event_queue/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#![deny(missing_docs)]
#![allow(clippy::let_unit_value)]

//! This is a crate for broadcasting events to multiple clients and waiting for each client to
//! receive it before sending another event to that client. If an event was failed to send, or if
//! the number of events in the queue exceeds the limit, then the client is removed from the event
//! queue.
//!
//! # Example
//!
//! ```
//! #[derive(Clone)]
//! struct FooEvent {
//!     state: String,
//!     progress: u8,
//! }
//!
//! impl Event for FooEvent {
//!     fn can_merge(&self, other: &FooEvent) -> bool {
//!         self.state == other.state
//!     }
//! }
//!
//! struct FooNotifier {
//!     proxy: FooProxy,
//! }
//!
//! impl Notify for FooNotifier {
//!     type Event = FooEvent;
//!     type NotifyFuture = BoxFuture<'static, Result<(), ClosedClient>>;
//!
//!     fn notify(&self, event: FooEvent) -> Self::NotifyFuture {
//!         self.proxy.on_event(&event).map(|result| result.map_err(|_| ClosedClient)).boxed()
//!     }
//! }
//!
//! async fn foo(proxy: FooProxy) {
//!     let (event_queue, mut handle) = EventQueue::<FooNotifier>::new();
//!     let fut = async move {
//!         handle.add_client(FooNotifier { proxy }).await.unwrap();
//!         handle.queue_event(FooEvent { state: "new state".to_string(), progress: 0 }).await.unwrap();
//!     };
//!     future::join(fut, event_queue).await;
//! }
//! ```

use fuchsia_async::TimeoutExt;
use futures::channel::{mpsc, oneshot};
use futures::future::select_all;
use futures::prelude::*;
use futures::select;
use std::collections::VecDeque;
use std::time::Duration;
use thiserror::Error;

mod barrier;
use barrier::{Barrier, BarrierBlock};

const DEFAULT_EVENTS_LIMIT: usize = 10;

/// EventQueue event trait
///
/// The event type need to implement this trait to tell the event queue whether two consecutive
/// pending events can be merged into a single event, if `can_merge` returns true, the event queue
/// will replace the last event in the queue with the latest event.
pub trait Event: Clone {
    /// Returns whether this event can be merged with another event.
    fn can_merge(&self, other: &Self) -> bool;
}

/// The client is closed and should be removed from the event queue.
#[derive(Debug, Error, PartialEq, Eq)]
#[error("The client is closed and should be removed from the event queue.")]
pub struct ClosedClient;

/// The event queue future was dropped before calling control handle functions.
#[derive(Debug, Error, PartialEq, Eq)]
#[error("The event queue future was dropped before calling control handle functions.")]
pub struct EventQueueDropped;

/// The flush operation timed out.
#[derive(Debug, Error, PartialEq, Eq)]
#[error("The flush operation timed out.")]
pub struct TimedOut;

/// This trait defines how an event should be notified for a client. The struct that implements
/// this trait can hold client specific data.
pub trait Notify {
    /// The type of the event that can be sent through this notification channel.
    type Event: Event;

    /// The type of the future that will resolve when the client acknowledges the event or the
    /// client is lost.
    type NotifyFuture: Future<Output = Result<(), ClosedClient>> + Send + Unpin;

    /// If the event was notified successfully, the future should return `Ok(())`, otherwise if the
    /// client is closed, the future should return `Err(ClosedClient)` which will results in the
    /// corresponding client being removed from the event queue.
    fn notify(&self, event: Self::Event) -> Self::NotifyFuture;
}

#[derive(Debug)]
enum Command<N>
where
    N: Notify,
{
    AddClient(N),
    Clear,
    QueueEvent(N::Event),
    TryFlush(BarrierBlock),
    Ping(oneshot::Sender<()>),
}

/// A control handle that can control the event queue.
pub struct ControlHandle<N>
where
    N: Notify,
{
    sender: mpsc::Sender<Command<N>>,
}

impl<N> Clone for ControlHandle<N>
where
    N: Notify,
{
    fn clone(&self) -> Self {
        ControlHandle { sender: self.sender.clone() }
    }
}

impl<N> std::fmt::Debug for ControlHandle<N>
where
    N: Notify,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ControlHandle").finish()
    }
}

impl<N> ControlHandle<N>
where
    N: Notify,
{
    fn new(sender: mpsc::Sender<Command<N>>) -> Self {
        ControlHandle { sender }
    }

