sec1/
point.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
//! Support for the SEC1 `Elliptic-Curve-Point-to-Octet-String` and
//! `Octet-String-to-Elliptic-Curve-Point` encoding algorithms.
//!
//! Described in [SEC1: Elliptic Curve Cryptography] (Version 2.0) section 2.3.3 (p.10).
//!
//! [SEC1: Elliptic Curve Cryptography]: https://www.secg.org/sec1-v2.pdf

use crate::{Error, Result};
use base16ct::HexDisplay;
use core::{
    cmp::Ordering,
    fmt::{self, Debug},
    ops::Add,
    str,
};
use generic_array::{
    typenum::{U1, U28, U32, U48, U66},
    ArrayLength, GenericArray,
};

#[cfg(feature = "alloc")]
use alloc::boxed::Box;

#[cfg(feature = "serde")]
use serdect::serde::{de, ser, Deserialize, Serialize};

#[cfg(feature = "subtle")]
use subtle::{Choice, ConditionallySelectable};

#[cfg(feature = "zeroize")]
use zeroize::Zeroize;

/// Trait for supported modulus sizes which precomputes the typenums for
/// various point encodings so they don't need to be included as bounds.
// TODO(tarcieri): replace this all with const generic expressions.
pub trait ModulusSize: 'static + ArrayLength<u8> + Copy + Debug {
    /// Size of a compressed point for the given elliptic curve when encoded
    /// using the SEC1 `Elliptic-Curve-Point-to-Octet-String` algorithm
    /// (including leading `0x02` or `0x03` tag byte).
    type CompressedPointSize: 'static + ArrayLength<u8> + Copy + Debug;

    /// Size of an uncompressed point for the given elliptic curve when encoded
    /// using the SEC1 `Elliptic-Curve-Point-to-Octet-String` algorithm
    /// (including leading `0x04` tag byte).
    type UncompressedPointSize: 'static + ArrayLength<u8> + Copy + Debug;

    /// Size of an untagged point for given elliptic curve, i.e. size of two
    /// serialized base field elements.
    type UntaggedPointSize: 'static + ArrayLength<u8> + Copy + Debug;
}

macro_rules! impl_modulus_size {
    ($($size:ty),+) => {
        $(impl ModulusSize for $size {
            type CompressedPointSize = <$size as Add<U1>>::Output;
            type UncompressedPointSize = <Self::UntaggedPointSize as Add<U1>>::Output;
            type UntaggedPointSize = <$size as Add>::Output;
        })+
    }
}

impl_modulus_size!(U28, U32, U48, U66);

/// SEC1 encoded curve point.
///
/// This type is an enum over the compressed and uncompressed encodings,
/// useful for cases where either encoding can be supported, or conversions
/// between the two forms.
#[derive(Clone, Default)]
pub struct EncodedPoint<Size>
where
    Size: ModulusSize,
{
    bytes: GenericArray<u8, Size::UncompressedPointSize>,
}

#[allow(clippy::len_without_is_empty)]
impl<Size> EncodedPoint<Size>
where
    Size: ModulusSize,
{
    /// Decode elliptic curve point (compressed or uncompressed) from the
    /// `Elliptic-Curve-Point-to-Octet-String` encoding described in
    /// SEC 1: Elliptic Curve Cryptography (Version 2.0) section
    /// 2.3.3 (page 10).
    ///
    /// <http://www.secg.org/sec1-v2.pdf>
    pub fn from_bytes(input: impl AsRef<[u8]>) -> Result<Self> {
        let input = input.as_ref();

        // Validate tag
        let tag = input
            .first()
            .cloned()
            .ok_or(Error::PointEncoding)
            .and_then(Tag::from_u8)?;

        // Validate length
        let expected_len = tag.message_len(Size::to_usize());

        if input.len() != expected_len {
            return Err(Error::PointEncoding);
        }

        let mut bytes = GenericArray::default();
        bytes[..expected_len].copy_from_slice(input);
        Ok(Self { bytes })
    }

