selinux/policy/
extensible_bitmap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use super::error::ValidateError;
use super::parser::ParseStrategy;
use super::{array_type, array_type_validate_deref_both, Array, Counted, Validate, ValidateArray};

use std::cmp::Ordering;
use std::fmt::Debug;
use std::mem;
use zerocopy::{little_endian as le, FromBytes, Immutable, KnownLayout, Unaligned};

/// Maximum number of [`MapItem`] objects in a single [`ExtensibleBitmap`].
pub(super) const MAX_BITMAP_ITEMS: u32 = 0x40;

/// Fixed expectation for number of bits per [`MapItem`] in every [`ExtensibleBitmap`].
pub(super) const MAP_NODE_BITS: u32 = 8 * mem::size_of::<u64>() as u32;

array_type!(ExtensibleBitmap, PS, PS::Output<Metadata>, PS::Slice<MapItem>);

array_type_validate_deref_both!(ExtensibleBitmap);

// TODO: Eliminate `dead_code` guard.
#[allow(dead_code)]
impl<PS: ParseStrategy> ExtensibleBitmap<PS> {
    /// Returns the number of bits described by this [`ExtensibleBitmap`].
    pub fn num_elements(&self) -> u32 {
        self.high_bit()
    }

    /// Returns the number of 1-bits in this [`ExtensibleBitmap`].
    pub fn num_one_bits(&self) -> usize {
        PS::deref_slice(&self.data).iter().map(|item| item.map.get().count_ones() as usize).sum()
    }

    /// Returns whether the `index`'th bit in this bitmap is a 1-bit.
    pub fn is_set(&self, index: u32) -> bool {
        if index > self.high_bit() {
            return false;
        }

        let map_items = PS::deref_slice(&self.data);
        if let Ok(i) = map_items.binary_search_by(|map_item| self.item_ordering(map_item, index)) {
            let map_item = &map_items[i];
            let item_index = index - map_item.start_bit.get();
            return map_item.map.get() & (1 << item_index) != 0;
        }

        false
    }

    /// Returns an iterator that returns a set of spans of continuous set bits.
    /// Each span consists of inclusive low and high bit indexes (i.e. zero-based).
    pub fn spans<'a>(&'a self) -> ExtensibleBitmapSpansIterator<'a, PS> {
        ExtensibleBitmapSpansIterator::<'a, PS> { bitmap: self, map_item: 0, next_bit: 0 }
    }

    /// Returns the next bit after the bits in this [`ExtensibleBitmap`]. That is, the bits in this
    /// [`ExtensibleBitmap`] may be indexed by the range `[0, Self::high_bit())`.
    fn high_bit(&self) -> u32 {
        PS::deref(&self.metadata).high_bit.get()
    }

    /// Returns the number of [`MapItem`] objects that would be needed to directly encode all bits
    /// in this [`ExtensibleBitmap`]. Note that, in practice, every [`MapItem`] that would contain
    /// all 0-bits in such an encoding is not stored internally.
    fn count(&self) -> u32 {
        PS::deref(&self.metadata).count.get()
    }

    fn item_ordering(&self, map_item: &MapItem, index: u32) -> Ordering {
        let map_item_start_bit = map_item.start_bit.get();
        if map_item_start_bit > index {
            Ordering::Greater
        } else if map_item_start_bit + PS::deref(&self.metadata).map_item_size_bits.get() <= index {
            Ordering::Less
        } else {
            Ordering::Equal
        }
    }
}

/// Describes the indexes of a span of "true" bits in an `ExtensibleBitmap`.
/// Low and high values are inclusive, such that when `low==high`, the span consists
/// of a single bit.
#[derive(Debug, PartialEq)]
pub(super) struct ExtensibleBitmapSpan {
    pub low: u32,
    pub high: u32,
}

