &mut *(self.event_source.borrow_mut());
        while let Some(event) = src.next().await {
            match event {
                // Anything not a keyboard or any handled event gets forwarded as is.
                AnyEvent::NonKeyboard(input_event) => unbounded_send_logged(&output, input_event)?,
                AnyEvent::Keyboard(_, _, _, _) => {
                    if let Ok(e) = event.clone().try_into() {
                        self.inspect_status.count_received_event(e);
                    }
                    self.process_event(event, &output).await?
                }
                AnyEvent::Timeout => self.process_event(event, &output).await?,
            }
        }
        // If we got to here, that means `src` was closed.
        // Ensure that the channel closure is propagated correctly.
        output.close_channel();

        // In production we never expect `src` to close as the autorepeater
        // should be operating continuously, so if we're here and we're in prod
        // this is unexpected. That is why we return an error.
        //
        // But, in tests it is acceptable to ignore this error and let the
        // function return.  An orderly shutdown will result.
        Err(anyhow!("recv loop is never supposed to terminate"))
    }

    pub fn set_handler_healthy(self: std::rc::Rc<Self>) {
        self.inspect_status.health_node.borrow_mut().set_ok();
    }

    pub fn set_handler_unhealthy(self: std::rc::Rc<Self>, msg: &str) {
        self.inspect_status.health_node.borrow_mut().set_unhealthy(msg);
    }

    // Replace the autorepeater state with a new one.
    fn set_state(self: &Rc<Self>, state: State) {
        tracing::debug!("set state: {:?}", &state);
        self.state.replace(state);
    }

    // Get a copy of the current autorepeater state.
    fn get_state(self: &Rc<Self>) -> State {
        self.state.borrow().clone()
    }

    // Process a single `event`.  Any forwarded or generated events are emitted
    // into `output.
    async fn process_event(
        self: &Rc<Self>,
        event: AnyEvent,
        output: &UnboundedSender<InputEvent>,
    ) -> Result<()> {
        let old_state = self.get_state();
        tracing::debug!("process_event: current state: {:?}", &old_state);
        tracing::debug!("process_event: inbound event: {:?}", &event);
        match (old_state, event.clone()) {
            // This is the initial state.  We wait for a key event with a printable
            // character, since those are autorepeatable.
            (State::Dormant, AnyEvent::Keyboard(ev, descriptor, ..)) => {
                match (ev.get_event_type_folded(), repeatability(ev.get_key_meaning())) {
                    // Only a printable key is a candidate for repeating.
                    // We start a delay timer and go to waiting.
                    (KeyEventType::Pressed, Repeatability::Yes) => {
                        let _delay_timer = new_autorepeat_timer(
                            self.event_sink.clone(),
                            self.settings.delay,
                            self.metrics_logger.clone(),
                        );
                        self.set_state(State::Armed {
                            armed_event: ev,
                            armed_descriptor: descriptor,
                            _delay_timer,
                        });
                    }

                    // Any other key type or key event does not get repeated.
                    (_, _) => {}
                }
                unbounded_send_logged(&output, event.try_into()?)?;
            }

            // A timeout comes while we are in dormant state.  We expect
            // no timeouts in this state. Perhaps this is a timer task
            // that fired after it was canceled?  In any case, do not act on it,
            // but issue a warning.
            (State::Dormant, AnyEvent::Timeout) => {
                // This is unexpected, but not fatal.  If you see this in the
                // logs, we probably need to revisit the fuchsia_async::Task
                // semantics.
                tracing::warn!("spurious timeout in the autorepeater");
            }

