slab/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(
missing_debug_implementations,
missing_docs,
rust_2018_idioms,
unreachable_pub
)]
#![doc(test(
no_crate_inject,
attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
))]
//! Pre-allocated storage for a uniform data type.
//!
//! `Slab` provides pre-allocated storage for a single data type. If many values
//! of a single type are being allocated, it can be more efficient to
//! pre-allocate the necessary storage. Since the size of the type is uniform,
//! memory fragmentation can be avoided. Storing, clearing, and lookup
//! operations become very cheap.
//!
//! While `Slab` may look like other Rust collections, it is not intended to be
//! used as a general purpose collection. The primary difference between `Slab`
//! and `Vec` is that `Slab` returns the key when storing the value.
//!
//! It is important to note that keys may be reused. In other words, once a
//! value associated with a given key is removed from a slab, that key may be
//! returned from future calls to `insert`.
//!
//! # Examples
//!
//! Basic storing and retrieval.
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::new();
//!
//! let hello = slab.insert("hello");
//! let world = slab.insert("world");
//!
//! assert_eq!(slab[hello], "hello");
//! assert_eq!(slab[world], "world");
//!
//! slab[world] = "earth";
//! assert_eq!(slab[world], "earth");
//! ```
//!
//! Sometimes it is useful to be able to associate the key with the value being
//! inserted in the slab. This can be done with the `vacant_entry` API as such:
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::new();
//!
//! let hello = {
//! let entry = slab.vacant_entry();
//! let key = entry.key();
//!
//! entry.insert((key, "hello"));
//! key
//! };
//!
//! assert_eq!(hello, slab[hello].0);
//! assert_eq!("hello", slab[hello].1);
//! ```
//!
//! It is generally a good idea to specify the desired capacity of a slab at
//! creation time. Note that `Slab` will grow the internal capacity when
//! attempting to insert a new value once the existing capacity has been reached.
//! To avoid this, add a check.
//!
//! ```
//! # use slab::*;
//! let mut slab = Slab::with_capacity(1024);
//!
//! // ... use the slab
//!
//! if slab.len() == slab.capacity() {
//! panic!("slab full");
//! }
//!
//! slab.insert("the slab is not at capacity yet");
//! ```
//!
//! # Capacity and reallocation
//!
//! The capacity of a slab is the amount of space allocated for any future
//! values that will be inserted in the slab. This is not to be confused with
//! the *length* of the slab, which specifies the number of actual values
//! currently being inserted. If a slab's length is equal to its capacity, the
//! next value inserted into the slab will require growing the slab by
//! reallocating.
//!
//! For example, a slab with capacity 10 and length 0 would be an empty slab
//! with space for 10 more stored values. Storing 10 or fewer elements into the
//! slab will not change its capacity or cause reallocation to occur. However,
//! if the slab length is increased to 11 (due to another `insert`), it will
//! have to reallocate, which can be slow. For this reason, it is recommended to
//! use [`Slab::with_capacity`] whenever possible to specify how many values the
//! slab is expected to store.
//!
//! # Implementation
//!
//! `Slab` is backed by a `Vec` of slots. Each slot is either occupied or
//! vacant. `Slab` maintains a stack of vacant slots using a linked list. To
//! find a vacant slot, the stack is popped. When a slot is released, it is
//! pushed onto the stack.
//!
//! If there are no more available slots in the stack, then `Vec::reserve(1)` is
//! called and a new slot is created.
//!
//! [`Slab::with_capacity`]: struct.Slab.html#with_capacity
#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std as alloc;
#[cfg(feature = "serde")]
mod serde;
use alloc::vec::{self, Vec};
use core::iter::{self, FromIterator, FusedIterator};
use core::{fmt, mem, ops, slice};
/// Pre-allocated storage for a uniform data type
///
/// See the [module documentation] for more details.
///
/// [module documentation]: index.html
#[derive(Clone)]
pub struct Slab<T> {
// Chunk of memory
entries: Vec<Entry<T>>,
// Number of Filled elements currently in the slab
len: usize,
// Offset of the next available slot in the slab. Set to the slab's
// capacity when the slab is full.
next: usize,
}
impl<T> Default for Slab<T> {
fn default() -> Self {
Slab::new()
}
}
/// A handle to a vacant entry in a `Slab`.