/// Iterator returned by `ExtensibleBitmap::spans()`.
pub(super) struct ExtensibleBitmapSpansIterator<'a, PS: ParseStrategy> {
    bitmap: &'a ExtensibleBitmap<PS>,
    map_item: usize, // Zero-based `Vec<MapItem>` index.
    next_bit: u32,   // Zero-based bit index within the bitmap.
}

impl<PS: ParseStrategy> ExtensibleBitmapSpansIterator<'_, PS> {
    /// Returns the zero-based index of the next bit with the specified value, if any.
    fn next_bit_with_value(&mut self, is_set: bool) -> Option<u32> {
        let map_item_size_bits = PS::deref(&self.bitmap.metadata).map_item_size_bits.get();
        let num_elements = self.bitmap.num_elements();

        while self.next_bit < num_elements {
            let (start_bit, map) = PS::deref_slice(&self.bitmap.data)
                .get(self.map_item)
                .map_or((num_elements, 0), |item| (item.start_bit.get(), item.map.get()));

            if start_bit > self.next_bit {
                if is_set {
                    // Skip the implicit "false" bits, to the next `MapItem`.
                    self.next_bit = start_bit
                } else {
                    return Some(self.next_bit);
                }
            } else {
                // Scan the `MapItem` for the next matching bit.
                let next_map_item_bit = self.next_bit - start_bit;
                for map_bit in next_map_item_bit..map_item_size_bits {
                    if ((map & (1 << map_bit)) != 0) == is_set {
                        self.next_bit = start_bit + map_bit;
                        return Some(self.next_bit);
                    }
                }

                // Move on to the next `MapItem`, which may not be contiguous with
                // this one.
                self.next_bit = start_bit + map_item_size_bits;
                self.map_item += 1;
            }
        }

        None
    }
}

impl<PS: ParseStrategy> Iterator for ExtensibleBitmapSpansIterator<'_, PS> {
    type Item = ExtensibleBitmapSpan;

    /// Returns the next span of at least one bit set in the bitmap.
    fn next(&mut self) -> Option<Self::Item> {
        let low = self.next_bit_with_value(true)?;
        // End the span at the bit preceding either the next false bit, or the end of the bitmap.
        let high =
            self.next_bit_with_value(false).unwrap_or_else(|| self.bitmap.num_elements()) - 1;
        Some(Self::Item { low, high })
    }
}

impl<PS: ParseStrategy> Validate for Vec<ExtensibleBitmap<PS>> {
    type Error = <ExtensibleBitmap<PS> as Validate>::Error;

    fn validate(&self) -> Result<(), Self::Error> {
        for extensible_bitmap in self.iter() {
            extensible_bitmap.validate()?;
        }

        Ok(())
    }
}

impl Validate for Metadata {
    type Error = ValidateError;

    /// Validates that [`ExtensibleBitmap`] metadata is internally consistent with data
    /// representation assumptions.
    fn validate(&self) -> Result<(), Self::Error> {
        // Only one size for `MapItem` instances is supported.
        let found_size = self.map_item_size_bits.get();
        if found_size != MAP_NODE_BITS {
            return Err(ValidateError::InvalidExtensibleBitmapItemSize { found_size });
        }

        // High bit must be `MapItem` size-aligned.
        let found_high_bit = self.high_bit.get();
        if found_high_bit % found_size != 0 {
            return Err(ValidateError::MisalignedExtensibleBitmapHighBit {
                found_size,
                found_high_bit,
            });
        }

        // Count and high bit must be consistent.
        let found_count = self.count.get();
        if found_count * found_size > found_high_bit {
            return Err(ValidateError::InvalidExtensibleBitmapHighBit {
                found_size,
                found_high_bit,
                found_count,
            });
        }
        if found_count > MAX_BITMAP_ITEMS {
            return Err(ValidateError::InvalidExtensibleBitmapCount { found_count });
        }
        if found_high_bit != 0 && found_count == 0 {
            return Err(ValidateError::ExtensibleBitmapNonZeroHighBitAndZeroCount);
        }

