arbitrary/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
// Copyright © 2019 The Rust Fuzz Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The `Arbitrary` trait crate.
//!
//! This trait provides an [`Arbitrary`](./trait.Arbitrary.html) trait to
//! produce well-typed, structured values, from raw, byte buffers. It is
//! generally intended to be used with fuzzers like AFL or libFuzzer. See the
//! [`Arbitrary`](./trait.Arbitrary.html) trait's documentation for details on
//! automatically deriving, implementing, and/or using the trait.

#![deny(bad_style)]
#![deny(missing_docs)]
#![deny(future_incompatible)]
#![deny(nonstandard_style)]
#![deny(rust_2018_compatibility)]
#![deny(rust_2018_idioms)]
#![deny(unused)]

#[cfg(feature = "derive_arbitrary")]
pub use derive_arbitrary::*;

mod error;
pub use error::*;

pub mod unstructured;
#[doc(inline)]
pub use unstructured::Unstructured;

pub mod size_hint;

use core::cell::{Cell, RefCell, UnsafeCell};
use core::iter;
use core::mem;
use core::num::{NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize};
use core::num::{NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize};
use core::ops::{Range, RangeBounds, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive};
use core::str;
use core::time::Duration;
use std::borrow::{Cow, ToOwned};
use std::collections::{BTreeMap, BTreeSet, BinaryHeap, HashMap, HashSet, LinkedList, VecDeque};
use std::ffi::{CString, OsString};
use std::hash::BuildHasher;
use std::net::{Ipv4Addr, Ipv6Addr};
use std::path::PathBuf;
use std::rc::Rc;
use std::sync::atomic::{AtomicBool, AtomicIsize, AtomicUsize};
use std::sync::{Arc, Mutex};

/// Generate arbitrary structured values from raw, unstructured data.
///
/// The `Arbitrary` trait allows you to generate valid structured values, like
/// `HashMap`s, or ASTs, or `MyTomlConfig`, or any other data structure from
/// raw, unstructured bytes provided by a fuzzer.
///
/// # Deriving `Arbitrary`
///
/// Automatically deriving the `Arbitrary` trait is the recommended way to
/// implement `Arbitrary` for your types.
///
/// Using the custom derive requires that you enable the `"derive"` cargo
/// feature in your `Cargo.toml`:
///
/// ```toml
/// [dependencies]
/// arbitrary = { version = "1", features = ["derive"] }
/// ```
///
/// Then, you add the `#[derive(Arbitrary)]` annotation to your `struct` or
/// `enum` type definition:
///
/// ```
/// # #[cfg(feature = "derive")] mod foo {
/// use arbitrary::Arbitrary;
/// use std::collections::HashSet;
///
/// #[derive(Arbitrary)]
/// pub struct AddressBook {
///     friends: HashSet<Friend>,
/// }
///
/// #[derive(Arbitrary, Hash, Eq, PartialEq)]
/// pub enum Friend {
///     Buddy { name: String },
///     Pal { age: usize },
/// }
/// # }
/// ```
///
/// Every member of the `struct` or `enum` must also implement `Arbitrary`.
///
/// # Implementing `Arbitrary` By Hand
///
/// Implementing `Arbitrary` mostly involves nested calls to other `Arbitrary`