    /// Decode elliptic curve point from raw uncompressed coordinates, i.e.
    /// encoded as the concatenated `x || y` coordinates with no leading SEC1
    /// tag byte (which would otherwise be `0x04` for an uncompressed point).
    pub fn from_untagged_bytes(bytes: &GenericArray<u8, Size::UntaggedPointSize>) -> Self {
        let (x, y) = bytes.split_at(Size::to_usize());
        Self::from_affine_coordinates(x.into(), y.into(), false)
    }

    /// Encode an elliptic curve point from big endian serialized coordinates
    /// (with optional point compression)
    pub fn from_affine_coordinates(
        x: &GenericArray<u8, Size>,
        y: &GenericArray<u8, Size>,
        compress: bool,
    ) -> Self {
        let tag = if compress {
            Tag::compress_y(y.as_slice())
        } else {
            Tag::Uncompressed
        };

        let mut bytes = GenericArray::default();
        bytes[0] = tag.into();
        bytes[1..(Size::to_usize() + 1)].copy_from_slice(x);

        if !compress {
            bytes[(Size::to_usize() + 1)..].copy_from_slice(y);
        }

        Self { bytes }
    }

    /// Return [`EncodedPoint`] representing the additive identity
    /// (a.k.a. point at infinity)
    pub fn identity() -> Self {
        Self::default()
    }

    /// Get the length of the encoded point in bytes
    pub fn len(&self) -> usize {
        self.tag().message_len(Size::to_usize())
    }

    /// Get byte slice containing the serialized [`EncodedPoint`].
    pub fn as_bytes(&self) -> &[u8] {
        &self.bytes[..self.len()]
    }

    /// Get boxed byte slice containing the serialized [`EncodedPoint`]
    #[cfg(feature = "alloc")]
    #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
    pub fn to_bytes(&self) -> Box<[u8]> {
        self.as_bytes().to_vec().into_boxed_slice()
    }

    /// Is this [`EncodedPoint`] compact?
    pub fn is_compact(&self) -> bool {
        self.tag().is_compact()
    }

    /// Is this [`EncodedPoint`] compressed?
    pub fn is_compressed(&self) -> bool {
        self.tag().is_compressed()
    }

    /// Is this [`EncodedPoint`] the additive identity? (a.k.a. point at infinity)
    pub fn is_identity(&self) -> bool {
        self.tag().is_identity()
    }

    /// Compress this [`EncodedPoint`], returning a new [`EncodedPoint`].
    pub fn compress(&self) -> Self {
        match self.coordinates() {
            Coordinates::Compressed { .. }
            | Coordinates::Compact { .. }
            | Coordinates::Identity => self.clone(),
            Coordinates::Uncompressed { x, y } => Self::from_affine_coordinates(x, y, true),
        }
    }

    /// Get the SEC1 tag for this [`EncodedPoint`]
    pub fn tag(&self) -> Tag {
        // Tag is ensured valid by the constructor
        Tag::from_u8(self.bytes[0]).expect("invalid tag")
    }

    /// Get the [`Coordinates`] for this [`EncodedPoint`].
    #[inline]
    pub fn coordinates(&self) -> Coordinates<'_, Size> {
        if self.is_identity() {
            return Coordinates::Identity;
        }

        let (x, y) = self.bytes[1..].split_at(Size::to_usize());

        if self.is_compressed() {
            Coordinates::Compressed {
                x: x.into(),
                y_is_odd: self.tag() as u8 & 1 == 1,
            }
        } else if self.is_compact() {
            Coordinates::Compact { x: x.into() }
        } else {
            Coordinates::Uncompressed {
                x: x.into(),
                y: y.into(),
            }
        }
    }

    /// Get the x-coordinate for this [`EncodedPoint`].
    ///
    /// Returns `None` if this point is the identity point.
    pub fn x(&self) -> Option<&GenericArray<u8, Size>> {
        match self.coordinates() {
            Coordinates::Identity => None,
            Coordinates::Compressed { x, .. } => Some(x),
            Coordinates::Uncompressed { x, .. } => Some(x),
            Coordinates::Compact { x } => Some(x),
        }
    }