///
/// `VacantEntry` allows constructing values with the key that they will be
/// assigned to.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
#[derive(Debug)]
pub struct VacantEntry<'a, T> {
slab: &'a mut Slab<T>,
key: usize,
}
/// A consuming iterator over the values stored in a `Slab`
pub struct IntoIter<T> {
entries: iter::Enumerate<vec::IntoIter<Entry<T>>>,
len: usize,
}
/// An iterator over the values stored in the `Slab`
pub struct Iter<'a, T> {
entries: iter::Enumerate<slice::Iter<'a, Entry<T>>>,
len: usize,
}
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Self {
Self {
entries: self.entries.clone(),
len: self.len,
}
}
}
/// A mutable iterator over the values stored in the `Slab`
pub struct IterMut<'a, T> {
entries: iter::Enumerate<slice::IterMut<'a, Entry<T>>>,
len: usize,
}
/// A draining iterator for `Slab`
pub struct Drain<'a, T> {
inner: vec::Drain<'a, Entry<T>>,
len: usize,
}
#[derive(Clone)]
enum Entry<T> {
Vacant(usize),
Occupied(T),
}
impl<T> Slab<T> {
/// Construct a new, empty `Slab`.
///
/// The function does not allocate and the returned slab will have no
/// capacity until `insert` is called or capacity is explicitly reserved.
///
/// This is `const fn` on Rust 1.39+.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let slab: Slab<i32> = Slab::new();
/// ```
#[cfg(not(slab_no_const_vec_new))]
pub const fn new() -> Self {
Self {
entries: Vec::new(),
next: 0,
len: 0,
}
}
/// Construct a new, empty `Slab`.
///
/// The function does not allocate and the returned slab will have no
/// capacity until `insert` is called or capacity is explicitly reserved.
///
/// This is `const fn` on Rust 1.39+.
#[cfg(slab_no_const_vec_new)]
pub fn new() -> Self {
Self {
entries: Vec::new(),
next: 0,
len: 0,
}
}
/// Construct a new, empty `Slab` with the specified capacity.
///
/// The returned slab will be able to store exactly `capacity` without
/// reallocating. If `capacity` is 0, the slab will not allocate.
///
/// It is important to note that this function does not specify the *length*
/// of the returned slab, but only the capacity. For an explanation of the
/// difference between length and capacity, see [Capacity and
/// reallocation](index.html#capacity-and-reallocation).
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::with_capacity(10);
///
/// // The slab contains no values, even though it has capacity for more
/// assert_eq!(slab.len(), 0);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// slab.insert(i);
/// }
///
/// // ...but this may make the slab reallocate
/// slab.insert(11);
/// ```
pub fn with_capacity(capacity: usize) -> Slab<T> {
Slab {
entries: Vec::with_capacity(capacity),
next: 0,
len: 0,
}
}
/// Return the number of values the slab can store without reallocating.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let slab: Slab<i32> = Slab::with_capacity(10);
/// assert_eq!(slab.capacity(), 10);
/// ```
pub fn capacity(&self) -> usize {
self.entries.capacity()
}
/// Reserve capacity for at least `additional` more values to be stored
/// without allocating.
///
/// `reserve` does nothing if the slab already has sufficient capacity for
/// `additional` more values. If more capacity is required, a new segment of
/// memory will be allocated and all existing values will be copied into it.
/// As such, if the slab is already very large, a call to `reserve` can end
/// up being expensive.
///
/// The slab may reserve more than `additional` extra space in order to
/// avoid frequent reallocations. Use `reserve_exact` instead to guarantee
/// that only the requested space is allocated.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// slab.insert("hello");
/// slab.reserve(10);
/// assert!(slab.capacity() >= 11);
/// ```
pub fn reserve(&mut self, additional: usize) {
if self.capacity() - self.len >= additional {
return;
}
let need_add = additional - (self.entries.len() - self.len);
self.entries.reserve(need_add);
}
/// Reserve the minimum capacity required to store exactly `additional`
/// more values.
///
/// `reserve_exact` does nothing if the slab already has sufficient capacity
/// for `additional` more values. If more capacity is required, a new segment
/// of memory will be allocated and all existing values will be copied into
/// it. As such, if the slab is already very large, a call to `reserve` can
/// end up being expensive.
///
/// Note that the allocator may give the slab more space than it requests.
/// Therefore capacity can not be relied upon to be precisely minimal.
/// Prefer `reserve` if future insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// slab.insert("hello");
/// slab.reserve_exact(10);
/// assert!(slab.capacity() >= 11);
/// ```
pub fn reserve_exact(&mut self, additional: usize) {
if self.capacity() - self.len >= additional {
return;
}
let need_add = additional - (self.entries.len() - self.len);
self.entries.reserve_exact(need_add);
}
/// Shrink the capacity of the slab as much as possible without invalidating keys.
///
/// Because values cannot be moved to a different index, the slab cannot
/// shrink past any stored values.
