lock_order/relation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Traits used to describe lock-ordering relationships.
//!
//! This crate defines the traits used to describe lock-ordering relationships,
//! [`LockBefore`] and [`LockAfter`]. They are reciprocals, like [`From`] and
//! [`Into`] in the standard library, and like `From` and `Into`, a blanket impl
//! is provided for `LockBefore` for implementations of `LockAfter`.
//!
//! It's recommended that, instead of implementing `LockAfter<B> for A` on your
//! own lock level types `A` and `B`, you use the [`impl_lock_after`] macro
//! instead. Why? Because in addition to emitting an implementation of
//! `LockAfter`, it also provides a blanket implementation equivalent to this:
//!
//! ```no_run
//! # use lock_order::relation::LockAfter;
//! # enum A {}
//! # enum B {}
//! impl <X> LockAfter<X> for B where A: LockAfter<X> {}
//! ```
//!
//! The blanket implementations are useful for inferring trait implementations
//! but have a more important purpose: they make it impossible to introduce
//! cycles in our lock ordering graph, and that's *the* key property we want to
//! uphold.
//!
//! To see how this happens, let's look at the trait implementations. Suppose
//! we have a lock ordering graph that looks like this:
//!
//! ```text
//! A -> B -> C
//! ```
//!
//! Assuming we are using `impl_lock_after`, that gives us the following trait
//! implementations:
//!
//! ```no_run
//! # use lock_order::relation::LockAfter;
//! # enum A {}
//! # enum B {}
//! # enum C {}
//! // Graph edges
//! impl LockAfter<A> for B {}
//! impl LockAfter<B> for C {}
//! // Blanket impls that get us transitivity
//! impl<X> LockAfter<X> for B where A: LockAfter<X> {} // 1
//! impl<X> LockAfter<X> for C where B: LockAfter<X> {} // 2
//! ```
//! Now suppose we added an edge `C -> A` (introducing a cycle). That would give
//! us these two impls:
//!
//! ```no_run
//! # use lock_order::relation::LockAfter;
//! # enum A {}
//! # enum C {}
//! // New edge
//! impl LockAfter<C> for A {}
//! // New blanket impl
//! impl<X> LockAfter<X> for A where C: LockAfter<X> {}
//! ```
//!
//! The compiler will follow the blanket impls to produce implicit `LockAfter`
//! implementations like this:
//!
//! 1. Our added edge satisfies the `where` clause for blanket impl 1 with
//! `X=C`, so the compiler infers an implicit `impl LockAfter<C> for B {}`.
//! 2. That satisfies the conditions for blanket impl 2 (`X=C`), so now we
//! also have `impl LockAfter<C> for C {}`.
//! 3. This satisfies the condition for our new blanket impl with
//! `X=C`; now the compiler adds an implicit `impl LockAfter<C> for A {}`.
//!
//! Depicted visually, the compiler combines specific and blanket impls like
//! this:
//!
//! ```text
//! ┌─────────────────────────┐┌──────────────────────────────────────────────────┐
//! │ impl LockAfter<C> for A ││ impl<X> LockAfter<X> for B where A: LockAfter<X> │
//! └┬────────────────────────┘└┬─────────────────────────────────────────────────┘
//! ┌▽──────────────────────────▽┐┌──────────────────────────────────────────────────┐
//! │ impl LockAfter<C> for B ││ impl<X> LockAfter<X> for C where B: LockAfter<X> │
//! └┬───────────────────────────┘└┬─────────────────────────────────────────────────┘
//! ┌▽─────────────────────────────▽┐┌──────────────────────────────────────────────────┐ │
//! │ impl LockAfter<C> for C ││ impl<X> LockAfter<X> for A where C: LockAfter<X> │ │
//! └┬──────────────────────────────┘└┬─────────────────────────────────────────────────┘
//! ┌▽────────────────────────────────▽┐
//! │ impl LockAfter<C> for A (again) │
//! └──────────────────────────────────┘
//!
//! ```
//! The final implicit trait implementation has the exact same trait
//! (`LockAfter<C>`) and type (`A`) as the explicit implementation we added with
//! our graph edge, so the compiler detects the duplication and rejects our
//! code. This works not just with the graph above, but with any graph that
//! includes a cycle.
/// Marker trait that indicates that `Self` can be locked after `A`.
///
/// This should be implemented for lock types to specify that, in the lock
/// ordering graph, `A` comes before `Self`. So if `B: LockAfter<A>`, lock type
/// `B` can be acquired after `A` but `A` cannot be acquired after `B`.
///
/// Note, though, that it's preferred to use the [`impl_lock_after`] macro
/// instead of writing trait impls directly to avoid the possibility of lock
/// ordering cycles.
pub trait LockAfter<A> {}
/// Marker trait that indicates that `Self` is an ancestor of `X`.
///
/// Functions and trait impls that want to apply lock ordering bounds should use
/// this instead of [`LockAfter`]. Types should prefer to implement `LockAfter`
/// instead of this trait. Like [`From`] and [`Into`], a blanket impl of
/// `LockBefore` is provided for all types that implement `LockAfter`
pub trait LockBefore<X> {}
impl<B: LockAfter<A>, A> LockBefore<B> for A {}
#[macro_export]
macro_rules! impl_lock_after {
($A:ty => $B:ty) => {
impl lock_order::relation::LockAfter<$A> for $B {}
impl<X: lock_order::relation::LockBefore<$A>> lock_order::relation::LockAfter<X> for $B {}
};
}
#[cfg(test)]
mod test {
use crate::lock::LockFor;
use crate::relation::LockAfter;
use crate::{Locked, Unlocked};
use std::sync::{Mutex, MutexGuard};
extern crate self as lock_order;
enum A {}
enum B {}
enum C {}
impl_lock_after!(A => B);
impl_lock_after!(B => C);
impl LockAfter<Unlocked> for A {}
struct FakeLocked {
a: Mutex<u32>,
c: Mutex<char>,
}
impl LockFor<A> for FakeLocked {
type Data = u32;
type Guard<'l> = MutexGuard<'l, u32> where Self: 'l;
fn lock(&self) -> Self::Guard<'_> {
self.a.lock().unwrap()
}
}
impl LockFor<C> for FakeLocked {
type Data = char;
type Guard<'l> = MutexGuard<'l, char> where Self: 'l;
fn lock(&self) -> Self::Guard<'_> {
self.c.lock().unwrap()
}
}
#[test]
fn lock_a_then_c() {
const A_DATA: u32 = 123;
const C_DATA: char = '4';
let state = FakeLocked { a: A_DATA.into(), c: C_DATA.into() };
let mut locked = Locked::new(&state);
let (a, mut locked): (_, Locked<&FakeLocked, A>) = locked.lock_and::<A>();
assert_eq!(*a, A_DATA);
// Show that A: LockBefore<B> and B: LockBefore<C> => A: LockBefore<C>.
// Otherwise this wouldn't compile:
let c = locked.lock::<C>();
assert_eq!(*c, C_DATA);
}
}