        Ok(())
    }
}

#[derive(Clone, Debug, KnownLayout, FromBytes, Immutable, PartialEq, Unaligned)]
#[repr(C, packed)]
pub(super) struct Metadata {
    /// How many bits on each `MapItem`.
    map_item_size_bits: le::U32,
    /// Highest bit, non-inclusive.
    high_bit: le::U32,
    /// The number of map items.
    count: le::U32,
}

impl Counted for Metadata {
    /// The number of [`MapItem`] objects that follow a [`Metadata`] is the value stored in the
    /// `metadata.count` field.
    fn count(&self) -> u32 {
        self.count.get()
    }
}

#[derive(Clone, Debug, KnownLayout, FromBytes, Immutable, PartialEq, Unaligned)]
#[repr(C, packed)]
pub(super) struct MapItem {
    /// The first bit that this [`MapItem`] stores, relative to its [`ExtensibleBitmap`] range:
    /// `[0, extensible_bitmap.high_bit())`.
    start_bit: le::U32,
    /// The bitmap data for this [`MapItem`].
    map: le::U64,
}

impl Validate for [MapItem] {
    type Error = anyhow::Error;

    /// All [`MapItem`] validation requires access to [`Metadata`]; validation performed in
    /// `ExtensibleBitmap<PS>::validate()`.
    fn validate(&self) -> Result<(), Self::Error> {
        Ok(())
    }
}

impl<PS: ParseStrategy> ValidateArray<Metadata, MapItem> for ExtensibleBitmap<PS> {
    type Error = anyhow::Error;

    /// Validates that `metadata` and `data` are internally consistent. [`MapItem`] objects are
    /// expected to be stored in ascending order (by `start_bit`), and their bit ranges must fall
    /// within the range `[0, metadata.high_bit())`.
    fn validate_array<'a>(metadata: &'a Metadata, data: &'a [MapItem]) -> Result<(), Self::Error> {
        let found_size = metadata.map_item_size_bits.get();
        let found_high_bit = metadata.high_bit.get();

        // `MapItem` objects must be in sorted order, each with a `MapItem` size-aligned starting bit.
        //
        // Note: If sorted order assumption is violated `ExtensibleBitmap::binary_search_items()` will
        // misbehave and `ExtensibleBitmap` will need to be refactored accordingly.
        let mut min_start: u32 = 0;
        for map_item in data.iter() {
            let found_start_bit = map_item.start_bit.get();
            if found_start_bit % found_size != 0 {
                return Err(ValidateError::MisalignedExtensibleBitmapItemStartBit {
                    found_start_bit,
                    found_size,
                }
                .into());
            }
            if found_start_bit < min_start {
                return Err(ValidateError::OutOfOrderExtensibleBitmapItems {
                    found_start_bit,
                    min_start,
                }
                .into());
            }
            min_start = found_start_bit + found_size;
        }

        // Last `MapItem` object may not include bits beyond (and including) high bit value.
        if min_start > found_high_bit {
            return Err(ValidateError::ExtensibleBitmapItemOverflow {
                found_items_end: min_start,
                found_high_bit,
            }
            .into());
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::policy::error::ParseError;
    use crate::policy::parser::{ByRef, ByValue};
    use crate::policy::testing::{as_parse_error, as_validate_error};
    use crate::policy::Parse;

    use std::borrow::Borrow;
    use std::marker::PhantomData;

    macro_rules! parse_test {
        ($parse_output:ident, $data:expr, $result:tt, $check_impl:block) => {{
            let data = $data;
            fn check_by_ref<'a>(
                $result: Result<
                    ($parse_output<ByRef<&'a [u8]>>, ByRef<&'a [u8]>),
                    <$parse_output<ByRef<&'a [u8]>> as crate::policy::Parse<ByRef<&'a [u8]>>>::Error,
                >,
            ) {
                $check_impl;
            }