    /// Add a new client to the event queue.
    /// If there were events queued before, the new client will receive the last event.
    pub async fn add_client(&mut self, notifier: N) -> Result<(), EventQueueDropped> {
        self.sender.send(Command::AddClient(notifier)).await.map_err(|_| EventQueueDropped)
    }

    /// Make all existing clients in the event queue stop adding new events to their queue, and
    /// once they receive all queued events, they will be dropped.
    pub async fn clear(&mut self) -> Result<(), EventQueueDropped> {
        self.sender.send(Command::Clear).await.map_err(|_| EventQueueDropped)
    }

    /// Queue an event that will be sent to all clients.
    pub async fn queue_event(&mut self, event: N::Event) -> Result<(), EventQueueDropped> {
        self.sender.send(Command::QueueEvent(event)).await.map_err(|_| EventQueueDropped)
    }

    /// Try to flush all pending events to all connected clients, returning a future that completes
    /// once all events are flushed or the given timeout duration is reached.
    pub async fn try_flush(
        &mut self,
        timeout: Duration,
    ) -> Result<impl Future<Output = Result<(), TimedOut>>, EventQueueDropped> {
        let (barrier, block) = Barrier::new();
        let () = self.sender.send(Command::TryFlush(block)).await.map_err(|_| EventQueueDropped)?;

        Ok(barrier.map(Ok).on_timeout(timeout, || Err(TimedOut)))
    }

    /// Pings the event queue.  When this returns, you can be sure that all previous actions via
    /// this control handle have been processed (but not necessarily forwarded to all clients yet).
    pub async fn ping(&mut self) -> Result<(), EventQueueDropped> {
        let (sender, receiver) = oneshot::channel();
        self.sender.send(Command::Ping(sender)).await.map_err(|_| EventQueueDropped)?;
        let _ = receiver.await;
        Ok(())
    }
}

/// An event queue for broadcasting events to multiple clients.
/// Clients that failed to receive events or do not receive events fast enough will be dropped.
pub struct EventQueue<N>
where
    N: Notify,
{
    clients: Vec<Client<N>>,
    receiver: mpsc::Receiver<Command<N>>,
    events_limit: usize,
    prior_events: Vec<N::Event>,
}

impl<N> EventQueue<N>
where
    N: Notify,
{
    /// Create a new `EventQueue` and returns a future for the event queue and a control handle
    /// to control the event queue.
    #[allow(clippy::new_ret_no_self)]
    pub fn new() -> (impl Future<Output = ()>, ControlHandle<N>) {
        Self::with_limit(DEFAULT_EVENTS_LIMIT)
    }

    /// Set the maximum number of events each client can have in the queue.
    /// Clients exceeding this limit will be dropped.
    /// The default value if not set is 10.
    pub fn with_limit(limit: usize) -> (impl Future<Output = ()>, ControlHandle<N>) {
        let (sender, receiver) = mpsc::channel(1);
        let event_queue =
            EventQueue { clients: Vec::new(), receiver, events_limit: limit, prior_events: vec![] };
        (event_queue.start(), ControlHandle::new(sender))
    }

    /// Start the event queue, this function will finish if the sender was dropped.
    async fn start(mut self) {
        loop {
            // select_all will panic if the iterator has nothing in it, so we chain a
            // future::pending to it.
            let pending = future::pending().right_future();
            let all_events = self
                .clients
                .iter_mut()
                .filter_map(|c| c.pending_event.as_mut().map(|fut| fut.left_future()))
                .chain(std::iter::once(pending));
            let mut select_all_events = select_all(all_events).fuse();
            select! {
                (result, index, _) = select_all_events => {
                    let i = self.find_client_index(index);
                    match result {
                        Ok(()) => self.next_event(i),
                        Err(ClosedClient) => {
                            self.clients.swap_remove(i);
                        },
                    }
                },
                command = self.receiver.next() => {
                    match command {
                        Some(Command::AddClient(proxy)) => self.add_client(proxy),
                        Some(Command::Clear) => self.clear(),
                        Some(Command::QueueEvent(event)) => self.queue_event(event),
                        Some(Command::TryFlush(block)) => self.try_flush(block),
                        Some(Command::Ping(pong)) => { let _ = pong.send(()); }
                        None => break,
                    }
                },
            }
        }
    }

    fn add_client(&mut self, notifier: N) {
        let mut client = Client::new(notifier);
        for event in &self.prior_events {
            client.queue_event(event.clone(), self.events_limit);
        }
        self.clients.push(client);
    }