    /// Get the y-coordinate for this [`EncodedPoint`].
    ///
    /// Returns `None` if this point is compressed or the identity point.
    pub fn y(&self) -> Option<&GenericArray<u8, Size>> {
        match self.coordinates() {
            Coordinates::Compressed { .. } | Coordinates::Identity => None,
            Coordinates::Uncompressed { y, .. } => Some(y),
            Coordinates::Compact { .. } => None,
        }
    }
}

impl<Size> AsRef<[u8]> for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

#[cfg(feature = "subtle")]
impl<Size> ConditionallySelectable for EncodedPoint<Size>
where
    Size: ModulusSize,
    <Size::UncompressedPointSize as ArrayLength<u8>>::ArrayType: Copy,
{
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        let mut bytes = GenericArray::default();

        for (i, byte) in bytes.iter_mut().enumerate() {
            *byte = u8::conditional_select(&a.bytes[i], &b.bytes[i], choice);
        }

        Self { bytes }
    }
}

impl<Size> Copy for EncodedPoint<Size>
where
    Size: ModulusSize,
    <Size::UncompressedPointSize as ArrayLength<u8>>::ArrayType: Copy,
{
}

impl<Size> Debug for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "EncodedPoint({:?})", self.coordinates())
    }
}

impl<Size: ModulusSize> Eq for EncodedPoint<Size> {}

impl<Size> PartialEq for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn eq(&self, other: &Self) -> bool {
        self.as_bytes() == other.as_bytes()
    }
}

impl<Size: ModulusSize> PartialOrd for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<Size: ModulusSize> Ord for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.as_bytes().cmp(other.as_bytes())
    }
}

impl<Size: ModulusSize> TryFrom<&[u8]> for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    type Error = Error;

    fn try_from(bytes: &[u8]) -> Result<Self> {
        Self::from_bytes(bytes)
    }
}

#[cfg(feature = "zeroize")]
impl<Size> Zeroize for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn zeroize(&mut self) {
        self.bytes.zeroize();
        *self = Self::identity();
    }
}

impl<Size> fmt::Display for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:X}", self)
    }
}

impl<Size> fmt::LowerHex for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:x}", HexDisplay(self.as_bytes()))
    }
}

impl<Size> fmt::UpperHex for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:X}", HexDisplay(self.as_bytes()))
    }
}

/// Decode a SEC1-encoded point from hexadecimal.
///
/// Upper and lower case hexadecimal are both accepted, however mixed case is
/// rejected.
impl<Size> str::FromStr for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    type Err = Error;

    fn from_str(hex: &str) -> Result<Self> {
        let mut buf = GenericArray::<u8, Size::UncompressedPointSize>::default();
        base16ct::mixed::decode(hex, &mut buf)
            .map_err(|_| Error::PointEncoding)
            .and_then(Self::from_bytes)
    }
}

#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<Size> Serialize for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn serialize<S>(&self, serializer: S) -> core::result::Result<S::Ok, S::Error>
    where
        S: ser::Serializer,
    {
        serdect::slice::serialize_hex_upper_or_bin(&self.as_bytes(), serializer)
    }
}

#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<'de, Size> Deserialize<'de> for EncodedPoint<Size>
where
    Size: ModulusSize,
{
    fn deserialize<D>(deserializer: D) -> core::result::Result<Self, D::Error>
    where
        D: de::Deserializer<'de>,
    {
        let bytes = serdect::slice::deserialize_hex_or_bin_vec(deserializer)?;
        Self::from_bytes(&bytes).map_err(de::Error::custom)
    }
}

/// Enum representing the coordinates of either compressed or uncompressed
/// SEC1-encoded elliptic curve points.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Coordinates<'a, Size: ModulusSize> {
    /// Identity point (a.k.a. point at infinity)
    Identity,

    /// Compact curve point
    Compact {
        /// x-coordinate
        x: &'a GenericArray<u8, Size>,
    },

    /// Compressed curve point
    Compressed {
        /// x-coordinate
        x: &'a GenericArray<u8, Size>,