/// It will drop down as close as possible to the length but the allocator may
/// still inform the underlying vector that there is space for a few more elements.
///
/// This function can take O(n) time even when the capacity cannot be reduced
/// or the allocation is shrunk in place. Repeated calls run in O(1) though.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::with_capacity(10);
///
/// for i in 0..3 {
/// slab.insert(i);
/// }
///
/// slab.shrink_to_fit();
/// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
/// ```
///
/// The slab cannot shrink past the last present value even if previous
/// values are removed:
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::with_capacity(10);
///
/// for i in 0..4 {
/// slab.insert(i);
/// }
///
/// slab.remove(0);
/// slab.remove(3);
///
/// slab.shrink_to_fit();
/// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
/// ```
pub fn shrink_to_fit(&mut self) {
// Remove all vacant entries after the last occupied one, so that
// the capacity can be reduced to what is actually needed.
// If the slab is empty the vector can simply be cleared, but that
// optimization would not affect time complexity when T: Drop.
let len_before = self.entries.len();
while let Some(&Entry::Vacant(_)) = self.entries.last() {
self.entries.pop();
}
// Removing entries breaks the list of vacant entries,
// so it must be repaired
if self.entries.len() != len_before {
// Some vacant entries were removed, so the list now likely¹
// either contains references to the removed entries, or has an
// invalid end marker. Fix this by recreating the list.
self.recreate_vacant_list();
// ¹: If the removed entries formed the tail of the list, with the
// most recently popped entry being the head of them, (so that its
// index is now the end marker) the list is still valid.
// Checking for that unlikely scenario of this infrequently called
// is not worth the code complexity.
}
self.entries.shrink_to_fit();
}
/// Iterate through all entries to recreate and repair the vacant list.
/// self.len must be correct and is not modified.
fn recreate_vacant_list(&mut self) {
self.next = self.entries.len();
// We can stop once we've found all vacant entries
let mut remaining_vacant = self.entries.len() - self.len;
// Iterate in reverse order so that lower keys are at the start of
// the vacant list. This way future shrinks are more likely to be
// able to remove vacant entries.
for (i, entry) in self.entries.iter_mut().enumerate().rev() {
if remaining_vacant == 0 {
break;
}
if let Entry::Vacant(ref mut next) = *entry {
*next = self.next;
self.next = i;
remaining_vacant -= 1;
}
}
}
/// Reduce the capacity as much as possible, changing the key for elements when necessary.
///
/// To allow updating references to the elements which must be moved to a new key,
/// this function takes a closure which is called before moving each element.
/// The second and third parameters to the closure are the current key and
/// new key respectively.
/// In case changing the key for one element turns out not to be possible,
/// the move can be cancelled by returning `false` from the closure.
/// In that case no further attempts at relocating elements is made.
/// If the closure unwinds, the slab will be left in a consistent state,
/// but the value that the closure panicked on might be removed.
///
/// # Examples
///
/// ```
/// # use slab::*;
///
/// let mut slab = Slab::with_capacity(10);
/// let a = slab.insert('a');
/// slab.insert('b');
/// slab.insert('c');
/// slab.remove(a);
/// slab.compact(|&mut value, from, to| {
/// assert_eq!((value, from, to), ('c', 2, 0));
/// true
/// });
/// assert!(slab.capacity() >= 2 && slab.capacity() < 10);
/// ```
///
/// The value is not moved when the closure returns `Err`:
///
/// ```
/// # use slab::*;
///
/// let mut slab = Slab::with_capacity(100);
/// let a = slab.insert('a');
/// let b = slab.insert('b');
/// slab.remove(a);
/// slab.compact(|&mut value, from, to| false);
/// assert_eq!(slab.iter().next(), Some((b, &'b')));
/// ```
pub fn compact<F>(&mut self, mut rekey: F)
where
F: FnMut(&mut T, usize, usize) -> bool,
{
// If the closure unwinds, we need to restore a valid list of vacant entries
struct CleanupGuard<'a, T> {
slab: &'a mut Slab<T>,
decrement: bool,
}
impl<T> Drop for CleanupGuard<'_, T> {
fn drop(&mut self) {
if self.decrement {
// Value was popped and not pushed back on
self.slab.len -= 1;
}
self.slab.recreate_vacant_list();
}
}
let mut guard = CleanupGuard {
slab: self,
decrement: true,
};
let mut occupied_until = 0;
// While there are vacant entries
while guard.slab.entries.len() > guard.slab.len {
// Find a value that needs to be moved,
// by popping entries until we find an occupied one.