/// arbitrary implementations for each of your `struct` or `enum`'s members. But
/// sometimes you need some amount of raw data, or you need to generate a
/// variably-sized collection type, or something of that sort. The
/// [`Unstructured`][crate::Unstructured] type helps you with these tasks.
///
/// ```
/// # #[cfg(feature = "derive")] mod foo {
/// # pub struct MyCollection<T> { _t: std::marker::PhantomData<T> }
/// # impl<T> MyCollection<T> {
/// #     pub fn new() -> Self { MyCollection { _t: std::marker::PhantomData } }
/// #     pub fn insert(&mut self, element: T) {}
/// # }
/// use arbitrary::{Arbitrary, Result, Unstructured};
///
/// impl<'a, T> Arbitrary<'a> for MyCollection<T>
/// where
///     T: Arbitrary<'a>,
/// {
///     fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
///         // Get an iterator of arbitrary `T`s.
///         let iter = u.arbitrary_iter::<T>()?;
///
///         // And then create a collection!
///         let mut my_collection = MyCollection::new();
///         for elem_result in iter {
///             let elem = elem_result?;
///             my_collection.insert(elem);
///         }
///
///         Ok(my_collection)
///     }
/// }
/// # }
/// ```
pub trait Arbitrary<'a>: Sized {
    /// Generate an arbitrary value of `Self` from the given unstructured data.
    ///
    /// Calling `Arbitrary::arbitrary` requires that you have some raw data,
    /// perhaps given to you by a fuzzer like AFL or libFuzzer. You wrap this
    /// raw data in an `Unstructured`, and then you can call `<MyType as
    /// Arbitrary>::arbitrary` to construct an arbitrary instance of `MyType`
    /// from that unstuctured data.
    ///
    /// Implementation may return an error if there is not enough data to
    /// construct a full instance of `Self`. This is generally OK: it is better
    /// to exit early and get the fuzzer to provide more input data, than it is
    /// to generate default values in place of the missing data, which would
    /// bias the distribution of generated values, and ultimately make fuzzing
    /// less efficient.
    ///
    /// ```
    /// # #[cfg(feature = "derive")] fn foo() {
    /// use arbitrary::{Arbitrary, Unstructured};
    ///
    /// #[derive(Arbitrary)]
    /// pub struct MyType {
    ///     // ...
    /// }
    ///
    /// // Get the raw data from the fuzzer or wherever else.
    /// # let get_raw_data_from_fuzzer = || &[];
    /// let raw_data: &[u8] = get_raw_data_from_fuzzer();
    ///
    /// // Wrap that raw data in an `Unstructured`.
    /// let mut unstructured = Unstructured::new(raw_data);
    ///
    /// // Generate an arbitrary instance of `MyType` and do stuff with it.
    /// if let Ok(value) = MyType::arbitrary(&mut unstructured) {
    /// #   let do_stuff = |_| {};
    ///     do_stuff(value);
    /// }
    /// # }
    /// ```
    ///
    /// See also the documentation for [`Unstructured`][crate::Unstructured].
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self>;