            // A keyboard event comes in while autorepeat is armed.
            //
            // If the keyboard event comes in about the same key that was armed, we
            // restart the repeat timer, to ensure repeated keypresses on the
            // same key don't generate even more repetitions.
            //
            // If the keyboard event is about a different repeatable key, we
            // restart the autorepeat timer with the new key.  This means that
            // an autorepeated sequence 'aaaaaabbbbbb' will pause for an
            // additional repeat delay between the last 'a' and the first 'b'
            // in the sequence.
            //
            // In all cases, pass the event onwards.  No events are dropped
            // from the event stream.
            (State::Armed { armed_event, .. }, AnyEvent::Keyboard(ev, descriptor, ..)) => {
                match (ev.get_event_type_folded(), repeatability(ev.get_key_meaning())) {
                    (KeyEventType::Pressed, Repeatability::Yes) => {
                        let _delay_timer = new_autorepeat_timer(
                            self.event_sink.clone(),
                            self.settings.delay,
                            self.metrics_logger.clone(),
                        );
                        self.set_state(State::Armed {
                            armed_event: ev,
                            armed_descriptor: descriptor,
                            _delay_timer,
                        });
                    }

                    (KeyEventType::Released, Repeatability::Yes) => {
                        // If the armed key was released, stop autorepeat.
                        // If the release was for another key, remain in the
                        // armed state.
                        if KeyboardEvent::same_key(&armed_event, &ev) {
                            self.set_state(State::Dormant);
                        }
                    }

                    // Any other event causes nothing special to happen.
                    _ => {}
                }
                unbounded_send_logged(&output, event.try_into()?)?;
            }

            // The timeout triggered while we are armed.  This is an autorepeat!
            (State::Armed { armed_event, armed_descriptor, .. }, AnyEvent::Timeout) => {
                let _delay_timer = new_autorepeat_timer(
                    self.event_sink.clone(),
                    self.settings.period,
                    self.metrics_logger.clone(),
                );
                let new_event = armed_event
                    .clone()
                    .into_with_repeat_sequence(armed_event.get_repeat_sequence() + 1);
                let new_event_time = input_device::event_time_or_now(None);

                self.set_state(State::Armed {
                    armed_event: new_event.clone(),
                    armed_descriptor: armed_descriptor.clone(),
                    _delay_timer,
                });
                // Generate a new autorepeat event and ship it out.
                let autorepeat_event =
                    AnyEvent::Keyboard(new_event, armed_descriptor, new_event_time, Handled::No);
                unbounded_send_logged(&output, autorepeat_event.try_into()?)?;
            }

            // Forward all other events unmodified.
            (_, AnyEvent::NonKeyboard(event)) => {
                unbounded_send_logged(&output, event)?;
            }
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::testing_utilities;
    use fidl_fuchsia_input::Key;
    use fuchsia_async::TestExecutor;

    use futures::Future;
    use pretty_assertions::assert_eq;
    use std::pin::pin;
    use std::task::Poll;

    // Default autorepeat settings used for test.  If these settings are changed,
    // any tests may fail, since the tests are tuned to the precise timing that
    // is set here.
    fn default_settings() -> Settings {
        Settings {
            delay: MonotonicDuration::from_millis(500),
            period: MonotonicDuration::from_seconds(1),
        }
    }

    // Creates a new keyboard event for testing.
    fn new_event(
        key: Key,
        event_type: KeyEventType,
        key_meaning: Option<KeyMeaning>,
        repeat_sequence: u32,
    ) -> InputEvent {
        testing_utilities::create_keyboard_event_with_key_meaning_and_repeat_sequence(
            key,
            event_type,
            /*modifiers=*/ None,
            /*event_time*/ zx::MonotonicInstant::ZERO,
            &InputDeviceDescriptor::Fake,
            /*keymap=*/ None,
            key_meaning,
            repeat_sequence,
        )
    }

    fn new_handled_event(
        key: Key,
        event_type: KeyEventType,
        key_meaning: Option<KeyMeaning>,
        repeat_sequence: u32,
    ) -> InputEvent {
        let event = new_event(key, event_type, key_meaning, repeat_sequence);
        // Somewhat surprisingly, this works.
        InputEvent { handled: Handled::Yes, ..event }
    }