            fn check_by_value(
                $result: Result<
                    ($parse_output<ByValue<Vec<u8>>>, ByValue<Vec<u8>>),
                    <$parse_output<ByValue<Vec<u8>>> as crate::policy::Parse<ByValue<Vec<u8>>>>::Error,
                >,
            ) -> Option<($parse_output<ByValue<Vec<u8>>>, ByValue<Vec<u8>>)> {
                $check_impl
            }

            let by_ref = ByRef::new(data.as_slice());
            let by_ref_result = $parse_output::parse(by_ref);
            check_by_ref(by_ref_result);
            let by_value_result = $parse_output::<ByValue<Vec<u8>>>::parse(ByValue::new(data));
            let _ = check_by_value(by_value_result);
        }};
    }

    pub(in super::super) struct ExtensibleBitmapIterator<
        PS: ParseStrategy,
        B: Borrow<ExtensibleBitmap<PS>>,
    > {
        extensible_bitmap: B,
        i: u32,
        _marker: PhantomData<PS>,
    }

    impl<PS: ParseStrategy, B: Borrow<ExtensibleBitmap<PS>>> Iterator
        for ExtensibleBitmapIterator<PS, B>
    {
        type Item = bool;

        fn next(&mut self) -> Option<Self::Item> {
            if self.i >= self.extensible_bitmap.borrow().high_bit() {
                return None;
            }
            let value = self.extensible_bitmap.borrow().is_set(self.i);
            self.i = self.i + 1;
            Some(value)
        }
    }

    impl<PS: ParseStrategy> IntoIterator for ExtensibleBitmap<PS> {
        type Item = bool;
        type IntoIter = ExtensibleBitmapIterator<PS, ExtensibleBitmap<PS>>;

        fn into_iter(self) -> Self::IntoIter {
            ExtensibleBitmapIterator { extensible_bitmap: self, i: 0, _marker: PhantomData }
        }
    }

    impl<PS: ParseStrategy> ExtensibleBitmap<PS> {
        fn iter(&self) -> ExtensibleBitmapIterator<PS, &ExtensibleBitmap<PS>> {
            ExtensibleBitmapIterator { extensible_bitmap: self, i: 0, _marker: PhantomData }
        }
    }

    #[test]
    fn extensible_bitmap_simple() {
        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                MAP_NODE_BITS.to_le_bytes().as_slice(), // high bit for 1-item bitmap
                (1 as u32).to_le_bytes().as_slice(), // count of `MapItem` entries in 1-item bitmap
                (0 as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                (1 as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 0
            ]
            .concat(),
            result,
            {
                let (extensible_bitmap, tail) = result.expect("parse");
                assert_eq!(0, tail.len());
                let mut count: u32 = 0;
                for (i, bit) in extensible_bitmap.iter().enumerate() {
                    assert!((i == 0 && bit) || (i > 0 && !bit));
                    count = count + 1;
                }
                assert_eq!(MAP_NODE_BITS, count);
                Some((extensible_bitmap, tail))
            }
        );
    }

    #[test]
    fn extensible_bitmap_sparse_two_item() {
        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for 2-item bitmap
                (2 as u32).to_le_bytes().as_slice(), // count of `MapItem` entries  in 2-item bitmap
                ((MAP_NODE_BITS * 2) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                ((1 << 2) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                ((1 << 7) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                let (extensible_bitmap, tail) = result.expect("parse");
                assert_eq!(0, tail.len());
                for i in 0..(MAP_NODE_BITS * 10) {
                    let expected = i == ((MAP_NODE_BITS * 2) + 2) || i == ((MAP_NODE_BITS * 7) + 7);
                    assert_eq!(expected, extensible_bitmap.is_set(i));
                }

                let mut count: u32 = 0;
                for (i, bit) in extensible_bitmap.iter().enumerate() {
                    let expected = i == (((MAP_NODE_BITS * 2) + 2) as usize)
                        || i == (((MAP_NODE_BITS * 7) + 7) as usize);
                    assert_eq!(expected, bit);
                    count = count + 1;
                }
                assert_eq!(MAP_NODE_BITS * 10, count);
                Some((extensible_bitmap, tail))
            }
        );
    }