    // Remove clients that have no pending events, otherwise tell them to not accept any new events.
    fn clear(&mut self) {
        let mut i = 0;
        while i < self.clients.len() {
            if self.clients[i].pending_event.is_none() {
                self.clients.swap_remove(i);
            } else {
                self.clients[i].accept_new_events = false;
                i += 1;
            }
        }
        self.prior_events = vec![];
    }

    fn queue_event(&mut self, event: N::Event) {
        let mut i = 0;
        while i < self.clients.len() {
            if !self.clients[i].queue_event(event.clone(), self.events_limit) {
                self.clients.swap_remove(i);
            } else {
                i += 1;
            }
        }

        // Merge this new event with the most recent event, if one exists and is mergable.
        if let Some(newest_mergable_event) = self.prior_events.last() {
            if newest_mergable_event.can_merge(&event) {
                self.prior_events.pop();
            }
        }
        self.prior_events.push(event);
    }

    fn try_flush(&mut self, block: BarrierBlock) {
        for client in self.clients.iter_mut() {
            client.queue_flush_notify(&block);
        }
    }

    // Figure out the actual client index based on the filtered index.
    fn find_client_index(&self, index: usize) -> usize {
        let mut j = 0;
        for i in 0..self.clients.len() {
            if self.clients[i].pending_event.is_none() {
                continue;
            }

            if j == index {
                return i;
            }

            j += 1;
        }
        panic!("index {index} too large");
    }

    fn next_event(&mut self, i: usize) {
        self.clients[i].ack_event();
        if !self.clients[i].accept_new_events && self.clients[i].pending_event.is_none() {
            self.clients.swap_remove(i);
        }
    }
}

struct Client<N>
where
    N: Notify,
{
    notifier: N,
    pending_event: Option<N::NotifyFuture>,
    commands: VecDeque<ClientCommand<N::Event>>,
    accept_new_events: bool,
}

impl<N> Client<N>
where
    N: Notify,
{
    fn new(notifier: N) -> Self {
        Client { notifier, pending_event: None, commands: VecDeque::new(), accept_new_events: true }
    }

    /// Returns the count of in-flight and queued events.
    fn pending_event_count(&self) -> usize {
        let queued_events = self.commands.iter().filter_map(ClientCommand::event).count();
        let pending_event = usize::from(self.pending_event.is_some());

        queued_events + pending_event
    }

    /// Find the most recently queued event, if one exists.
    fn newest_queued_event(&mut self) -> Option<&mut N::Event> {
        self.commands.iter_mut().rev().find_map(ClientCommand::event_mut)
    }

    fn queue_event(&mut self, event: N::Event, events_limit: usize) -> bool {
        // Silently ignore new events if this client is part of a cleared session.
        if !self.accept_new_events {
            return true;
        }

        // Merge this new event with the most recent event, if one exists and is mergable.
        if let Some(newest_mergable_event) =
            self.newest_queued_event().filter(|last_event| last_event.can_merge(&event))
        {
            *newest_mergable_event = event;
            return true;
        }

        // If the event can't be merged, make sure this event isn't the 1 to exceed the limit.
        if self.pending_event_count() + 1 > events_limit {
            return false;
        }

        // Enqueue the event and, if one is not in-flight, dispatch it.
        self.queue_command(ClientCommand::SendEvent(event));
        true
    }

    /// Drop block once all prior events are sent/acked.
    fn queue_flush_notify(&mut self, block: &BarrierBlock) {
        // A cleared client is not part of this flush request.
        if !self.accept_new_events {
            return;
        }

        self.queue_command(ClientCommand::NotifyFlush(block.clone()));
    }

    /// Mark the in-flight event as acknowledged and process items from the queue.
    fn ack_event(&mut self) {
        self.pending_event = None;
        self.process_queue();
    }

    /// Enqueue the command for processing, and, if possible, process items from the queue.
    fn queue_command(&mut self, cmd: ClientCommand<N::Event>) {
        self.commands.push_back(cmd);
        if self.pending_event.is_none() {
            self.process_queue();
        }
    }