    // A shorthand for blocking the specified number of milliseconds, asynchronously.
    async fn wait_for_millis(millis: i64) {
        wait_for_duration(zx::MonotonicDuration::from_millis(millis)).await;
    }

    async fn wait_for_duration(duration: MonotonicDuration) {
        fuchsia_async::Timer::new(MonotonicInstant::after(duration)).await;
    }

    // Strip event time for these events, for comparison.  The event times are
    // unpredictable since they are read off of the real time monotonic clock,
    // and will be different in every run.
    fn remove_event_time(events: Vec<InputEvent>) -> Vec<InputEvent> {
        events
            .into_iter()
            .map(
                |InputEvent {
                     device_event,
                     device_descriptor,
                     event_time: _,
                     handled,
                     trace_id: _,
                 }| {
                    InputEvent {
                        device_event,
                        device_descriptor,
                        event_time: zx::MonotonicInstant::ZERO,
                        handled,
                        trace_id: None,
                    }
                },
            )
            .collect()
    }

    // Wait for this long (in fake time) before asserting events to ensure
    // that all events have been drained and all timers have fired.
    const SLACK_DURATION: MonotonicDuration = zx::MonotonicDuration::from_millis(5000);

    // Checks whether the events read from `output` match supplied `expected` events.
    async fn assert_events(output: UnboundedReceiver<InputEvent>, expected: Vec<InputEvent>) {
        // Spends a little while longer in the processing loop to ensure that all events have been
        // drained before we take the events out.  The wait is in fake time, so it does not
        // introduce nondeterminism into the tests.
        wait_for_duration(SLACK_DURATION).await;
        assert_eq!(
            remove_event_time(output.take(expected.len()).collect::<Vec<InputEvent>>().await),
            expected
        );
    }

    // Run the future `main_fut` in fake time.  The fake time is being advanced
    // in relatively small increments until a specified `total_duration` has
    // elapsed.
    //
    // This complication is needed to ensure that any expired
    // timers are awoken in the correct sequence because the test executor does
    // not automatically wake the timers. For the fake time execution to
    // be comparable to a real time execution, we need each timer to have the
    // chance of waking up, so that we can properly process the consequences
    // of that timer firing.
    //
    // We require that `main_fut` has completed at `total_duration`, and panic
    // if it has not.  This ensures that we never block forever in fake time.
    //
    // This method could possibly be implemented in [TestExecutor] for those
    // test executor users who do not care to wake the timers in any special
    // way.
    fn run_in_fake_time<F>(
        executor: &mut TestExecutor,
        main_fut: &mut F,
        total_duration: MonotonicDuration,
    ) where
        F: Future<Output = ()> + Unpin,
    {
        const INCREMENT: MonotonicDuration = zx::MonotonicDuration::from_millis(13);
        // Run the loop for a bit longer than the fake time needed to pump all
        // the events, to allow the event queue to drain.
        let total_duration = total_duration + SLACK_DURATION;
        let mut current = zx::MonotonicDuration::from_millis(0);
        let mut poll_status = Poll::Pending;

        // We run until either the future completes or the timeout is reached,
        // whichever comes first.
        // Running the future after it returns Poll::Ready is not allowed, so
        // we must exit the loop then.
        while current < total_duration && poll_status == Poll::Pending {
            executor.set_fake_time(MonotonicInstant::after(INCREMENT));
            executor.wake_expired_timers();
            poll_status = executor.run_until_stalled(main_fut);
            current = current + INCREMENT;
        }
        assert_eq!(
            poll_status,
            Poll::Ready(()),
            "the main future did not complete, perhaps increase total_duration?"
        );
    }

    // A general note for all the tests here.
    //
    // The autorepeat generator is tightly coupled with the real time clock. Such
    // a system would be hard to test robustly if we relied on the passage of
    // real time, since we can not do precise pauses, and are sensitive to
    // the scheduling delays in the emulators that run the tests.
    //
    // Instead, we use an executor with fake time: we have to advance the fake
    // time manually, and poke the executor such that we eventually run through
    // the predictable sequence of scheduled asynchronous events.
    //
    // The first few tests in this suite will have extra comments that explain
    // the general testing techniques.  Repeated uses of the same techniques
    // will not be specially pointed out in the later tests.