    /// Generate an arbitrary value of `Self` from the entirety of the given unstructured data.
    ///
    /// This is similar to Arbitrary::arbitrary, however it assumes that it is the
    /// last consumer of the given data, and is thus able to consume it all if it needs.
    /// See also the documentation for [`Unstructured`][crate::Unstructured].
    fn arbitrary_take_rest(mut u: Unstructured<'a>) -> Result<Self> {
        Self::arbitrary(&mut u)
    }

    /// Get a size hint for how many bytes out of an `Unstructured` this type
    /// needs to construct itself.
    ///
    /// This is useful for determining how many elements we should insert when
    /// creating an arbitrary collection.
    ///
    /// The return value is similar to
    /// [`Iterator::size_hint`][iterator-size-hint]: it returns a tuple where
    /// the first element is a lower bound on the number of bytes required, and
    /// the second element is an optional upper bound.
    ///
    /// The default implementation return `(0, None)` which is correct for any
    /// type, but not ultimately that useful. Using `#[derive(Arbitrary)]` will
    /// create a better implementation. If you are writing an `Arbitrary`
    /// implementation by hand, and your type can be part of a dynamically sized
    /// collection (such as `Vec`), you are strongly encouraged to override this
    /// default with a better implementation. The
    /// [`size_hint`][crate::size_hint] module will help with this task.
    ///
    /// ## The `depth` Parameter
    ///
    /// If you 100% know that the type you are implementing `Arbitrary` for is
    /// not a recursive type, or your implementation is not transitively calling
    /// any other `size_hint` methods, you can ignore the `depth` parameter.
    /// Note that if you are implementing `Arbitrary` for a generic type, you
    /// cannot guarantee the lack of type recursion!
    ///
    /// Otherwise, you need to use
    /// [`arbitrary::size_hint::recursion_guard(depth)`][crate::size_hint::recursion_guard]
    /// to prevent potential infinite recursion when calculating size hints for
    /// potentially recursive types:
    ///
    /// ```
    /// use arbitrary::{Arbitrary, Unstructured, size_hint};
    ///
    /// // This can potentially be a recursive type if `L` or `R` contain
    /// // something like `Box<Option<MyEither<L, R>>>`!
    /// enum MyEither<L, R> {
    ///     Left(L),
    ///     Right(R),
    /// }
    ///
    /// impl<'a, L, R> Arbitrary<'a> for MyEither<L, R>
    /// where
    ///     L: Arbitrary<'a>,
    ///     R: Arbitrary<'a>,
    /// {
    ///     fn arbitrary(u: &mut Unstructured) -> arbitrary::Result<Self> {
    ///         // ...
    /// #       unimplemented!()
    ///     }
    ///
    ///     fn size_hint(depth: usize) -> (usize, Option<usize>) {
    ///         // Protect against potential infinite recursion with
    ///         // `recursion_guard`.
    ///         size_hint::recursion_guard(depth, |depth| {
    ///             // If we aren't too deep, then `recursion_guard` calls
    ///             // this closure, which implements the natural size hint.
    ///             // Don't forget to use the new `depth` in all nested
    ///             // `size_hint` calls! We recommend shadowing the
    ///             // parameter, like what is done here, so that you can't
    ///             // accidentally use the wrong depth.
    ///             size_hint::or(
    ///                 <L as Arbitrary>::size_hint(depth),
    ///                 <R as Arbitrary>::size_hint(depth),
    ///             )
    ///         })
    ///     }
    /// }
    /// ```
    ///
    /// [iterator-size-hint]: https://doc.rust-lang.org/stable/std/iter/trait.Iterator.html#method.size_hint
    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        let _ = depth;
        (0, None)
    }
}

impl<'a> Arbitrary<'a> for () {
    fn arbitrary(_: &mut Unstructured<'a>) -> Result<Self> {
        Ok(())
    }

    #[inline]
    fn size_hint(_depth: usize) -> (usize, Option<usize>) {
        (0, Some(0))
    }
}

impl<'a> Arbitrary<'a> for bool {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Ok(<u8 as Arbitrary<'a>>::arbitrary(u)? & 1 == 1)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <u8 as Arbitrary<'a>>::size_hint(depth)
    }
}

macro_rules! impl_arbitrary_for_integers {
    ( $( $ty:ty: $unsigned:ty; )* ) => {
        $(
            impl<'a> Arbitrary<'a> for $ty {
                fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
                    let mut buf = [0; mem::size_of::<$ty>()];
                    u.fill_buffer(&mut buf)?;
                    let mut x: $unsigned = 0;
                    for i in 0..mem::size_of::<$ty>() {
                        x |= buf[i] as $unsigned << (i * 8);
                    }
                    Ok(x as $ty)
                }

                #[inline]
                fn size_hint(_depth: usize) -> (usize, Option<usize>) {
                    let n = mem::size_of::<$ty>();
                    (n, Some(n))
                }

            }
        )*
    }
}

impl_arbitrary_for_integers! {
    u8: u8;
    u16: u16;
    u32: u32;
    u64: u64;
    u128: u128;
    usize: usize;
    i8: u8;
    i16: u16;
    i32: u32;
    i64: u64;
    i128: u128;
    isize: usize;
}

macro_rules! impl_arbitrary_for_floats {
    ( $( $ty:ident : $unsigned:ty; )* ) => {
        $(
            impl<'a> Arbitrary<'a> for $ty {
                fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
                    Ok(Self::from_bits(<$unsigned as Arbitrary<'a>>::arbitrary(u)?))
                }