// (entries cannot be empty because 0 is not greater than anything)
if let Some(Entry::Occupied(mut value)) = guard.slab.entries.pop() {
// Found one, now find a vacant entry to move it to
while let Some(&Entry::Occupied(_)) = guard.slab.entries.get(occupied_until) {
occupied_until += 1;
}
// Let the caller try to update references to the key
if !rekey(&mut value, guard.slab.entries.len(), occupied_until) {
// Changing the key failed, so push the entry back on at its old index.
guard.slab.entries.push(Entry::Occupied(value));
guard.decrement = false;
guard.slab.entries.shrink_to_fit();
return;
// Guard drop handles cleanup
}
// Put the value in its new spot
guard.slab.entries[occupied_until] = Entry::Occupied(value);
// ... and mark it as occupied (this is optional)
occupied_until += 1;
}
}
guard.slab.next = guard.slab.len;
guard.slab.entries.shrink_to_fit();
// Normal cleanup is not necessary
mem::forget(guard);
}
/// Clear the slab of all values.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// for i in 0..3 {
/// slab.insert(i);
/// }
///
/// slab.clear();
/// assert!(slab.is_empty());
/// ```
pub fn clear(&mut self) {
self.entries.clear();
self.len = 0;
self.next = 0;
}
/// Return the number of stored values.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// for i in 0..3 {
/// slab.insert(i);
/// }
///
/// assert_eq!(3, slab.len());
/// ```
pub fn len(&self) -> usize {
self.len
}
/// Return `true` if there are no values stored in the slab.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// assert!(slab.is_empty());
///
/// slab.insert(1);
/// assert!(!slab.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Return an iterator over the slab.
///
/// This function should generally be **avoided** as it is not efficient.
/// Iterators must iterate over every slot in the slab even if it is
/// vacant. As such, a slab with a capacity of 1 million but only one
/// stored value must still iterate the million slots.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// for i in 0..3 {
/// slab.insert(i);
/// }
///
/// let mut iterator = slab.iter();
///
/// assert_eq!(iterator.next(), Some((0, &0)));
/// assert_eq!(iterator.next(), Some((1, &1)));
/// assert_eq!(iterator.next(), Some((2, &2)));
/// assert_eq!(iterator.next(), None);
/// ```
pub fn iter(&self) -> Iter<'_, T> {
Iter {
entries: self.entries.iter().enumerate(),
len: self.len,
}
}
/// Return an iterator that allows modifying each value.
///
/// This function should generally be **avoided** as it is not efficient.
/// Iterators must iterate over every slot in the slab even if it is
/// vacant. As such, a slab with a capacity of 1 million but only one
/// stored value must still iterate the million slots.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let key1 = slab.insert(0);
/// let key2 = slab.insert(1);
///
/// for (key, val) in slab.iter_mut() {
/// if key == key1 {
/// *val += 2;
/// }
/// }
///
/// assert_eq!(slab[key1], 2);
/// assert_eq!(slab[key2], 1);
/// ```
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
IterMut {
entries: self.entries.iter_mut().enumerate(),
len: self.len,
}
}
/// Return a reference to the value associated with the given key.
///
/// If the given key is not associated with a value, then `None` is
/// returned.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert("hello");
///
/// assert_eq!(slab.get(key), Some(&"hello"));
/// assert_eq!(slab.get(123), None);
/// ```
pub fn get(&self, key: usize) -> Option<&T> {
match self.entries.get(key) {
Some(&Entry::Occupied(ref val)) => Some(val),
_ => None,
}
}
/// Return a mutable reference to the value associated with the given key.
///
/// If the given key is not associated with a value, then `None` is
/// returned.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert("hello");
///
/// *slab.get_mut(key).unwrap() = "world";
///
/// assert_eq!(slab[key], "world");
/// assert_eq!(slab.get_mut(123), None);
/// ```
pub fn get_mut(&mut self, key: usize) -> Option<&mut T> {
match self.entries.get_mut(key) {
Some(&mut Entry::Occupied(ref mut val)) => Some(val),
_ => None,
}
}
/// Return two mutable references to the values associated with the two
/// given keys simultaneously.
///
/// If any one of the given keys is not associated with a value, then `None`
/// is returned.