    // This test pushes a regular key press and release through the autorepeat
    // handler. It is used more to explain how the event processing works, than
    // it is exercising a specific feature of the autorepeat handler.
    #[test]
    fn basic_press_and_release_only() {
        // TestExecutor puts itself as the thread local executor. Any local
        // task spawned from here on will run on the test executor in fake time,
        // and will need `run_with_fake_time` to drive it to completion.
        let mut executor = TestExecutor::new_with_fake_time();

        // `input` is where the test fixture will inject the fake input events.
        // `receiver` is where the autorepeater will read these events from.
        let (input, receiver) = mpsc::unbounded();

        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");

        // The autorepeat handler takes a receiver end of one channel to get
        // the input from, and the send end of another channel to place the
        // output into. Since we must formally start the handling process in
        // an async task, the API requires you to call `run` to
        // start the process and supply the sender side of the output.
        //
        // This API ensures that the handler is fully configured when started,
        // all the while leaving the user with an option of when and how exactly
        // to start the handler, including not immediately upon creation.
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );

        // `sender` is where the autorepeat handler will send processed input
        // events into.  `output` is where we will read the results of the
        // autorepeater's work.
        let (sender, output) = mpsc::unbounded();

        // It is up to the caller to decide where to spawn the handler task.
        let handler_task = Task::local(async move { handler.run(sender).await });

        // `main_fut` is the task that exercises the handler.
        let main_fut = async move {
            // Inject a keyboard event into the autorepeater.
            //
            // The mpsc channel of which 'input' is the receiver will be closed when all consumers
            // go out of scope.
            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            // This will wait in fake time.  The tests are not actually delayed because of this
            // call.
            wait_for_millis(1).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            // Assertions are also here in the async domain since reading from
            // output must be asynchronous.
            assert_events(
                output,
                vec![
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                ],
            )
            .await;
        };

        // Drive both the test fixture task and the handler task in parallel,
        // and both in fake time.  `run_in_fake_time` advances the fake time from
        // zero in increments of about 10ms until all futures complete.
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    #[test]
    fn basic_sync_and_cancel_only() {
        let mut executor = TestExecutor::new_with_fake_time();
        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Sync,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();
            wait_for_millis(1).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Cancel,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();
            assert_events(
                output,
                vec![
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                ],
            )
            .await;
        };
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    // Ensures that we forward but not act on handled events.
    #[test]
    fn handled_events_are_forwarded() {
        let mut executor = TestExecutor::new_with_fake_time();
        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_handled_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_handled_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            assert_events(
                output,
                vec![
                    new_handled_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                    new_handled_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                ],
            )
            .await;
        };

        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    // In this test, we wait with a pressed key for long enough that the default
    // settings should trigger the autorepeat.
    #[test]
    fn autorepeat_simple() {
        let mut executor = TestExecutor::new_with_fake_time();

        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            // The total fake time during which the autorepeat key was actuated
            // was 2 seconds.  By default the delay to first autorepeat is 500ms,
            // then 1000ms for each additional autorepeat. This means we should
            // see three `Pressed` events: one at the outset, a second one after
            // 500ms, and a third one after 1500ms.
            assert_events(
                output,
                vec![
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        1,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        2,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                ],
            )
            .await;
        };
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    // This test is the same as above, but we hold the autorepeat for a little
    // while longer and check that the autorepeat event stream has grown
    // accordingly.
    #[test]
    fn autorepeat_simple_longer() {
        let mut executor = TestExecutor::new_with_fake_time();