    /// Assuming that no event is in-flight, process items from the queue until one is or the queue
    /// is empty.
    fn process_queue(&mut self) {
        assert!(self.pending_event.is_none());

        while let Some(event) = self.commands.pop_front() {
            match event {
                ClientCommand::SendEvent(event) => {
                    self.pending_event = Some(self.notifier.notify(event));
                    return;
                }
                ClientCommand::NotifyFlush(block) => {
                    // drop the block handle to indicate this client has flushed all prior events.
                    drop(block);
                }
            }
        }
    }
}

enum ClientCommand<E> {
    SendEvent(E),
    NotifyFlush(BarrierBlock),
}

impl<E> ClientCommand<E> {
    fn event(&self) -> Option<&E> {
        match self {
            ClientCommand::SendEvent(event) => Some(event),
            ClientCommand::NotifyFlush(_) => None,
        }
    }
    fn event_mut(&mut self) -> Option<&mut E> {
        match self {
            ClientCommand::SendEvent(event) => Some(event),
            ClientCommand::NotifyFlush(_) => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use assert_matches::assert_matches;
    use fidl::endpoints::create_proxy_and_stream;
    use fidl_test_pkg_eventqueue::{
        ExampleEventMonitorMarker, ExampleEventMonitorProxy, ExampleEventMonitorProxyInterface,
        ExampleEventMonitorRequest, ExampleEventMonitorRequestStream,
    };
    use fuchsia_async as fasync;
    use futures::future::BoxFuture;
    use futures::pin_mut;
    use futures::task::Poll;

    struct FidlNotifier {
        proxy: ExampleEventMonitorProxy,
    }

    impl Notify for FidlNotifier {
        type Event = String;
        type NotifyFuture = futures::future::Map<
            <ExampleEventMonitorProxy as ExampleEventMonitorProxyInterface>::OnEventResponseFut,
            fn(Result<(), fidl::Error>) -> Result<(), ClosedClient>,
        >;

        fn notify(&self, event: String) -> Self::NotifyFuture {
            self.proxy.on_event(&event).map(|res| res.map_err(|_| ClosedClient))
        }
    }

    struct MpscNotifier<T> {
        sender: mpsc::Sender<T>,
    }

    impl<T> Notify for MpscNotifier<T>
    where
        T: Event + Send + 'static,
    {
        type Event = T;
        type NotifyFuture = BoxFuture<'static, Result<(), ClosedClient>>;

        fn notify(&self, event: T) -> BoxFuture<'static, Result<(), ClosedClient>> {
            let mut sender = self.sender.clone();
            async move { sender.send(event).map(|result| result.map_err(|_| ClosedClient)).await }
                .boxed()
        }
    }

    impl Event for &'static str {
        fn can_merge(&self, other: &&'static str) -> bool {
            self == other
        }
    }

    impl Event for String {
        fn can_merge(&self, other: &String) -> bool {
            self == other
        }
    }

    fn start_event_queue() -> ControlHandle<FidlNotifier> {
        let (event_queue, handle) = EventQueue::<FidlNotifier>::new();
        fasync::Task::local(event_queue).detach();
        handle
    }

    async fn add_client(
        handle: &mut ControlHandle<FidlNotifier>,
    ) -> ExampleEventMonitorRequestStream {
        let (proxy, stream) = create_proxy_and_stream::<ExampleEventMonitorMarker>();
        handle.add_client(FidlNotifier { proxy }).await.unwrap();
        stream
    }

    async fn assert_events(
        stream: &mut ExampleEventMonitorRequestStream,
        expected_events: &[&str],
    ) {
        for &expected_event in expected_events {
            match stream.try_next().await.unwrap().unwrap() {
                ExampleEventMonitorRequest::OnEvent { event, responder } => {
                    assert_eq!(&event, expected_event);
                    responder.send().unwrap();
                }
            }
        }
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_simple() {
        let (event_queue, mut handle) = EventQueue::<MpscNotifier<String>>::new();
        fasync::Task::local(event_queue).detach();
        let (sender, mut receiver) = mpsc::channel(1);
        handle.add_client(MpscNotifier { sender }).await.unwrap();
        handle.queue_event("event".into()).await.unwrap();
        assert_matches!(receiver.next().await.as_deref(), Some("event"));
        drop(handle);
        assert_matches!(receiver.next().await, None);
    }