                #[inline]
                fn size_hint(depth: usize) -> (usize, Option<usize>) {
                    <$unsigned as Arbitrary<'a>>::size_hint(depth)
                }
            }
        )*
    }
}

impl_arbitrary_for_floats! {
    f32: u32;
    f64: u64;
}

impl<'a> Arbitrary<'a> for char {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        use std::char;
        // The highest unicode code point is 0x11_FFFF
        const CHAR_END: u32 = 0x11_0000;
        // The size of the surrogate blocks
        const SURROGATES_START: u32 = 0xD800;
        let mut c = <u32 as Arbitrary<'a>>::arbitrary(u)? % CHAR_END;
        if let Some(c) = char::from_u32(c) {
            Ok(c)
        } else {
            // We found a surrogate, wrap and try again
            c -= SURROGATES_START;
            Ok(char::from_u32(c)
                .expect("Generated character should be valid! This is a bug in arbitrary-rs"))
        }
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <u32 as Arbitrary<'a>>::size_hint(depth)
    }
}

impl<'a> Arbitrary<'a> for AtomicBool {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <bool as Arbitrary<'a>>::size_hint(depth)
    }
}

impl<'a> Arbitrary<'a> for AtomicIsize {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <isize as Arbitrary<'a>>::size_hint(depth)
    }
}

impl<'a> Arbitrary<'a> for AtomicUsize {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <usize as Arbitrary<'a>>::size_hint(depth)
    }
}

macro_rules! impl_range {
    (
        $range:ty,
        $value_closure:expr,
        $value_ty:ty,
        $fun:ident($fun_closure:expr),
        $size_hint_closure:expr
    ) => {
        impl<'a, A> Arbitrary<'a> for $range
        where
            A: Arbitrary<'a> + Clone + PartialOrd,
        {
            fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
                let value: $value_ty = Arbitrary::arbitrary(u)?;
                Ok($fun(value, $fun_closure))
            }

            #[inline]
            fn size_hint(depth: usize) -> (usize, Option<usize>) {
                $size_hint_closure(depth)
            }
        }
    };
}

impl_range!(
    Range<A>,
    |r: &Range<A>| (r.start.clone(), r.end.clone()),
    (A, A),
    bounded_range(|(a, b)| a..b),
    |depth| crate::size_hint::and(
        <A as Arbitrary>::size_hint(depth),
        <A as Arbitrary>::size_hint(depth)
    )
);
impl_range!(
    RangeFrom<A>,
    |r: &RangeFrom<A>| r.start.clone(),
    A,
    unbounded_range(|a| a..),
    |depth| <A as Arbitrary>::size_hint(depth)
);
impl_range!(
    RangeInclusive<A>,
    |r: &RangeInclusive<A>| (r.start().clone(), r.end().clone()),
    (A, A),
    bounded_range(|(a, b)| a..=b),
    |depth| crate::size_hint::and(
        <A as Arbitrary>::size_hint(depth),
        <A as Arbitrary>::size_hint(depth)
    )
);
impl_range!(
    RangeTo<A>,
    |r: &RangeTo<A>| r.end.clone(),
    A,
    unbounded_range(|b| ..b),
    |depth| <A as Arbitrary>::size_hint(depth)
);
impl_range!(
    RangeToInclusive<A>,
    |r: &RangeToInclusive<A>| r.end.clone(),
    A,
    unbounded_range(|b| ..=b),
    |depth| <A as Arbitrary>::size_hint(depth)
);

pub(crate) fn bounded_range<CB, I, R>(bounds: (I, I), cb: CB) -> R
where
    CB: Fn((I, I)) -> R,
    I: PartialOrd,
    R: RangeBounds<I>,
{
    let (mut start, mut end) = bounds;
    if start > end {
        mem::swap(&mut start, &mut end);
    }
    cb((start, end))
}

pub(crate) fn unbounded_range<CB, I, R>(bound: I, cb: CB) -> R
where
    CB: Fn(I) -> R,
    R: RangeBounds<I>,
{
    cb(bound)
}

impl<'a> Arbitrary<'a> for Duration {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Ok(Self::new(
            <u64 as Arbitrary>::arbitrary(u)?,
            u.int_in_range(0..=999_999_999)?,
        ))
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(
            <u64 as Arbitrary>::size_hint(depth),
            <u32 as Arbitrary>::size_hint(depth),
        )
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for Option<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Ok(if <bool as Arbitrary<'a>>::arbitrary(u)? {
            Some(Arbitrary::arbitrary(u)?)
        } else {
            None
        })
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(
            <bool as Arbitrary>::size_hint(depth),
            crate::size_hint::or((0, Some(0)), <A as Arbitrary>::size_hint(depth)),
        )
    }
}