        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(3000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            assert_events(
                output,
                vec![
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        1,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        2,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        3,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                ],
            )
            .await;
        };
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    // In this test, keys A and B compete for autorepeat:
    //
    //     @0ms ->|<- 1.6s ->|<- 2s ->|<- 1s ->|
    // A """""""""\___________________/"""""""""""""
    //            :          :                 :
    // B """"""""""""""""""""\_________________/""""
    #[test]
    fn autorepeat_takeover() {
        let mut executor = TestExecutor::new_with_fake_time();

        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(1600).await;

            input
                .unbounded_send(new_event(
                    Key::B,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('b' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(1000).await;

            input
                .unbounded_send(new_event(
                    Key::B,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('b' as u32)),
                    0,
                ))
                .unwrap();

            assert_events(
                output,
                vec![
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        1,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        2,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        0,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        1,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        2,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        3,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        0,
                    ),
                ],
            )
            .await;
        };
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    // In this test, keys A and B compete for autorepeat:
    //
    //     @0ms ->|<- 2s ->|<- 2s ->|<- 2s ->|
    // A """""""""\__________________________/""""
    //            :        :        :        :
    // B """"""""""""""""""\________/"""""""""""""
    #[test]
    fn autorepeat_takeover_and_back() {
        let mut executor = TestExecutor::new_with_fake_time();

        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::B,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('b' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::B,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('b' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            // Try to elicit autorepeat.  There won't be any.
            wait_for_millis(2000).await;

            assert_events(
                output,
                vec![
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        1,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        2,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        0,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        1,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        2,
                    ),
                    new_event(
                        Key::B,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('b' as u32)),
                        0,
                    ),
                    // No autorepeat after B is released.
                    new_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('a' as u32)),
                        0,
                    ),
                ],
            )
            .await;
        };
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    #[test]
    fn no_autorepeat_for_left_shift() {
        let mut executor = TestExecutor::new_with_fake_time();

        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::LeftShift,
                    KeyEventType::Pressed,
                    // Keys that do not contribute to text editing have code
                    // point set to zero. We use this as a discriminator for
                    // which keys may or may not repeat.
                    Some(KeyMeaning::Codepoint(0)),
                    0,
                ))
                .unwrap();

            wait_for_millis(5000).await;

            input
                .unbounded_send(new_event(
                    Key::LeftShift,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint(0)),
                    0,
                ))
                .unwrap();

            assert_events(
                output,
                vec![
                    new_event(
                        Key::LeftShift,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint(0)),
                        0,
                    ),
                    new_event(
                        Key::LeftShift,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint(0)),
                        0,
                    ),
                ],
            )
            .await;
        };
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    //       @0ms ->|<- 2s ->|<- 2s ->|<- 2s ->|
    // A         """"""""""""\________/"""""""""""""
    // LeftShift """\__________________________/""""
    #[test]
    fn shift_a_encapsulated() {
        let mut executor = TestExecutor::new_with_fake_time();

        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::LeftShift,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint(0)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('A' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('A' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::LeftShift,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint(0)),
                    0,
                ))
                .unwrap();

            assert_events(
                output,
                vec![
                    new_event(
                        Key::LeftShift,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint(0)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        1,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        2,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        0,
                    ),
                    new_event(
                        Key::LeftShift,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint(0)),
                        0,
                    ),
                ],
            )
            .await;
        };
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    //       @0ms ->|<- 2s ->|<- 2s ->|<- 2s ->|
    // A         """"""""""""\_________________/""
    // LeftShift """\_________________/"""""""""""
    #[test]
    fn shift_a_interleaved() {
        let mut executor = TestExecutor::new_with_fake_time();