///
/// This function can be used to get two mutable references out of one slab,
/// so that you can manipulate both of them at the same time, eg. swap them.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// use std::mem;
///
/// let mut slab = Slab::new();
/// let key1 = slab.insert(1);
/// let key2 = slab.insert(2);
/// let (value1, value2) = slab.get2_mut(key1, key2).unwrap();
/// mem::swap(value1, value2);
/// assert_eq!(slab[key1], 2);
/// assert_eq!(slab[key2], 1);
/// ```
pub fn get2_mut(&mut self, key1: usize, key2: usize) -> Option<(&mut T, &mut T)> {
assert!(key1 != key2);
let (entry1, entry2);
if key1 > key2 {
let (slice1, slice2) = self.entries.split_at_mut(key1);
entry1 = slice2.get_mut(0);
entry2 = slice1.get_mut(key2);
} else {
let (slice1, slice2) = self.entries.split_at_mut(key2);
entry1 = slice1.get_mut(key1);
entry2 = slice2.get_mut(0);
}
match (entry1, entry2) {
(
Some(&mut Entry::Occupied(ref mut val1)),
Some(&mut Entry::Occupied(ref mut val2)),
) => Some((val1, val2)),
_ => None,
}
}
/// Return a reference to the value associated with the given key without
/// performing bounds checking.
///
/// For a safe alternative see [`get`](Slab::get).
///
/// This function should be used with care.
///
/// # Safety
///
/// The key must be within bounds.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert(2);
///
/// unsafe {
/// assert_eq!(slab.get_unchecked(key), &2);
/// }
/// ```
pub unsafe fn get_unchecked(&self, key: usize) -> &T {
match *self.entries.get_unchecked(key) {
Entry::Occupied(ref val) => val,
_ => unreachable!(),
}
}
/// Return a mutable reference to the value associated with the given key
/// without performing bounds checking.
///
/// For a safe alternative see [`get_mut`](Slab::get_mut).
///
/// This function should be used with care.
///
/// # Safety
///
/// The key must be within bounds.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert(2);
///
/// unsafe {
/// let val = slab.get_unchecked_mut(key);
/// *val = 13;
/// }
///
/// assert_eq!(slab[key], 13);
/// ```
pub unsafe fn get_unchecked_mut(&mut self, key: usize) -> &mut T {
match *self.entries.get_unchecked_mut(key) {
Entry::Occupied(ref mut val) => val,
_ => unreachable!(),
}
}
/// Return two mutable references to the values associated with the two
/// given keys simultaneously without performing bounds checking and safety
/// condition checking.
///
/// For a safe alternative see [`get2_mut`](Slab::get2_mut).
///
/// This function should be used with care.
///
/// # Safety
///
/// - Both keys must be within bounds.
/// - The condition `key1 != key2` must hold.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// use std::mem;
///
/// let mut slab = Slab::new();
/// let key1 = slab.insert(1);
/// let key2 = slab.insert(2);
/// let (value1, value2) = unsafe { slab.get2_unchecked_mut(key1, key2) };
/// mem::swap(value1, value2);
/// assert_eq!(slab[key1], 2);
/// assert_eq!(slab[key2], 1);
/// ```
pub unsafe fn get2_unchecked_mut(&mut self, key1: usize, key2: usize) -> (&mut T, &mut T) {
debug_assert_ne!(key1, key2);
let ptr = self.entries.as_mut_ptr();
let ptr1 = ptr.add(key1);
let ptr2 = ptr.add(key2);
match (&mut *ptr1, &mut *ptr2) {
(&mut Entry::Occupied(ref mut val1), &mut Entry::Occupied(ref mut val2)) => {
(val1, val2)
}
_ => unreachable!(),
}
}
/// Get the key for an element in the slab.
///
/// The reference must point to an element owned by the slab.
/// Otherwise this function will panic.
/// This is a constant-time operation because the key can be calculated
/// from the reference with pointer arithmetic.
///
/// # Panics
///
/// This function will panic if the reference does not point to an element
/// of the slab.
///
/// # Examples
///
/// ```
/// # use slab::*;
///
/// let mut slab = Slab::new();
/// let key = slab.insert(String::from("foo"));
/// let value = &slab[key];
/// assert_eq!(slab.key_of(value), key);
/// ```
///
/// Values are not compared, so passing a reference to a different location
/// will result in a panic:
///
/// ```should_panic
/// # use slab::*;
///
/// let mut slab = Slab::new();
/// let key = slab.insert(0);
/// let bad = &0;
/// slab.key_of(bad); // this will panic
/// unreachable!();
/// ```
#[cfg_attr(not(slab_no_track_caller), track_caller)]
pub fn key_of(&self, present_element: &T) -> usize {
let element_ptr = present_element as *const T as usize;
let base_ptr = self.entries.as_ptr() as usize;
// Use wrapping subtraction in case the reference is bad
let byte_offset = element_ptr.wrapping_sub(base_ptr);
// The division rounds away any offset of T inside Entry
// The size of Entry<T> is never zero even if T is due to Vacant(usize)
let key = byte_offset / mem::size_of::<Entry<T>>();
// Prevent returning unspecified (but out of bounds) values
if key >= self.entries.len() {
panic!("The reference points to a value outside this slab");
}
// The reference cannot point to a vacant entry, because then it would not be valid
key
}
/// Insert a value in the slab, returning key assigned to the value.