    #[test]
    fn extensible_bitmap_sparse_malformed() {
        parse_test!(
            ExtensibleBitmap,
            [
                (MAP_NODE_BITS - 1).to_le_bytes().as_slice(), // invalid bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for 2-item bitmap
                (2 as u32).to_le_bytes().as_slice(), // count of `MapItem` entries in 2-item bitmap
                ((MAP_NODE_BITS * 2) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                ((1 << 2) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                ((1 << 7) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                let (parsed, tail) = result.expect("parsed");
                assert_eq!(0, tail.len());
                assert_eq!(
                    Err(ValidateError::InvalidExtensibleBitmapItemSize {
                        found_size: MAP_NODE_BITS - 1
                    }),
                    parsed.validate().map_err(as_validate_error)
                );
                Some((parsed, tail))
            }
        );

        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                (((MAP_NODE_BITS * 10) + 1) as u32).to_le_bytes().as_slice(), // invalid high bit for 2-item bitmap
                (2 as u32).to_le_bytes().as_slice(), // count of `MapItem` entries in 2-item bitmap
                ((MAP_NODE_BITS * 2) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                ((1 << 2) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                ((1 << 7) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                let (parsed, tail) = result.expect("parsed");
                assert_eq!(0, tail.len());
                assert_eq!(
                    Err(ValidateError::MisalignedExtensibleBitmapHighBit {
                        found_size: MAP_NODE_BITS,
                        found_high_bit: (MAP_NODE_BITS * 10) + 1
                    }),
                    parsed.validate().map_err(as_validate_error),
                );
                Some((parsed, tail))
            }
        );

        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for 2-item bitmap
                (11 as u32).to_le_bytes().as_slice(), // invalid count of `MapItem` entries in 2-item bitmap
                ((MAP_NODE_BITS * 2) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                ((1 << 2) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                ((1 << 7) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                match result.err().map(Into::<anyhow::Error>::into).map(as_parse_error) {
                    // `ByRef` attempts to read large slice.
                    Some(ParseError::MissingSliceData {
                        type_name,
                        type_size,
                        num_items: 11,
                        num_bytes: 24,
                    }) => {
                        assert_eq!(std::any::type_name::<MapItem>(), type_name);
                        assert_eq!(std::mem::size_of::<MapItem>(), type_size);
                    }
                    // `ByValue` attempts to read `Vec` one item at a time.
                    Some(ParseError::MissingData { type_name, type_size, num_bytes: 0 }) => {
                        assert_eq!(std::any::type_name::<MapItem>(), type_name);
                        assert_eq!(std::mem::size_of::<MapItem>(), type_size);
                    }
                    v => {
                        panic!(
                            "Expected Some({:?}) or Some({:?}), but got {:?}",
                            ParseError::MissingSliceData {
                                type_name: std::any::type_name::<MapItem>(),
                                type_size: std::mem::size_of::<MapItem>(),
                                num_items: 11,
                                num_bytes: 24,
                            },
                            ParseError::MissingData {
                                type_name: std::any::type_name::<MapItem>(),
                                type_size: std::mem::size_of::<MapItem>(),
                                num_bytes: 0,
                            },
                            v
                        );
                    }
                };
                None::<(ExtensibleBitmap<ByValue<Vec<u8>>>, ByValue<Vec<u8>>)>
            }
        );

