deflate/compress.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
use std::io::Write;
use std::io;
use deflate_state::DeflateState;
use encoder_state::EncoderState;
use lzvalue::LZValue;
use lz77::{lz77_compress_block, LZ77Status};
use huffman_lengths::{gen_huffman_lengths, write_huffman_lengths, BlockType};
use bitstream::LsbWriter;
use stored_block::{compress_block_stored, write_stored_header, MAX_STORED_BLOCK_LENGTH};
const LARGEST_OUTPUT_BUF_SIZE: usize = 1024 * 32;
/// Flush mode to use when compressing input received in multiple steps.
///
/// (The more obscure ZLIB flush modes are not implemented.)
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
pub enum Flush {
// Simply wait for more input when we are out of input data to process.
None,
// Send a "sync block", corresponding to Z_SYNC_FLUSH in zlib. This finishes compressing and
// outputting all pending data, and then outputs an empty stored block.
// (That is, the block header indicating a stored block followed by `0000FFFF`).
Sync,
_Partial,
_Block,
_Full,
// Finish compressing and output all remaining input.
Finish,
}
/// Write all the lz77 encoded data in the buffer using the specified `EncoderState`, and finish
/// with the end of block code.
pub fn flush_to_bitstream(buffer: &[LZValue], state: &mut EncoderState) {
for &b in buffer {
state.write_lzvalue(b.value());
}
state.write_end_of_block()
}
/// Compress the input data using only fixed huffman codes.
///
/// Currently only used in tests.
#[cfg(test)]
pub fn compress_data_fixed(input: &[u8]) -> Vec<u8> {
use lz77::lz77_compress;
let mut state = EncoderState::fixed(Vec::new());
let compressed = lz77_compress(input).unwrap();
// We currently don't split blocks here(this function is just used for tests anyhow)
state.write_start_of_block(true, true);
flush_to_bitstream(&compressed, &mut state);
state.flush();
state.reset(Vec::new())
}
fn write_stored_block(input: &[u8], mut writer: &mut LsbWriter, final_block: bool) {
// If the input is not zero, we write stored blocks for the input data.
if !input.is_empty() {
let mut i = input.chunks(MAX_STORED_BLOCK_LENGTH).peekable();
while let Some(chunk) = i.next() {
let last_chunk = i.peek().is_none();
// Write the block header
write_stored_header(writer, final_block && last_chunk);
// Write the actual data.
compress_block_stored(chunk, &mut writer).expect("Write error");
}
} else {
// If the input length is zero, we output an empty block. This is used for syncing.
write_stored_header(writer, final_block);
compress_block_stored(&[], &mut writer).expect("Write error");
}
}
/// Inner compression function used by both the writers and the simple compression functions.
pub fn compress_data_dynamic_n<W: Write>(
input: &[u8],
deflate_state: &mut DeflateState<W>,
flush: Flush,
) -> io::Result<usize> {
let mut bytes_written = 0;
let mut slice = input;
loop {
let output_buf_len = deflate_state.output_buf().len();
let output_buf_pos = deflate_state.output_buf_pos;
// If the output buffer has too much data in it already, flush it before doing anything
// else.
if output_buf_len > LARGEST_OUTPUT_BUF_SIZE {
let written = deflate_state
.inner
.as_mut()
.expect("Missing writer!")
.write(&deflate_state.encoder_state.inner_vec()[output_buf_pos..])?;
if written < output_buf_len.checked_sub(output_buf_pos).unwrap() {
// Only some of the data was flushed, so keep track of where we were.
deflate_state.output_buf_pos += written;
} else {
// If we flushed all of the output, reset the output buffer.
deflate_state.output_buf_pos = 0;
deflate_state.output_buf().clear();
}
if bytes_written == 0 {
// If the buffer was already full when the function was called, this has to be
// returned rather than Ok(0) to indicate that we didn't write anything, but are
// not done yet.
return Err(io::Error::new(
io::ErrorKind::Interrupted,
"Internal buffer full.",
));
} else {
return Ok(bytes_written);
}
}
if deflate_state.lz77_state.is_last_block() {
// The last block has already been written, so we don't ave anything to compress.
break;
}
let (written, status, position) = lz77_compress_block(
slice,
&mut deflate_state.lz77_state,
&mut deflate_state.input_buffer,
&mut deflate_state.lz77_writer,
flush,
);
// Bytes written in this call
bytes_written += written;
// Total bytes written since the compression process started
// TODO: Should we realistically have to worry about overflowing here?
deflate_state.bytes_written += written as u64;
if status == LZ77Status::NeedInput {
// If we've consumed all the data input so far, and we're not
// finishing or syncing or ending the block here, simply return
// the number of bytes consumed so far.
return Ok(bytes_written);
}
// Increment start of input data
slice = &slice[written..];
// We need to check if this is the last block as the header will then be
// slightly different to indicate this.
let last_block = deflate_state.lz77_state.is_last_block();
let current_block_input_bytes = deflate_state.lz77_state.current_block_input_bytes();
if cfg!(debug_assertions) {
deflate_state
.bytes_written_control
.add(current_block_input_bytes);
}
let partial_bits = deflate_state.encoder_state.writer.pending_bits();
let res = {
let (l_freqs, d_freqs) = deflate_state.lz77_writer.get_frequencies();
let (l_lengths, d_lengths) =
deflate_state.encoder_state.huffman_table.get_lengths_mut();
gen_huffman_lengths(
l_freqs,
d_freqs,
current_block_input_bytes,
partial_bits,
l_lengths,
d_lengths,
&mut deflate_state.length_buffers,
)
};
// Check if we've actually managed to compress the input, and output stored blocks
// if not.