    #[test]
    fn flush_with_no_clients_completes_immediately() {
        let mut executor = fasync::TestExecutor::new();
        let (event_queue, mut handle) = EventQueue::<MpscNotifier<String>>::new();
        let _event_queue = fasync::Task::local(event_queue);

        let wait_flush =
            executor.run_singlethreaded(handle.try_flush(Duration::from_secs(1))).unwrap();
        pin_mut!(wait_flush);

        assert_eq!(executor.run_until_stalled(&mut wait_flush), Poll::Ready(Ok(())));
    }

    #[test]
    fn flush_with_no_pending_events_completes_immediately() {
        let mut executor = fasync::TestExecutor::new();
        let (event_queue, mut handle) = EventQueue::<MpscNotifier<String>>::new();
        let _event_queue = fasync::Task::local(event_queue);

        let (sender, _receiver) = mpsc::channel(0);
        #[allow(clippy::async_yields_async)]
        // We want this future to run on our specific executor, not await it directly.
        let wait_flush = executor.run_singlethreaded(async {
            handle.add_client(MpscNotifier { sender }).await.unwrap();
            handle.try_flush(Duration::from_secs(1)).await.unwrap()
        });
        pin_mut!(wait_flush);

        assert_eq!(executor.run_until_stalled(&mut wait_flush), Poll::Ready(Ok(())));
    }

    #[test]
    fn flush_with_pending_events_completes_once_events_are_flushed() {
        let mut executor = fasync::TestExecutor::new();
        let (event_queue, mut handle) = EventQueue::<MpscNotifier<&'static str>>::new();
        let _event_queue = fasync::Task::local(event_queue);

        let (sender1, mut receiver1) = mpsc::channel(0);
        let (sender2, mut receiver2) = mpsc::channel(0);
        #[allow(clippy::async_yields_async)]
        // We want this future to run on our specific executor, not await it directly.
        let wait_flush = executor.run_singlethreaded(async {
            handle.add_client(MpscNotifier { sender: sender1 }).await.unwrap();
            handle.queue_event("first").await.unwrap();
            handle.queue_event("second").await.unwrap();
            handle.add_client(MpscNotifier { sender: sender2 }).await.unwrap();
            let wait_flush = handle.try_flush(Duration::from_secs(1)).await.unwrap();
            handle.queue_event("third").await.unwrap();
            wait_flush
        });
        pin_mut!(wait_flush);

        // No events acked yet, so the flush is pending.
        assert_eq!(executor.run_until_stalled(&mut wait_flush), Poll::Pending);

        // Some, but not all events acked, so the flush is still pending.
        let () = executor.run_singlethreaded(async {
            assert_eq!(receiver1.next().await, Some("first"));
        });
        assert_eq!(executor.run_until_stalled(&mut wait_flush), Poll::Pending);

        // All events prior to the flush now acked, so the flush is done.
        let () = executor.run_singlethreaded(async {
            assert_eq!(receiver1.next().await, Some("second"));
            assert_eq!(receiver2.next().await, Some("first"));
            assert_eq!(receiver2.next().await, Some("second"));
            assert_eq!(receiver2.next().await, Some("third"));
        });
        assert_eq!(executor.run_until_stalled(&mut wait_flush), Poll::Ready(Ok(())));
    }

    #[test]
    fn flush_with_pending_events_fails_at_timeout() {
        let mut executor = fasync::TestExecutor::new_with_fake_time();
        let (event_queue, mut handle) = EventQueue::<MpscNotifier<&'static str>>::new();
        let _event_queue = fasync::Task::local(event_queue);

        let (sender, mut receiver) = mpsc::channel(0);
        #[allow(clippy::async_yields_async)]
        // We want this future to run on our specific executor, not await it directly.
        let wait_flush = {
            let setup = async {
                handle.queue_event("first").await.unwrap();
                handle.add_client(MpscNotifier { sender }).await.unwrap();
                handle.try_flush(Duration::from_secs(1)).await.unwrap()
            };
            pin_mut!(setup);
            match executor.run_until_stalled(&mut setup) {
                Poll::Ready(res) => res,
                _ => panic!(),
            }
        };
        pin_mut!(wait_flush);

        assert!(!executor.wake_expired_timers());
        assert_eq!(executor.run_until_stalled(&mut wait_flush), Poll::Pending);

        executor.set_fake_time(fasync::MonotonicInstant::after(Duration::from_secs(1).into()));
        assert!(executor.wake_expired_timers());
        assert_eq!(executor.run_until_stalled(&mut wait_flush), Poll::Ready(Err(TimedOut)));