        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for 2-item bitmap
                (2 as u32).to_le_bytes().as_slice(), // count of `MapItem` entries in 2-item bitmap
                (((MAP_NODE_BITS * 2) + 1) as u32).to_le_bytes().as_slice(), // invalid start bit for `MapItem` 0
                ((1 << 2) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                ((1 << 7) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                let (parsed, tail) = result.expect("parsed");
                assert_eq!(0, tail.len());
                match parsed.validate().map_err(as_validate_error) {
                    Err(ValidateError::MisalignedExtensibleBitmapItemStartBit {
                        found_start_bit,
                        ..
                    }) => {
                        assert_eq!((MAP_NODE_BITS * 2) + 1, found_start_bit);
                    }
                    parse_err => {
                        assert!(
                            false,
                            "Expected Err(MisalignedExtensibleBitmapItemStartBit...), but got {:?}",
                            parse_err
                        );
                    }
                }
                Some((parsed, tail))
            }
        );

        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for 2-item bitmap
                (2 as u32).to_le_bytes().as_slice(), // count of `MapItem` entries in 2-item bitmap
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // out-of-order start bit for `MapItem` 0
                ((1 << 7) as u64).to_le_bytes().as_slice(),            // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 2) as u32).to_le_bytes().as_slice(), // out-of-order start bit for `MapItem` 1
                ((1 << 2) as u64).to_le_bytes().as_slice(),            // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                let (parsed, tail) = result.expect("parsed");
                assert_eq!(0, tail.len());
                assert_eq!(
                    parsed.validate().map_err(as_validate_error),
                    Err(ValidateError::OutOfOrderExtensibleBitmapItems {
                        found_start_bit: MAP_NODE_BITS * 2,
                        min_start: (MAP_NODE_BITS * 7) + MAP_NODE_BITS,
                    })
                );
                Some((parsed, tail))
            }
        );

        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for 2-item bitmap
                (3 as u32).to_le_bytes().as_slice(), // invalid count of `MapItem` entries in 2-item bitmap
                ((MAP_NODE_BITS * 2) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                ((1 << 2) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                ((1 << 7) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                match result.err().map(Into::<anyhow::Error>::into).map(as_parse_error) {
                    // `ByRef` attempts to read large slice.
                    Some(ParseError::MissingSliceData {
                        type_name,
                        type_size,
                        num_items: 3,
                        num_bytes,
                    }) => {
                        assert_eq!(std::any::type_name::<MapItem>(), type_name);
                        assert_eq!(std::mem::size_of::<MapItem>(), type_size);
                        assert_eq!(2 * std::mem::size_of::<MapItem>(), num_bytes);
                    }
                    // `ByValue` attempts to read `Vec` one item at a time.
                    Some(ParseError::MissingData { type_name, type_size, num_bytes: 0 }) => {
                        assert_eq!(std::any::type_name::<MapItem>(), type_name);
                        assert_eq!(std::mem::size_of::<MapItem>(), type_size);
                    }
                    parse_err => {
                        assert!(
                            false,
                            "Expected Some({:?}) or Some({:?}), but got {:?}",
                            ParseError::MissingSliceData {
                                type_name: std::any::type_name::<MapItem>(),
                                type_size: std::mem::size_of::<MapItem>(),
                                num_items: 3,
                                num_bytes: 2 * std::mem::size_of::<MapItem>(),
                            },
                            ParseError::MissingData {
                                type_name: std::any::type_name::<MapItem>(),
                                type_size: std::mem::size_of::<MapItem>(),
                                num_bytes: 0
                            },
                            parse_err
                        );
                    }
                };
                None::<(ExtensibleBitmap<ByValue<Vec<u8>>>, ByValue<Vec<u8>>)>
            }
        );
    }

    #[test]
    fn extensible_bitmap_spans_iterator() {
        type Span = ExtensibleBitmapSpan;