match res {
BlockType::Dynamic(header) => {
// Write the block header.
deflate_state
.encoder_state
.write_start_of_block(false, last_block);
// Output the lengths of the huffman codes used in this block.
write_huffman_lengths(
&header,
&deflate_state.encoder_state.huffman_table,
&mut deflate_state.length_buffers.length_buf,
&mut deflate_state.encoder_state.writer,
);
// Uupdate the huffman codes that will be used to encode the
// lz77-compressed data.
deflate_state
.encoder_state
.huffman_table
.update_from_lengths();
// Write the huffman compressed data and the end of block marker.
flush_to_bitstream(
deflate_state.lz77_writer.get_buffer(),
&mut deflate_state.encoder_state,
);
}
BlockType::Fixed => {
// Write the block header for fixed code blocks.
deflate_state
.encoder_state
.write_start_of_block(true, last_block);
// Use the pre-defined static huffman codes.
deflate_state.encoder_state.set_huffman_to_fixed();
// Write the compressed data and the end of block marker.
flush_to_bitstream(
deflate_state.lz77_writer.get_buffer(),
&mut deflate_state.encoder_state,
);
}
BlockType::Stored => {
// If compression fails, output a stored block instead.
let start_pos = position.saturating_sub(current_block_input_bytes as usize);
assert!(
position >= current_block_input_bytes as usize,
"Error! Trying to output a stored block with forgotten data!\
if you encounter this error, please file an issue!"
);
write_stored_block(
&deflate_state.input_buffer.get_buffer()[start_pos..position],
&mut deflate_state.encoder_state.writer,
flush == Flush::Finish && last_block,
);
}
};
// Clear the current lz77 data in the writer for the next call.
deflate_state.lz77_writer.clear();
// We are done with the block, so we reset the number of bytes taken
// for the next one.
deflate_state.lz77_state.reset_input_bytes();
// We are done for now.
if status == LZ77Status::Finished {
// This flush mode means that there should be an empty stored block at the end.
if flush == Flush::Sync {
write_stored_block(&[], &mut deflate_state.encoder_state.writer, false);
} else if !deflate_state.lz77_state.is_last_block() {
// Make sure a block with the last block header has been output.
// Not sure this can actually happen, but we make sure to finish properly
// if it somehow does.
// An empty fixed block is the shortest.
let es = &mut deflate_state.encoder_state;
es.set_huffman_to_fixed();
es.write_start_of_block(true, true);
es.write_end_of_block();
}
break;
}
}
// If we reach this point, the remaining data in the buffers is to be flushed.
deflate_state.encoder_state.flush();
// Make sure we've output everything, and return the number of bytes written if everything
// went well.
let output_buf_pos = deflate_state.output_buf_pos;
let written_to_writer = deflate_state
.inner
.as_mut()
.expect("Missing writer!")
.write(&deflate_state.encoder_state.inner_vec()[output_buf_pos..])?;
if written_to_writer <
deflate_state
.output_buf()
.len()
.checked_sub(output_buf_pos)
.unwrap()
{
deflate_state.output_buf_pos += written_to_writer;
} else {
// If we sucessfully wrote all the data, we can clear the output buffer.
deflate_state.output_buf_pos = 0;
deflate_state.output_buf().clear();
}
Ok(bytes_written)
}
#[cfg(test)]
mod test {
use super::*;
use test_utils::{get_test_data, decompress_to_end};
#[test]
/// Test compressing a short string using fixed encoding.
fn fixed_string_mem() {
let test_data = String::from(" GNU GENERAL PUBLIC LICENSE").into_bytes();
let compressed = compress_data_fixed(&test_data);
let result = decompress_to_end(&compressed);
assert_eq!(test_data, result);
}
#[test]
fn fixed_data() {
let data = vec![190u8; 400];
let compressed = compress_data_fixed(&data);
let result = decompress_to_end(&compressed);
assert_eq!(data, result);
}
/// Test deflate example.
///
/// Check if the encoder produces the same code as the example given by Mark Adler here:
/// https://stackoverflow.com/questions/17398931/deflate-encoding-with-static-huffman-codes/17415203
#[test]
fn fixed_example() {
let test_data = b"Deflate late";
// let check =
// [0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0xc8, 0x49, 0x2c, 0x49, 0x5, 0x0];
let check = [
0x73,
0x49,
0x4d,
0xcb,
0x49,
0x2c,
0x49,
0x55,
0x00,
0x11,
0x00,
];
let compressed = compress_data_fixed(test_data);
assert_eq!(&compressed, &check);
let decompressed = decompress_to_end(&compressed);
assert_eq!(&decompressed, test_data)
}
#[test]
/// Test compression from a file.
fn fixed_string_file() {
let input = get_test_data();
let compressed = compress_data_fixed(&input);
println!("Fixed codes compressed len: {}", compressed.len());
let result = decompress_to_end(&compressed);
assert_eq!(input.len(), result.len());
// Not using assert_eq here deliberately to avoid massive amounts of output spam.
assert!(input == result);
}
}