        // A flush timing out does not otherwise affect the queue.
        let teardown = async {
            drop(handle);
            assert_eq!(receiver.next().await, Some("first"));
            assert_eq!(receiver.next().await, None);
        };
        pin_mut!(teardown);
        match executor.run_until_stalled(&mut teardown) {
            Poll::Ready(()) => {}
            _ => panic!(),
        }
    }

    #[fasync::run_singlethreaded(test)]
    async fn flush_only_applies_to_active_clients() {
        let (event_queue, mut handle) = EventQueue::<MpscNotifier<&'static str>>::new();
        let _event_queue = fasync::Task::local(event_queue);

        let (sender1, mut receiver1) = mpsc::channel(0);
        let (sender2, mut receiver2) = mpsc::channel(0);

        handle.add_client(MpscNotifier { sender: sender1 }).await.unwrap();
        handle.queue_event("first").await.unwrap();
        handle.clear().await.unwrap();

        handle.add_client(MpscNotifier { sender: sender2 }).await.unwrap();
        handle.queue_event("second").await.unwrap();
        let flush = handle.try_flush(Duration::from_secs(1)).await.unwrap();

        // The flush completes even though the first cleared client hasn't acked its event yet.
        assert_eq!(receiver2.next().await, Some("second"));
        flush.await.unwrap();

        // Clear out all clients.
        assert_eq!(receiver1.next().await, Some("first"));
        assert_eq!(receiver1.next().await, None);
        handle.clear().await.unwrap();
        assert_eq!(receiver2.next().await, None);

        // Nop flush is fast.
        handle.try_flush(Duration::from_secs(1)).await.unwrap().await.unwrap();
    }

    #[fasync::run_singlethreaded(test)]
    async fn notify_flush_commands_do_not_count_towards_limit() {
        let (event_queue, mut handle) = EventQueue::<MpscNotifier<&'static str>>::with_limit(3);
        let _event_queue = fasync::Task::local(event_queue);

        let (sender1, mut receiver1) = mpsc::channel(0);
        let (sender2, mut receiver2) = mpsc::channel(0);

        handle.add_client(MpscNotifier { sender: sender1 }).await.unwrap();
        handle.queue_event("event1").await.unwrap();
        handle.queue_event("event2").await.unwrap();

        handle.add_client(MpscNotifier { sender: sender2 }).await.unwrap();
        let flush2 = handle.try_flush(Duration::from_secs(1)).await.unwrap();
        handle.queue_event("event3").await.unwrap();

        assert_eq!(receiver1.next().await, Some("event1"));
        assert_eq!(receiver1.next().await, Some("event2"));
        assert_eq!(receiver1.next().await, Some("event3"));

        assert_eq!(receiver2.next().await, Some("event1"));
        assert_eq!(receiver2.next().await, Some("event2"));

        // Flush doesn't count towards client 2's limit.
        flush2.await.unwrap();

        assert_eq!(receiver2.next().await, Some("event3"));
        drop(handle);
        assert_eq!(receiver2.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn notify_flush_commands_do_not_interfere_with_event_merge() {
        let (event_queue, mut handle) = EventQueue::<MpscNotifier<&'static str>>::new();
        let _event_queue = fasync::Task::local(event_queue);

        let (sender, mut receiver) = mpsc::channel(0);

        handle.add_client(MpscNotifier { sender }).await.unwrap();
        handle.queue_event("first").await.unwrap();
        handle.queue_event("second_merge").await.unwrap();
        let wait_flush = handle.try_flush(Duration::from_secs(1)).await.unwrap();
        handle.queue_event("second_merge").await.unwrap();
        handle.queue_event("third").await.unwrap();

        assert_eq!(receiver.next().await, Some("first"));
        assert_eq!(receiver.next().await, Some("second_merge"));
        wait_flush.await.unwrap();
        assert_eq!(receiver.next().await, Some("third"));
        drop(handle);
        assert_eq!(receiver.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_simple_fidl() {
        let mut handle = start_event_queue();
        let mut stream = add_client(&mut handle).await;
        handle.queue_event("event".into()).await.unwrap();
        assert_events(&mut stream, &["event"]).await;
        drop(handle);
        assert_matches!(stream.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_multi_client_multi_event() {
        let mut handle = start_event_queue();
        let mut stream1 = add_client(&mut handle).await;
        handle.queue_event("event1".into()).await.unwrap();
        handle.queue_event("event2".into()).await.unwrap();