impl<'a, A: Arbitrary<'a>, B: Arbitrary<'a>> Arbitrary<'a> for std::result::Result<A, B> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Ok(if <bool as Arbitrary<'a>>::arbitrary(u)? {
            Ok(<A as Arbitrary>::arbitrary(u)?)
        } else {
            Err(<B as Arbitrary>::arbitrary(u)?)
        })
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(
            <bool as Arbitrary>::size_hint(depth),
            crate::size_hint::or(
                <A as Arbitrary>::size_hint(depth),
                <B as Arbitrary>::size_hint(depth),
            ),
        )
    }
}

macro_rules! arbitrary_tuple {
    () => {};
    ($last: ident $($xs: ident)*) => {
        arbitrary_tuple!($($xs)*);

        impl<'a, $($xs: Arbitrary<'a>,)* $last: Arbitrary<'a>> Arbitrary<'a> for ($($xs,)* $last,) {
            fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
                Ok(($($xs::arbitrary(u)?,)* Arbitrary::arbitrary(u)?,))
            }

            #[allow(unused_mut, non_snake_case)]
            fn arbitrary_take_rest(mut u: Unstructured<'a>) -> Result<Self> {
                $(let $xs = $xs::arbitrary(&mut u)?;)*
                let $last = $last::arbitrary_take_rest(u)?;
                Ok(($($xs,)* $last,))
            }

            #[inline]
            fn size_hint(depth: usize) -> (usize, Option<usize>) {
                crate::size_hint::and_all(&[
                    <$last as Arbitrary>::size_hint(depth),
                    $( <$xs as Arbitrary>::size_hint(depth) ),*
                ])
            }
        }
    };
}
arbitrary_tuple!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z);

// Helper to safely create arrays since the standard library doesn't
// provide one yet. Shouldn't be necessary in the future.
struct ArrayGuard<T, const N: usize> {
    dst: *mut T,
    initialized: usize,
}

impl<T, const N: usize> Drop for ArrayGuard<T, N> {
    fn drop(&mut self) {
        debug_assert!(self.initialized <= N);
        let initialized_part = core::ptr::slice_from_raw_parts_mut(self.dst, self.initialized);
        unsafe {
            core::ptr::drop_in_place(initialized_part);
        }
    }
}

fn create_array<F, T, const N: usize>(mut cb: F) -> [T; N]
where
    F: FnMut(usize) -> T,
{
    let mut array: mem::MaybeUninit<[T; N]> = mem::MaybeUninit::uninit();
    let array_ptr = array.as_mut_ptr();
    let dst = array_ptr as _;
    let mut guard: ArrayGuard<T, N> = ArrayGuard {
        dst,
        initialized: 0,
    };
    unsafe {
        for (idx, value_ptr) in (&mut *array.as_mut_ptr()).iter_mut().enumerate() {
            core::ptr::write(value_ptr, cb(idx));
            guard.initialized += 1;
        }
        mem::forget(guard);
        array.assume_init()
    }
}

fn try_create_array<F, T, const N: usize>(mut cb: F) -> Result<[T; N]>
where
    F: FnMut(usize) -> Result<T>,
{
    let mut array: mem::MaybeUninit<[T; N]> = mem::MaybeUninit::uninit();
    let array_ptr = array.as_mut_ptr();
    let dst = array_ptr as _;
    let mut guard: ArrayGuard<T, N> = ArrayGuard {
        dst,
        initialized: 0,
    };
    unsafe {
        for (idx, value_ptr) in (&mut *array.as_mut_ptr()).iter_mut().enumerate() {
            core::ptr::write(value_ptr, cb(idx)?);
            guard.initialized += 1;
        }
        mem::forget(guard);
        Ok(array.assume_init())
    }
}

impl<'a, T, const N: usize> Arbitrary<'a> for [T; N]
where
    T: Arbitrary<'a>,
{
    #[inline]
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        try_create_array(|_| <T as Arbitrary<'a>>::arbitrary(u))
    }