        // Single- and multi-bit spans.
        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for bitmap
                (2 as u32).to_le_bytes().as_slice(),    // count of `MapItem` entries in bitmap
                ((MAP_NODE_BITS * 2) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                ((1 << 2) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                ((1 << 7) | (1 << 8) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                let (extensible_bitmap, tail) = result.expect("parse");
                assert_eq!(0, tail.len());

                let mut iterator = extensible_bitmap.spans();
                assert_eq!(
                    iterator.next(),
                    Some(Span { low: (MAP_NODE_BITS * 2) + 2, high: (MAP_NODE_BITS * 2) + 2 })
                );
                assert_eq!(
                    iterator.next(),
                    Some(Span { low: (MAP_NODE_BITS * 7) + 7, high: (MAP_NODE_BITS * 7) + 8 })
                );
                assert_eq!(iterator.next(), None);

                Some((extensible_bitmap, tail))
            }
        );

        // Multi-bit span that straddles two `MapItem`s.
        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for bitmap
                (2 as u32).to_le_bytes().as_slice(),    // count of `MapItem` entries in bitmap
                ((MAP_NODE_BITS * 6) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                ((1 as u64) << 63).to_le_bytes().as_slice(), // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                ((1 << 0) | (1 << 1) as u64).to_le_bytes().as_slice(), // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                let (extensible_bitmap, tail) = result.expect("parse");
                assert_eq!(0, tail.len());

                let mut iterator = extensible_bitmap.spans();
                assert_eq!(
                    iterator.next(),
                    Some(Span { low: (MAP_NODE_BITS * 6) + 63, high: (MAP_NODE_BITS * 7) + 1 })
                );
                assert_eq!(iterator.next(), None);

                Some((extensible_bitmap, tail))
            }
        );

        // Multi-bit spans of full `MapItem`s, separated by an implicit span of false bits,
        // and with further implicit spans of false bits at the end.
        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for bitmap
                (2 as u32).to_le_bytes().as_slice(),    // count of `MapItem` entries in bitmap
                ((MAP_NODE_BITS * 5) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                (u64::MAX).to_le_bytes().as_slice(),    // bit values for `MapItem` 0
                ((MAP_NODE_BITS * 7) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 1
                (u64::MAX).to_le_bytes().as_slice(),    // bit values for `MapItem` 1
            ]
            .concat(),
            result,
            {
                let (extensible_bitmap, tail) = result.expect("parse");
                assert_eq!(0, tail.len());

                let mut iterator = extensible_bitmap.spans();
                assert_eq!(
                    iterator.next(),
                    Some(Span { low: (MAP_NODE_BITS * 5), high: (MAP_NODE_BITS * 6) - 1 })
                );
                assert_eq!(
                    iterator.next(),
                    Some(Span { low: (MAP_NODE_BITS * 7), high: (MAP_NODE_BITS * 8) - 1 })
                );
                assert_eq!(iterator.next(), None);

                Some((extensible_bitmap, tail))
            }
        );

        // Span reaching the end of the bitmap is handled correctly.
        parse_test!(
            ExtensibleBitmap,
            [
                MAP_NODE_BITS.to_le_bytes().as_slice(), // bits per node
                ((MAP_NODE_BITS * 10) as u32).to_le_bytes().as_slice(), // high bit for bitmap
                (1 as u32).to_le_bytes().as_slice(),    // count of `MapItem` entries  in bitmap
                ((MAP_NODE_BITS * 9) as u32).to_le_bytes().as_slice(), // start bit for `MapItem` 0
                (u64::MAX).to_le_bytes().as_slice(),    // bit values for `MapItem` 0
            ]
            .concat(),
            result,
            {
                let (extensible_bitmap, tail) = result.expect("parse");
                assert_eq!(0, tail.len());

                let mut iterator = extensible_bitmap.spans();
                assert_eq!(
                    iterator.next(),
                    Some(Span { low: (MAP_NODE_BITS * 9), high: (MAP_NODE_BITS * 10) - 1 })
                );
                assert_eq!(iterator.next(), None);

                Some((extensible_bitmap, tail))
            }
        );
    }
}