        let mut stream2 = add_client(&mut handle).await;
        handle.queue_event("event3".into()).await.unwrap();

        assert_events(&mut stream1, &["event1", "event2", "event3"]).await;
        assert_events(&mut stream2, &["event1", "event2", "event3"]).await;

        drop(handle);
        assert_matches!(stream1.next().await, None);
        assert_matches!(stream2.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_clear_clients() {
        let mut handle = start_event_queue();
        let mut stream1 = add_client(&mut handle).await;
        handle.queue_event("event1".into()).await.unwrap();
        handle.queue_event("event2".into()).await.unwrap();
        handle.clear().await.unwrap();
        let mut stream2 = add_client(&mut handle).await;
        handle.queue_event("event3".into()).await.unwrap();
        assert_events(&mut stream2, &["event3"]).await;
        assert_events(&mut stream1, &["event1", "event2"]).await;
        // No event3 because the event queue was cleared.
        assert_matches!(stream1.next().await, None);

        // client2 should have no pending events and be dropped.
        handle.clear().await.unwrap();
        assert_matches!(stream2.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_drop_unresponsive_clients() {
        let mut handle = start_event_queue();
        let mut stream = add_client(&mut handle).await;
        for i in 1..12 {
            handle.queue_event(format!("event{i}")).await.unwrap();
        }
        assert_events(&mut stream, &["event1"]).await;
        assert_matches!(stream.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_drop_unresponsive_clients_custom_limit() {
        let (event_queue, mut handle) = EventQueue::<FidlNotifier>::with_limit(2);
        fasync::Task::local(event_queue).detach();
        let mut stream = add_client(&mut handle).await;

        handle.queue_event("event1".into()).await.unwrap();
        handle.queue_event("event2".into()).await.unwrap();
        handle.queue_event("event3".into()).await.unwrap();
        assert_events(&mut stream, &["event1"]).await;
        assert_matches!(stream.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_drop_unresponsive_clients_custom_limit_merge() {
        let (event_queue, mut handle) = EventQueue::<FidlNotifier>::with_limit(2);
        fasync::Task::local(event_queue).detach();
        let mut stream = add_client(&mut handle).await;

        handle.queue_event("event1".into()).await.unwrap();
        handle.queue_event("event2".into()).await.unwrap();
        handle.queue_event("event2".into()).await.unwrap();
        handle.queue_event("event2".into()).await.unwrap();
        handle.ping().await.unwrap();
        assert_events(&mut stream, &["event1", "event2"]).await;
        drop(handle);
        assert_matches!(stream.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_drop_failed_clients() {
        let mut handle = start_event_queue();
        let mut stream = add_client(&mut handle).await;
        handle.queue_event("event1".into()).await.unwrap();
        handle.queue_event("event2".into()).await.unwrap();
        match stream.try_next().await.unwrap().unwrap() {
            ExampleEventMonitorRequest::OnEvent { event, .. } => {
                assert_eq!(event, "event1");
                // Don't respond.
            }
        }
        assert_matches!(stream.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_drop_failed_clients_multiple() {
        let mut handle = start_event_queue();
        let mut stream1 = add_client(&mut handle).await;
        let mut stream2 = add_client(&mut handle).await;
        handle.queue_event("event1".into()).await.unwrap();
        handle.queue_event("event2".into()).await.unwrap();
        match stream1.try_next().await.unwrap().unwrap() {
            ExampleEventMonitorRequest::OnEvent { event, .. } => {
                assert_eq!(event, "event1");
                // Don't respond.
            }
        }
        assert_matches!(stream1.next().await, None);
        // stream2 can still receive events.
        handle.queue_event("event3".into()).await.unwrap();
        assert_events(&mut stream2, &["event1", "event2", "event3"]).await;
        drop(handle);
        assert_matches!(stream2.next().await, None);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_event_queue_merge_events() {
        let mut handle = start_event_queue();
        let mut stream = add_client(&mut handle).await;
        for i in 0..10 {
            handle.queue_event(format!("event{}", i / 4)).await.unwrap();
        }
        // The first event won't be merged because it's already sent before the second event comes.
        assert_events(&mut stream, &["event0", "event0", "event1", "event2"]).await;
        drop(handle);
        assert_matches!(stream.next().await, None);
    }
}