    #[inline]
    fn arbitrary_take_rest(mut u: Unstructured<'a>) -> Result<Self> {
        let mut array = Self::arbitrary(&mut u)?;
        if let Some(last) = array.last_mut() {
            *last = Arbitrary::arbitrary_take_rest(u)?;
        }
        Ok(array)
    }

    #[inline]
    fn size_hint(d: usize) -> (usize, Option<usize>) {
        crate::size_hint::and_all(&create_array::<_, (usize, Option<usize>), N>(|_| {
            <T as Arbitrary>::size_hint(d)
        }))
    }
}

impl<'a> Arbitrary<'a> for &'a [u8] {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        let len = u.arbitrary_len::<u8>()?;
        u.bytes(len)
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        Ok(u.take_rest())
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <usize as Arbitrary>::size_hint(depth)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for Vec<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        u.arbitrary_iter()?.collect()
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        u.arbitrary_take_rest_iter()?.collect()
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a, K: Arbitrary<'a> + Ord, V: Arbitrary<'a>> Arbitrary<'a> for BTreeMap<K, V> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        u.arbitrary_iter()?.collect()
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        u.arbitrary_take_rest_iter()?.collect()
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a, A: Arbitrary<'a> + Ord> Arbitrary<'a> for BTreeSet<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        u.arbitrary_iter()?.collect()
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        u.arbitrary_take_rest_iter()?.collect()
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a, A: Arbitrary<'a> + Ord> Arbitrary<'a> for BinaryHeap<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        u.arbitrary_iter()?.collect()
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        u.arbitrary_take_rest_iter()?.collect()
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a, K: Arbitrary<'a> + Eq + ::std::hash::Hash, V: Arbitrary<'a>, S: BuildHasher + Default>
    Arbitrary<'a> for HashMap<K, V, S>
{
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        u.arbitrary_iter()?.collect()
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        u.arbitrary_take_rest_iter()?.collect()
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a, A: Arbitrary<'a> + Eq + ::std::hash::Hash, S: BuildHasher + Default> Arbitrary<'a>
    for HashSet<A, S>
{
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        u.arbitrary_iter()?.collect()
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        u.arbitrary_take_rest_iter()?.collect()
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for LinkedList<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        u.arbitrary_iter()?.collect()
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        u.arbitrary_take_rest_iter()?.collect()
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for VecDeque<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        u.arbitrary_iter()?.collect()
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        u.arbitrary_take_rest_iter()?.collect()
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a, A> Arbitrary<'a> for Cow<'a, A>
where
    A: ToOwned + ?Sized,
    <A as ToOwned>::Owned: Arbitrary<'a>,
{
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Cow::Owned)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::recursion_guard(depth, |depth| {
            <<A as ToOwned>::Owned as Arbitrary>::size_hint(depth)
        })
    }
}

impl<'a> Arbitrary<'a> for &'a str {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        let size = u.arbitrary_len::<u8>()?;
        match str::from_utf8(&u.peek_bytes(size).unwrap()) {
            Ok(s) => {
                u.bytes(size).unwrap();
                Ok(s)
            }
            Err(e) => {
                let i = e.valid_up_to();
                let valid = u.bytes(i).unwrap();
                let s = unsafe {
                    debug_assert!(str::from_utf8(valid).is_ok());
                    str::from_utf8_unchecked(valid)
                };
                Ok(s)
            }
        }
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        let bytes = u.take_rest();
        str::from_utf8(bytes)
            .map_err(|_| Error::IncorrectFormat)
            .map(Into::into)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::and(<usize as Arbitrary>::size_hint(depth), (0, None))
    }
}

impl<'a> Arbitrary<'a> for String {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        <&str as Arbitrary>::arbitrary(u).map(Into::into)
    }

    fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
        <&str as Arbitrary>::arbitrary_take_rest(u).map(Into::into)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <&str as Arbitrary>::size_hint(depth)
    }
}