///
/// The returned key can later be used to retrieve or remove the value using indexed
/// lookup and `remove`. Additional capacity is allocated if needed. See
/// [Capacity and reallocation](index.html#capacity-and-reallocation).
///
/// # Panics
///
/// Panics if the number of elements in the vector overflows a `usize`.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// let key = slab.insert("hello");
/// assert_eq!(slab[key], "hello");
/// ```
pub fn insert(&mut self, val: T) -> usize {
let key = self.next;
self.insert_at(key, val);
key
}
/// Returns the key of the next vacant entry.
///
/// This function returns the key of the vacant entry which will be used
/// for the next insertion. This is equivalent to
/// `slab.vacant_entry().key()`, but it doesn't require mutable access.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
/// assert_eq!(slab.vacant_key(), 0);
///
/// slab.insert(0);
/// assert_eq!(slab.vacant_key(), 1);
///
/// slab.insert(1);
/// slab.remove(0);
/// assert_eq!(slab.vacant_key(), 0);
/// ```
pub fn vacant_key(&self) -> usize {
self.next
}
/// Return a handle to a vacant entry allowing for further manipulation.
///
/// This function is useful when creating values that must contain their
/// slab key. The returned `VacantEntry` reserves a slot in the slab and is
/// able to query the associated key.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
pub fn vacant_entry(&mut self) -> VacantEntry<'_, T> {
VacantEntry {
key: self.next,
slab: self,
}
}
fn insert_at(&mut self, key: usize, val: T) {
self.len += 1;
if key == self.entries.len() {
self.entries.push(Entry::Occupied(val));
self.next = key + 1;
} else {
self.next = match self.entries.get(key) {
Some(&Entry::Vacant(next)) => next,
_ => unreachable!(),
};
self.entries[key] = Entry::Occupied(val);
}
}
/// Tries to remove the value associated with the given key,
/// returning the value if the key existed.
///
/// The key is then released and may be associated with future stored
/// values.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = slab.insert("hello");
///
/// assert_eq!(slab.try_remove(hello), Some("hello"));
/// assert!(!slab.contains(hello));
/// ```
pub fn try_remove(&mut self, key: usize) -> Option<T> {
if let Some(entry) = self.entries.get_mut(key) {
// Swap the entry at the provided value
let prev = mem::replace(entry, Entry::Vacant(self.next));
match prev {
Entry::Occupied(val) => {
self.len -= 1;
self.next = key;
return val.into();
}
_ => {
// Woops, the entry is actually vacant, restore the state
*entry = prev;
}
}
}
None
}
/// Remove and return the value associated with the given key.
///
/// The key is then released and may be associated with future stored
/// values.
///
/// # Panics
///
/// Panics if `key` is not associated with a value.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = slab.insert("hello");
///
/// assert_eq!(slab.remove(hello), "hello");
/// assert!(!slab.contains(hello));
/// ```
#[cfg_attr(not(slab_no_track_caller), track_caller)]
pub fn remove(&mut self, key: usize) -> T {
self.try_remove(key).expect("invalid key")
}
/// Return `true` if a value is associated with the given key.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = slab.insert("hello");
/// assert!(slab.contains(hello));
///
/// slab.remove(hello);
///
/// assert!(!slab.contains(hello));
/// ```
pub fn contains(&self, key: usize) -> bool {
match self.entries.get(key) {
Some(&Entry::Occupied(_)) => true,
_ => false,
}
}
/// Retain only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(usize, &mut e)`
/// returns false. This method operates in place and preserves the key
/// associated with the retained values.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let k1 = slab.insert(0);
/// let k2 = slab.insert(1);
/// let k3 = slab.insert(2);
///
/// slab.retain(|key, val| key == k1 || *val == 1);
///
/// assert!(slab.contains(k1));
/// assert!(slab.contains(k2));
/// assert!(!slab.contains(k3));
///
/// assert_eq!(2, slab.len());
/// ```
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(usize, &mut T) -> bool,
{
for i in 0..self.entries.len() {
let keep = match self.entries[i] {
Entry::Occupied(ref mut v) => f(i, v),
_ => true,
};
if !keep {
self.remove(i);
}
}
}
/// Return a draining iterator that removes all elements from the slab and
/// yields the removed items.
