lock_order/
relation.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Traits used to describe lock-ordering relationships.
//!
//! This crate defines the traits used to describe lock-ordering relationships,
//! [`LockBefore`] and [`LockAfter`]. They are reciprocals, like [`From`] and
//! [`Into`] in the standard library, and like `From` and `Into`, a blanket impl
//! is provided for `LockBefore` for implementations of `LockAfter`.
//!
//! It's recommended that, instead of implementing `LockAfter<B> for A` on your
//! own lock level types `A` and `B`, you use the [`impl_lock_after`] macro
//! instead. Why? Because in addition to emitting an implementation of
//! `LockAfter`, it also provides a blanket implementation equivalent to this:
//!
//! ```no_run
//! # use lock_order::relation::LockAfter;
//! # enum A {}
//! # enum B {}
//! impl <X> LockAfter<X> for B where A: LockAfter<X> {}
//! ```
//!
//! The blanket implementations are useful for inferring trait implementations
//! but have a more important purpose: they make it impossible to introduce
//! cycles in our lock ordering graph, and that's *the* key property we want to
//! uphold.
//!
//! To see how this happens, let's look at the trait implementations. Suppose
//! we have a lock ordering graph that looks like this:
//!
//! ```text
//! A -> B -> C
//! ```
//!
//! Assuming we are using `impl_lock_after`, that gives us the following trait
//! implementations:
//!
//! ```no_run
//! # use lock_order::relation::LockAfter;
//! # enum A {}
//! # enum B {}
//! # enum C {}
//! // Graph edges
//! impl LockAfter<A> for B {}
//! impl LockAfter<B> for C {}
//! // Blanket impls that get us transitivity
//! impl<X> LockAfter<X> for B where A: LockAfter<X> {} // 1
//! impl<X> LockAfter<X> for C where B: LockAfter<X> {} // 2
//! ```
//! Now suppose we added an edge `C -> A` (introducing a cycle). That would give
//! us these two impls:
//!
//! ```no_run
//! # use lock_order::relation::LockAfter;
//! # enum A {}
//! # enum C {}
//! // New edge
//! impl LockAfter<C> for A {}
//! // New blanket impl
//! impl<X> LockAfter<X> for A where C: LockAfter<X> {}
//! ```
//!
//! The compiler will follow the blanket impls to produce implicit `LockAfter`
//! implementations like this:
//!
//!   1. Our added edge satisfies the `where` clause for blanket impl 1 with
//!      `X=C`, so the compiler infers an implicit `impl LockAfter<C> for B {}`.
//!   2. That satisfies the conditions for blanket impl 2 (`X=C`), so now we
//!      also have `impl LockAfter<C> for C {}`.
//!   3. This satisfies the condition for our new blanket impl with
//!      `X=C`; now the compiler adds an implicit `impl LockAfter<C> for A {}`.
//!
//! Depicted visually, the compiler combines specific and blanket impls like
//! this:
//!
//! ```text
//! ┌─────────────────────────┐┌──────────────────────────────────────────────────┐
//! │ impl LockAfter<C> for A ││ impl<X> LockAfter<X> for B where A: LockAfter<X> │
//! └┬────────────────────────┘└┬─────────────────────────────────────────────────┘
//! ┌▽──────────────────────────▽┐┌──────────────────────────────────────────────────┐
//! │ impl LockAfter<C> for B    ││ impl<X> LockAfter<X> for C where B: LockAfter<X> │
//! └┬───────────────────────────┘└┬─────────────────────────────────────────────────┘
//! ┌▽─────────────────────────────▽┐┌──────────────────────────────────────────────────┐                                                  │
//! │ impl LockAfter<C> for C       ││ impl<X> LockAfter<X> for A where C: LockAfter<X> │                                                                                            │
//! └┬──────────────────────────────┘└┬─────────────────────────────────────────────────┘
//! ┌▽────────────────────────────────▽┐
//! │ impl LockAfter<C> for A  (again) │
//! └──────────────────────────────────┘
//!
//! ```
//! The final implicit trait implementation has the exact same trait
//! (`LockAfter<C>`) and type (`A`) as the explicit implementation we added with
//! our graph edge, so the compiler detects the duplication and rejects our
//! code. This works not just with the graph above, but with any graph that
//! includes a cycle.

/// Marker trait that indicates that `Self` can be locked after `A`.
///
/// This should be implemented for lock types to specify that, in the lock
/// ordering graph, `A` comes before `Self`. So if `B: LockAfter<A>`, lock type
/// `B` can be acquired after `A` but `A` cannot be acquired after `B`.
///
/// Note, though, that it's preferred to use the [`impl_lock_after`] macro
/// instead of writing trait impls directly to avoid the possibility of lock
/// ordering cycles.
pub trait LockAfter<A> {}

/// Marker trait that indicates that `Self` is an ancestor of `X`.
///
/// Functions and trait impls that want to apply lock ordering bounds should use
/// this instead of [`LockAfter`]. Types should prefer to implement `LockAfter`
/// instead of this trait. Like [`From`] and [`Into`], a blanket impl of
/// `LockBefore` is provided for all types that implement `LockAfter`
pub trait LockBefore<X> {}

impl<B: LockAfter<A>, A> LockBefore<B> for A {}

#[macro_export]
macro_rules! impl_lock_after {
    ($A:ty => $B:ty) => {
        impl lock_order::relation::LockAfter<$A> for $B {}
        impl<X: lock_order::relation::LockBefore<$A>> lock_order::relation::LockAfter<X> for $B {}
    };
}

#[cfg(test)]
mod test {
    use crate::lock::LockFor;
    use crate::relation::LockAfter;
    use crate::{Locked, Unlocked};
    use std::sync::{Mutex, MutexGuard};

    extern crate self as lock_order;

    enum A {}
    enum B {}
    enum C {}

    impl_lock_after!(A => B);
    impl_lock_after!(B => C);

    impl LockAfter<Unlocked> for A {}

    struct FakeLocked {
        a: Mutex<u32>,
        c: Mutex<char>,
    }

    impl LockFor<A> for FakeLocked {
        type Data = u32;
        type Guard<'l>
            = MutexGuard<'l, u32>
        where
            Self: 'l;
        fn lock(&self) -> Self::Guard<'_> {
            self.a.lock().unwrap()
        }
    }

    impl LockFor<C> for FakeLocked {
        type Data = char;
        type Guard<'l>
            = MutexGuard<'l, char>
        where
            Self: 'l;
        fn lock(&self) -> Self::Guard<'_> {
            self.c.lock().unwrap()
        }
    }

    #[test]
    fn lock_a_then_c() {
        const A_DATA: u32 = 123;
        const C_DATA: char = '4';
        let state = FakeLocked { a: A_DATA.into(), c: C_DATA.into() };

        let mut locked = Locked::new(&state);

        let (a, mut locked): (_, Locked<&FakeLocked, A>) = locked.lock_and::<A>();
        assert_eq!(*a, A_DATA);
        // Show that A: LockBefore<B> and B: LockBefore<C> => A: LockBefore<C>.
        // Otherwise this wouldn't compile:
        let c = locked.lock::<C>();
        assert_eq!(*c, C_DATA);
    }
}