impl<'a> Arbitrary<'a> for CString {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        <Vec<u8> as Arbitrary>::arbitrary(u).map(|mut x| {
            x.retain(|&c| c != 0);
            Self::new(x).unwrap()
        })
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <Vec<u8> as Arbitrary>::size_hint(depth)
    }
}

impl<'a> Arbitrary<'a> for OsString {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        <String as Arbitrary>::arbitrary(u).map(From::from)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <String as Arbitrary>::size_hint(depth)
    }
}

impl<'a> Arbitrary<'a> for PathBuf {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        <OsString as Arbitrary>::arbitrary(u).map(From::from)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <OsString as Arbitrary>::size_hint(depth)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for Box<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::recursion_guard(depth, <A as Arbitrary>::size_hint)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for Box<[A]> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        <Vec<A> as Arbitrary>::arbitrary(u).map(|x| x.into_boxed_slice())
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <Vec<A> as Arbitrary>::size_hint(depth)
    }
}

impl<'a> Arbitrary<'a> for Box<str> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        <String as Arbitrary>::arbitrary(u).map(|x| x.into_boxed_str())
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <String as Arbitrary>::size_hint(depth)
    }
}

// impl Arbitrary for Box<CStr> {
//     fn arbitrary(u: &mut Unstructured<'_>) -> Result<Self> {
//         <CString as Arbitrary>::arbitrary(u).map(|x| x.into_boxed_c_str())
//     }
// }

// impl Arbitrary for Box<OsStr> {
//     fn arbitrary(u: &mut Unstructured<'_>) -> Result<Self> {
//         <OsString as Arbitrary>::arbitrary(u).map(|x| x.into_boxed_osstr())
//
//     }
// }

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for Arc<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::recursion_guard(depth, <A as Arbitrary>::size_hint)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for Rc<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        crate::size_hint::recursion_guard(depth, <A as Arbitrary>::size_hint)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for Cell<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <A as Arbitrary<'a>>::size_hint(depth)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for RefCell<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <A as Arbitrary<'a>>::size_hint(depth)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for UnsafeCell<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <A as Arbitrary<'a>>::size_hint(depth)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for Mutex<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(Self::new)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <A as Arbitrary<'a>>::size_hint(depth)
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for iter::Empty<A> {
    fn arbitrary(_: &mut Unstructured<'a>) -> Result<Self> {
        Ok(iter::empty())
    }

    #[inline]
    fn size_hint(_depth: usize) -> (usize, Option<usize>) {
        (0, Some(0))
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for ::std::marker::PhantomData<A> {
    fn arbitrary(_: &mut Unstructured<'a>) -> Result<Self> {
        Ok(::std::marker::PhantomData)
    }

    #[inline]
    fn size_hint(_depth: usize) -> (usize, Option<usize>) {
        (0, Some(0))
    }
}

impl<'a, A: Arbitrary<'a>> Arbitrary<'a> for ::std::num::Wrapping<A> {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Arbitrary::arbitrary(u).map(::std::num::Wrapping)
    }

    #[inline]
    fn size_hint(depth: usize) -> (usize, Option<usize>) {
        <A as Arbitrary<'a>>::size_hint(depth)
    }
}

macro_rules! implement_nonzero_int {
    ($nonzero:ty, $int:ty) => {
        impl<'a> Arbitrary<'a> for $nonzero {
            fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
                match Self::new(<$int as Arbitrary<'a>>::arbitrary(u)?) {
                    Some(n) => Ok(n),
                    None => Err(Error::IncorrectFormat),
                }
            }