        /// Is the y-coordinate odd?
        y_is_odd: bool,
    },

    /// Uncompressed curve point
    Uncompressed {
        /// x-coordinate
        x: &'a GenericArray<u8, Size>,

        /// y-coordinate
        y: &'a GenericArray<u8, Size>,
    },
}

impl<'a, Size: ModulusSize> Coordinates<'a, Size> {
    /// Get the tag octet needed to encode this set of [`Coordinates`]
    pub fn tag(&self) -> Tag {
        match self {
            Coordinates::Compact { .. } => Tag::Compact,
            Coordinates::Compressed { y_is_odd, .. } => {
                if *y_is_odd {
                    Tag::CompressedOddY
                } else {
                    Tag::CompressedEvenY
                }
            }
            Coordinates::Identity => Tag::Identity,
            Coordinates::Uncompressed { .. } => Tag::Uncompressed,
        }
    }
}

/// Tag byte used by the `Elliptic-Curve-Point-to-Octet-String` encoding.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
pub enum Tag {
    /// Identity point (`0x00`)
    Identity = 0,

    /// Compressed point with even y-coordinate (`0x02`)
    CompressedEvenY = 2,

    /// Compressed point with odd y-coordinate (`0x03`)
    CompressedOddY = 3,

    /// Uncompressed point (`0x04`)
    Uncompressed = 4,

    /// Compact point (`0x05`)
    Compact = 5,
}

impl Tag {
    /// Parse a tag value from a byte
    pub fn from_u8(byte: u8) -> Result<Self> {
        match byte {
            0 => Ok(Tag::Identity),
            2 => Ok(Tag::CompressedEvenY),
            3 => Ok(Tag::CompressedOddY),
            4 => Ok(Tag::Uncompressed),
            5 => Ok(Tag::Compact),
            _ => Err(Error::PointEncoding),
        }
    }

    /// Is this point compact?
    pub fn is_compact(self) -> bool {
        matches!(self, Tag::Compact)
    }

    /// Is this point compressed?
    pub fn is_compressed(self) -> bool {
        matches!(self, Tag::CompressedEvenY | Tag::CompressedOddY)
    }

    /// Is this point the identity point?
    pub fn is_identity(self) -> bool {
        self == Tag::Identity
    }

    /// Compute the expected total message length for a message prefixed
    /// with this tag (including the tag byte), given the field element size
    /// (in bytes) for a particular elliptic curve.
    pub fn message_len(self, field_element_size: usize) -> usize {
        1 + match self {
            Tag::Identity => 0,
            Tag::CompressedEvenY | Tag::CompressedOddY => field_element_size,
            Tag::Uncompressed => field_element_size * 2,
            Tag::Compact => field_element_size,
        }
    }

    /// Compress the given y-coordinate, returning a `Tag::Compressed*` value
    fn compress_y(y: &[u8]) -> Self {
        // Is the y-coordinate odd in the SEC1 sense: `self mod 2 == 1`?
        if y.as_ref().last().expect("empty y-coordinate") & 1 == 1 {
            Tag::CompressedOddY
        } else {
            Tag::CompressedEvenY
        }
    }
}

impl TryFrom<u8> for Tag {
    type Error = Error;

    fn try_from(byte: u8) -> Result<Self> {
        Self::from_u8(byte)
    }
}

impl From<Tag> for u8 {
    fn from(tag: Tag) -> u8 {
        tag as u8
    }
}

#[cfg(test)]
mod tests {
    use super::{Coordinates, Tag};
    use core::str::FromStr;
    use generic_array::{typenum::U32, GenericArray};
    use hex_literal::hex;

    #[cfg(feature = "alloc")]
    use alloc::string::ToString;

    #[cfg(feature = "subtle")]
    use subtle::ConditionallySelectable;

    type EncodedPoint = super::EncodedPoint<U32>;

    /// Identity point
    const IDENTITY_BYTES: [u8; 1] = [0];

    /// Example uncompressed point
    const UNCOMPRESSED_BYTES: [u8; 65] = hex!("0411111111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222222222222222222222222");