///
/// Note: Elements are removed even if the iterator is only partially
/// consumed or not consumed at all.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let _ = slab.insert(0);
/// let _ = slab.insert(1);
/// let _ = slab.insert(2);
///
/// {
/// let mut drain = slab.drain();
///
/// assert_eq!(Some(0), drain.next());
/// assert_eq!(Some(1), drain.next());
/// assert_eq!(Some(2), drain.next());
/// assert_eq!(None, drain.next());
/// }
///
/// assert!(slab.is_empty());
/// ```
pub fn drain(&mut self) -> Drain<'_, T> {
let old_len = self.len;
self.len = 0;
self.next = 0;
Drain {
inner: self.entries.drain(..),
len: old_len,
}
}
}
impl<T> ops::Index<usize> for Slab<T> {
type Output = T;
#[cfg_attr(not(slab_no_track_caller), track_caller)]
fn index(&self, key: usize) -> &T {
match self.entries.get(key) {
Some(&Entry::Occupied(ref v)) => v,
_ => panic!("invalid key"),
}
}
}
impl<T> ops::IndexMut<usize> for Slab<T> {
#[cfg_attr(not(slab_no_track_caller), track_caller)]
fn index_mut(&mut self, key: usize) -> &mut T {
match self.entries.get_mut(key) {
Some(&mut Entry::Occupied(ref mut v)) => v,
_ => panic!("invalid key"),
}
}
}
impl<T> IntoIterator for Slab<T> {
type Item = (usize, T);
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
IntoIter {
entries: self.entries.into_iter().enumerate(),
len: self.len,
}
}
}
impl<'a, T> IntoIterator for &'a Slab<T> {
type Item = (usize, &'a T);
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
impl<'a, T> IntoIterator for &'a mut Slab<T> {
type Item = (usize, &'a mut T);
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> IterMut<'a, T> {
self.iter_mut()
}
}
/// Create a slab from an iterator of key-value pairs.
///
/// If the iterator produces duplicate keys, the previous value is replaced with the later one.
/// The keys does not need to be sorted beforehand, and this function always
/// takes O(n) time.
/// Note that the returned slab will use space proportional to the largest key,
/// so don't use `Slab` with untrusted keys.
///
/// # Examples
///
/// ```
/// # use slab::*;
///
/// let vec = vec![(2,'a'), (6,'b'), (7,'c')];
/// let slab = vec.into_iter().collect::<Slab<char>>();
/// assert_eq!(slab.len(), 3);
/// assert!(slab.capacity() >= 8);
/// assert_eq!(slab[2], 'a');
/// ```
///
/// With duplicate and unsorted keys:
///
/// ```
/// # use slab::*;
///
/// let vec = vec![(20,'a'), (10,'b'), (11,'c'), (10,'d')];
/// let slab = vec.into_iter().collect::<Slab<char>>();
/// assert_eq!(slab.len(), 3);
/// assert_eq!(slab[10], 'd');
/// ```
impl<T> FromIterator<(usize, T)> for Slab<T> {
fn from_iter<I>(iterable: I) -> Self
where
I: IntoIterator<Item = (usize, T)>,
{
let iterator = iterable.into_iter();
let mut slab = Self::with_capacity(iterator.size_hint().0);
let mut vacant_list_broken = false;
let mut first_vacant_index = None;
for (key, value) in iterator {
if key < slab.entries.len() {
// iterator is not sorted, might need to recreate vacant list
if let Entry::Vacant(_) = slab.entries[key] {
vacant_list_broken = true;
slab.len += 1;
}
// if an element with this key already exists, replace it.