        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let test_node = inspector.root().create_child("test_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &test_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::LeftShift,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint(0)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('A' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::LeftShift,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint(0)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('A' as u32)),
                    0,
                ))
                .unwrap();

            assert_events(
                output,
                vec![
                    new_event(
                        Key::LeftShift,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint(0)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        0,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        1,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        2,
                    ),
                    new_event(
                        Key::LeftShift,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint(0)),
                        0,
                    ),
                    // This will continue autorepeating capital A, but we'd need
                    // to autorepeat 'a'.  May need to reapply the keymap at
                    // this point, but this may require redoing the keymap stage.
                    // Alternative - stop autorepeat, would be easier.
                    // The current behavior may be enough, however.
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        3,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Pressed,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        4,
                    ),
                    new_event(
                        Key::A,
                        KeyEventType::Released,
                        Some(KeyMeaning::Codepoint('A' as u32)),
                        0,
                    ),
                ],
            )
            .await;
        };
        let mut joined_fut = pin!(async move {
            let _r = futures::join!(main_fut, handler_task);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }

    #[test]
    fn autorepeater_initialized_with_inspect_node() {
        let _executor = TestExecutor::new_with_fake_time();

        let (_, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let fake_handlers_node = inspector.root().create_child("input_handlers_node");
        let _autorepeater =
            Autorepeater::new(receiver, &fake_handlers_node, metrics::MetricsLogger::default());
        diagnostics_assertions::assert_data_tree!(inspector, root: {
            input_handlers_node: {
                autorepeater: {
                    events_received_count: 0u64,
                    events_handled_count: 0u64,
                    last_received_timestamp_ns: 0u64,
                    "fuchsia.inspect.Health": {
                        status: "STARTING_UP",
                        // Timestamp value is unpredictable and not relevant in this context,
                        // so we only assert that the property is present.
                        start_timestamp_nanos: diagnostics_assertions::AnyProperty
                    },
                }
            }
        });
    }

    #[test]
    fn autorepeat_inspect_counts_events() {
        let mut executor = TestExecutor::new_with_fake_time();

        let (input, receiver) = mpsc::unbounded();
        let inspector = fuchsia_inspect::Inspector::default();
        let fake_handlers_node = inspector.root().create_child("input_handlers_node");
        let handler = Autorepeater::new_with_settings(
            receiver,
            default_settings(),
            &fake_handlers_node,
            metrics::MetricsLogger::default(),
        );
        let (sender, _output) = mpsc::unbounded();
        let handler_task = Task::local(async move { handler.run(sender).await });

        let main_fut = async move {
            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(1600).await;

            input
                .unbounded_send(new_event(
                    Key::B,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('b' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(2000).await;

            input
                .unbounded_send(new_event(
                    Key::A,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('a' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_millis(1000).await;

            input
                .unbounded_send(new_handled_event(
                    Key::C,
                    KeyEventType::Pressed,
                    Some(KeyMeaning::Codepoint('c' as u32)),
                    0,
                ))
                .unwrap();

            input
                .unbounded_send(new_event(
                    Key::B,
                    KeyEventType::Released,
                    Some(KeyMeaning::Codepoint('b' as u32)),
                    0,
                ))
                .unwrap();

            wait_for_duration(SLACK_DURATION).await;

            // Inspect should only count unhandled events received from driver, not generated
            // autorepeat events or already handled input events.
            diagnostics_assertions::assert_data_tree!(inspector, root: {
                input_handlers_node: {
                    autorepeater: {
                        events_received_count: 4u64,
                        events_handled_count: 0u64,
                        last_received_timestamp_ns: 0u64,
                        "fuchsia.inspect.Health": {
                            status: "STARTING_UP",
                            // Timestamp value is unpredictable and not relevant in this context,
                            // so we only assert that the property is present.
                            start_timestamp_nanos: diagnostics_assertions::AnyProperty
                        },
                    }
                }
            });
        };
        let mut joined_fut = Task::local(async move {
            let _r = futures::join!(handler_task, main_fut);
        });
        run_in_fake_time(&mut executor, &mut joined_fut, zx::MonotonicDuration::from_seconds(10));
    }
}