    /// Example compressed point: `UNCOMPRESSED_BYTES` after point compression
    const COMPRESSED_BYTES: [u8; 33] =
        hex!("021111111111111111111111111111111111111111111111111111111111111111");

    #[test]
    fn decode_compressed_point() {
        // Even y-coordinate
        let compressed_even_y_bytes =
            hex!("020100000000000000000000000000000000000000000000000000000000000000");

        let compressed_even_y = EncodedPoint::from_bytes(&compressed_even_y_bytes[..]).unwrap();

        assert!(compressed_even_y.is_compressed());
        assert_eq!(compressed_even_y.tag(), Tag::CompressedEvenY);
        assert_eq!(compressed_even_y.len(), 33);
        assert_eq!(compressed_even_y.as_bytes(), &compressed_even_y_bytes[..]);

        assert_eq!(
            compressed_even_y.coordinates(),
            Coordinates::Compressed {
                x: &hex!("0100000000000000000000000000000000000000000000000000000000000000").into(),
                y_is_odd: false
            }
        );

        assert_eq!(
            compressed_even_y.x().unwrap(),
            &hex!("0100000000000000000000000000000000000000000000000000000000000000").into()
        );
        assert_eq!(compressed_even_y.y(), None);

        // Odd y-coordinate
        let compressed_odd_y_bytes =
            hex!("030200000000000000000000000000000000000000000000000000000000000000");

        let compressed_odd_y = EncodedPoint::from_bytes(&compressed_odd_y_bytes[..]).unwrap();

        assert!(compressed_odd_y.is_compressed());
        assert_eq!(compressed_odd_y.tag(), Tag::CompressedOddY);
        assert_eq!(compressed_odd_y.len(), 33);
        assert_eq!(compressed_odd_y.as_bytes(), &compressed_odd_y_bytes[..]);

        assert_eq!(
            compressed_odd_y.coordinates(),
            Coordinates::Compressed {
                x: &hex!("0200000000000000000000000000000000000000000000000000000000000000").into(),
                y_is_odd: true
            }
        );

        assert_eq!(
            compressed_odd_y.x().unwrap(),
            &hex!("0200000000000000000000000000000000000000000000000000000000000000").into()
        );
        assert_eq!(compressed_odd_y.y(), None);
    }

    #[test]
    fn decode_uncompressed_point() {
        let uncompressed_point = EncodedPoint::from_bytes(&UNCOMPRESSED_BYTES[..]).unwrap();

        assert!(!uncompressed_point.is_compressed());
        assert_eq!(uncompressed_point.tag(), Tag::Uncompressed);
        assert_eq!(uncompressed_point.len(), 65);
        assert_eq!(uncompressed_point.as_bytes(), &UNCOMPRESSED_BYTES[..]);

        assert_eq!(
            uncompressed_point.coordinates(),
            Coordinates::Uncompressed {
                x: &hex!("1111111111111111111111111111111111111111111111111111111111111111").into(),
                y: &hex!("2222222222222222222222222222222222222222222222222222222222222222").into()
            }
        );

        assert_eq!(
            uncompressed_point.x().unwrap(),
            &hex!("1111111111111111111111111111111111111111111111111111111111111111").into()
        );
        assert_eq!(
            uncompressed_point.y().unwrap(),
            &hex!("2222222222222222222222222222222222222222222222222222222222222222").into()
        );
    }

    #[test]
    fn decode_identity() {
        let identity_point = EncodedPoint::from_bytes(&IDENTITY_BYTES[..]).unwrap();
        assert!(identity_point.is_identity());
        assert_eq!(identity_point.tag(), Tag::Identity);
        assert_eq!(identity_point.len(), 1);
        assert_eq!(identity_point.as_bytes(), &IDENTITY_BYTES[..]);
        assert_eq!(identity_point.coordinates(), Coordinates::Identity);
        assert_eq!(identity_point.x(), None);
        assert_eq!(identity_point.y(), None);
    }