// This is consistent with HashMap and BtreeMap
slab.entries[key] = Entry::Occupied(value);
} else {
if first_vacant_index.is_none() && slab.entries.len() < key {
first_vacant_index = Some(slab.entries.len());
}
// insert holes as necessary
while slab.entries.len() < key {
// add the entry to the start of the vacant list
let next = slab.next;
slab.next = slab.entries.len();
slab.entries.push(Entry::Vacant(next));
}
slab.entries.push(Entry::Occupied(value));
slab.len += 1;
}
}
if slab.len == slab.entries.len() {
// no vacant entries, so next might not have been updated
slab.next = slab.entries.len();
} else if vacant_list_broken {
slab.recreate_vacant_list();
} else if let Some(first_vacant_index) = first_vacant_index {
let next = slab.entries.len();
match &mut slab.entries[first_vacant_index] {
Entry::Vacant(n) => *n = next,
_ => unreachable!(),
}
} else {
unreachable!()
}
slab
}
}
impl<T> fmt::Debug for Slab<T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
if fmt.alternate() {
fmt.debug_map().entries(self.iter()).finish()
} else {
fmt.debug_struct("Slab")
.field("len", &self.len)
.field("cap", &self.capacity())
.finish()
}
}
}
impl<T> fmt::Debug for IntoIter<T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("IntoIter")
.field("remaining", &self.len)
.finish()
}
}
impl<T> fmt::Debug for Iter<'_, T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Iter")
.field("remaining", &self.len)
.finish()
}
}
impl<T> fmt::Debug for IterMut<'_, T>
where
T: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("IterMut")
.field("remaining", &self.len)
.finish()
}
}
impl<T> fmt::Debug for Drain<'_, T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Drain").finish()
}
}
// ===== VacantEntry =====
impl<'a, T> VacantEntry<'a, T> {
/// Insert a value in the entry, returning a mutable reference to the value.
///
/// To get the key associated with the value, use `key` prior to calling
/// `insert`.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
pub fn insert(self, val: T) -> &'a mut T {
self.slab.insert_at(self.key, val);
match self.slab.entries.get_mut(self.key) {
Some(&mut Entry::Occupied(ref mut v)) => v,
_ => unreachable!(),
}
}
/// Return the key associated with this entry.
///
/// A value stored in this entry will be associated with this key.
///
/// # Examples
///
/// ```
/// # use slab::*;
/// let mut slab = Slab::new();
///
/// let hello = {
/// let entry = slab.vacant_entry();
/// let key = entry.key();
///
/// entry.insert((key, "hello"));
/// key
/// };
///
/// assert_eq!(hello, slab[hello].0);
/// assert_eq!("hello", slab[hello].1);
/// ```
pub fn key(&self) -> usize {
self.key
}
}
// ===== IntoIter =====
impl<T> Iterator for IntoIter<T> {
type Item = (usize, T);
fn next(&mut self) -> Option<Self::Item> {
for (key, entry) in &mut self.entries {
if let Entry::Occupied(v) = entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<Self::Item> {
while let Some((key, entry)) = self.entries.next_back() {
if let Entry::Occupied(v) = entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
}
impl<T> ExactSizeIterator for IntoIter<T> {
fn len(&self) -> usize {
self.len
}
}
impl<T> FusedIterator for IntoIter<T> {}
// ===== Iter =====
impl<'a, T> Iterator for Iter<'a, T> {
type Item = (usize, &'a T);
fn next(&mut self) -> Option<Self::Item> {
for (key, entry) in &mut self.entries {
if let Entry::Occupied(ref v) = *entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> DoubleEndedIterator for Iter<'_, T> {
fn next_back(&mut self) -> Option<Self::Item> {
while let Some((key, entry)) = self.entries.next_back() {
if let Entry::Occupied(ref v) = *entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
}
impl<T> ExactSizeIterator for Iter<'_, T> {
fn len(&self) -> usize {
self.len
}
}
impl<T> FusedIterator for Iter<'_, T> {}
// ===== IterMut =====
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = (usize, &'a mut T);
fn next(&mut self) -> Option<Self::Item> {
for (key, entry) in &mut self.entries {
if let Entry::Occupied(ref mut v) = *entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> DoubleEndedIterator for IterMut<'_, T> {
fn next_back(&mut self) -> Option<Self::Item> {
while let Some((key, entry)) = self.entries.next_back() {
if let Entry::Occupied(ref mut v) = *entry {
self.len -= 1;
return Some((key, v));
}
}
debug_assert_eq!(self.len, 0);
None
}
}
impl<T> ExactSizeIterator for IterMut<'_, T> {
fn len(&self) -> usize {
self.len
}
}
impl<T> FusedIterator for IterMut<'_, T> {}
// ===== Drain =====
impl<T> Iterator for Drain<'_, T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
for entry in &mut self.inner {
if let Entry::Occupied(v) = entry {
self.len -= 1;
return Some(v);
}
}
debug_assert_eq!(self.len, 0);
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<T> DoubleEndedIterator for Drain<'_, T> {
fn next_back(&mut self) -> Option<Self::Item> {
while let Some(entry) = self.inner.next_back() {
if let Entry::Occupied(v) = entry {
self.len -= 1;
return Some(v);
}
}
debug_assert_eq!(self.len, 0);
None
}
}
impl<T> ExactSizeIterator for Drain<'_, T> {
fn len(&self) -> usize {
self.len
}
}
impl<T> FusedIterator for Drain<'_, T> {}