            #[inline]
            fn size_hint(depth: usize) -> (usize, Option<usize>) {
                <$int as Arbitrary<'a>>::size_hint(depth)
            }
        }
    };
}

implement_nonzero_int! { NonZeroI8, i8 }
implement_nonzero_int! { NonZeroI16, i16 }
implement_nonzero_int! { NonZeroI32, i32 }
implement_nonzero_int! { NonZeroI64, i64 }
implement_nonzero_int! { NonZeroI128, i128 }
implement_nonzero_int! { NonZeroIsize, isize }
implement_nonzero_int! { NonZeroU8, u8 }
implement_nonzero_int! { NonZeroU16, u16 }
implement_nonzero_int! { NonZeroU32, u32 }
implement_nonzero_int! { NonZeroU64, u64 }
implement_nonzero_int! { NonZeroU128, u128 }
implement_nonzero_int! { NonZeroUsize, usize }

impl<'a> Arbitrary<'a> for Ipv4Addr {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Ok(Ipv4Addr::from(u32::arbitrary(u)?))
    }

    #[inline]
    fn size_hint(_depth: usize) -> (usize, Option<usize>) {
        (4, Some(4))
    }
}

impl<'a> Arbitrary<'a> for Ipv6Addr {
    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
        Ok(Ipv6Addr::from(u128::arbitrary(u)?))
    }

    #[inline]
    fn size_hint(_depth: usize) -> (usize, Option<usize>) {
        (16, Some(16))
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn finite_buffer_fill_buffer() {
        let x = [1, 2, 3, 4];
        let mut rb = Unstructured::new(&x);
        let mut z = [0; 2];
        rb.fill_buffer(&mut z).unwrap();
        assert_eq!(z, [1, 2]);
        rb.fill_buffer(&mut z).unwrap();
        assert_eq!(z, [3, 4]);
        rb.fill_buffer(&mut z).unwrap();
        assert_eq!(z, [0, 0]);
    }

    #[test]
    fn arbitrary_for_integers() {
        let x = [1, 2, 3, 4];
        let mut buf = Unstructured::new(&x);
        let expected = 1 | (2 << 8) | (3 << 16) | (4 << 24);
        let actual = i32::arbitrary(&mut buf).unwrap();
        assert_eq!(expected, actual);
    }

    #[test]
    fn arbitrary_for_bytes() {
        let x = [1, 2, 3, 4, 4];
        let mut buf = Unstructured::new(&x);
        let expected = &[1, 2, 3, 4];
        let actual = <&[u8] as Arbitrary>::arbitrary(&mut buf).unwrap();
        assert_eq!(expected, actual);
    }

    #[test]
    fn arbitrary_take_rest_for_bytes() {
        let x = [1, 2, 3, 4];
        let buf = Unstructured::new(&x);
        let expected = &[1, 2, 3, 4];
        let actual = <&[u8] as Arbitrary>::arbitrary_take_rest(buf).unwrap();
        assert_eq!(expected, actual);
    }

    #[test]
    fn arbitrary_collection() {
        let x = [
            1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8,
        ];
        assert_eq!(
            Vec::<u8>::arbitrary(&mut Unstructured::new(&x)).unwrap(),
            &[2, 4, 6, 8, 1]
        );
        assert_eq!(
            Vec::<u32>::arbitrary(&mut Unstructured::new(&x)).unwrap(),
            &[84148994]
        );
        assert_eq!(
            String::arbitrary(&mut Unstructured::new(&x)).unwrap(),
            "\x01\x02\x03\x04\x05\x06\x07\x08"
        );
    }

    #[test]
    fn arbitrary_take_rest() {
        let x = [1, 2, 3, 4];
        assert_eq!(
            Vec::<u8>::arbitrary_take_rest(Unstructured::new(&x)).unwrap(),
            &[1, 2, 3, 4]
        );
        assert_eq!(
            Vec::<u32>::arbitrary_take_rest(Unstructured::new(&x)).unwrap(),
            &[0x4030201]
        );
        assert_eq!(
            String::arbitrary_take_rest(Unstructured::new(&x)).unwrap(),
            "\x01\x02\x03\x04"
        );
    }

    #[test]
    fn size_hint_for_tuples() {
        assert_eq!(
            (7, Some(7)),
            <(bool, u16, i32) as Arbitrary<'_>>::size_hint(0)
        );
        assert_eq!(
            (1 + mem::size_of::<usize>(), None),
            <(u8, Vec<u8>) as Arbitrary>::size_hint(0)
        );
    }
}