    #[test]
    fn decode_invalid_tag() {
        let mut compressed_bytes = COMPRESSED_BYTES.clone();
        let mut uncompressed_bytes = UNCOMPRESSED_BYTES.clone();

        for bytes in &mut [&mut compressed_bytes[..], &mut uncompressed_bytes[..]] {
            for tag in 0..=0xFF {
                // valid tags
                if tag == 2 || tag == 3 || tag == 4 || tag == 5 {
                    continue;
                }

                (*bytes)[0] = tag;
                let decode_result = EncodedPoint::from_bytes(&*bytes);
                assert!(decode_result.is_err());
            }
        }
    }

    #[test]
    fn decode_truncated_point() {
        for bytes in &[&COMPRESSED_BYTES[..], &UNCOMPRESSED_BYTES[..]] {
            for len in 0..bytes.len() {
                let decode_result = EncodedPoint::from_bytes(&bytes[..len]);
                assert!(decode_result.is_err());
            }
        }
    }

    #[test]
    fn from_untagged_point() {
        let untagged_bytes = hex!("11111111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222222222222222222222222");
        let uncompressed_point =
            EncodedPoint::from_untagged_bytes(GenericArray::from_slice(&untagged_bytes[..]));
        assert_eq!(uncompressed_point.as_bytes(), &UNCOMPRESSED_BYTES[..]);
    }

    #[test]
    fn from_affine_coordinates() {
        let x = hex!("1111111111111111111111111111111111111111111111111111111111111111");
        let y = hex!("2222222222222222222222222222222222222222222222222222222222222222");

        let uncompressed_point = EncodedPoint::from_affine_coordinates(&x.into(), &y.into(), false);
        assert_eq!(uncompressed_point.as_bytes(), &UNCOMPRESSED_BYTES[..]);

        let compressed_point = EncodedPoint::from_affine_coordinates(&x.into(), &y.into(), true);
        assert_eq!(compressed_point.as_bytes(), &COMPRESSED_BYTES[..]);
    }

    #[test]
    fn compress() {
        let uncompressed_point = EncodedPoint::from_bytes(&UNCOMPRESSED_BYTES[..]).unwrap();
        let compressed_point = uncompressed_point.compress();
        assert_eq!(compressed_point.as_bytes(), &COMPRESSED_BYTES[..]);
    }

    #[cfg(feature = "subtle")]
    #[test]
    fn conditional_select() {
        let a = EncodedPoint::from_bytes(&COMPRESSED_BYTES[..]).unwrap();
        let b = EncodedPoint::from_bytes(&UNCOMPRESSED_BYTES[..]).unwrap();

        let a_selected = EncodedPoint::conditional_select(&a, &b, 0.into());
        assert_eq!(a, a_selected);

        let b_selected = EncodedPoint::conditional_select(&a, &b, 1.into());
        assert_eq!(b, b_selected);
    }

    #[test]
    fn identity() {
        let identity_point = EncodedPoint::identity();
        assert_eq!(identity_point.tag(), Tag::Identity);
        assert_eq!(identity_point.len(), 1);
        assert_eq!(identity_point.as_bytes(), &IDENTITY_BYTES[..]);

        // identity is default
        assert_eq!(identity_point, EncodedPoint::default());
    }

    #[test]
    fn decode_hex() {
        let point = EncodedPoint::from_str(
            "021111111111111111111111111111111111111111111111111111111111111111",
        )
        .unwrap();
        assert_eq!(point.as_bytes(), COMPRESSED_BYTES);
    }

    #[cfg(feature = "alloc")]
    #[test]
    fn to_bytes() {
        let uncompressed_point = EncodedPoint::from_bytes(&UNCOMPRESSED_BYTES[..]).unwrap();
        assert_eq!(&*uncompressed_point.to_bytes(), &UNCOMPRESSED_BYTES[..]);
    }

    #[cfg(feature = "alloc")]
    #[test]
    fn to_string() {
        let point = EncodedPoint::from_bytes(&COMPRESSED_BYTES[..]).unwrap();
        assert_eq!(
            point.to_string(),
            "021111111111111111111111111111111111111111111111111111111111111111"
        );
    }
}