regex/re_unicode.rs
1use std::borrow::Cow;
2use std::collections::HashMap;
3use std::fmt;
4use std::iter::FusedIterator;
5use std::ops::{Index, Range};
6use std::str::FromStr;
7use std::sync::Arc;
8
9use crate::find_byte::find_byte;
10
11use crate::error::Error;
12use crate::exec::{Exec, ExecNoSyncStr};
13use crate::expand::expand_str;
14use crate::re_builder::unicode::RegexBuilder;
15use crate::re_trait::{self, RegularExpression, SubCapturesPosIter};
16
17/// Escapes all regular expression meta characters in `text`.
18///
19/// The string returned may be safely used as a literal in a regular
20/// expression.
21pub fn escape(text: &str) -> String {
22 regex_syntax::escape(text)
23}
24
25/// Match represents a single match of a regex in a haystack.
26///
27/// The lifetime parameter `'t` refers to the lifetime of the matched text.
28#[derive(Copy, Clone, Debug, Eq, PartialEq)]
29pub struct Match<'t> {
30 text: &'t str,
31 start: usize,
32 end: usize,
33}
34
35impl<'t> Match<'t> {
36 /// Returns the starting byte offset of the match in the haystack.
37 #[inline]
38 pub fn start(&self) -> usize {
39 self.start
40 }
41
42 /// Returns the ending byte offset of the match in the haystack.
43 #[inline]
44 pub fn end(&self) -> usize {
45 self.end
46 }
47
48 /// Returns the range over the starting and ending byte offsets of the
49 /// match in the haystack.
50 #[inline]
51 pub fn range(&self) -> Range<usize> {
52 self.start..self.end
53 }
54
55 /// Returns the matched text.
56 #[inline]
57 pub fn as_str(&self) -> &'t str {
58 &self.text[self.range()]
59 }
60
61 /// Creates a new match from the given haystack and byte offsets.
62 #[inline]
63 fn new(haystack: &'t str, start: usize, end: usize) -> Match<'t> {
64 Match { text: haystack, start, end }
65 }
66}
67
68impl<'t> From<Match<'t>> for &'t str {
69 fn from(m: Match<'t>) -> &'t str {
70 m.as_str()
71 }
72}
73
74impl<'t> From<Match<'t>> for Range<usize> {
75 fn from(m: Match<'t>) -> Range<usize> {
76 m.range()
77 }
78}
79
80/// A compiled regular expression for matching Unicode strings.
81///
82/// It is represented as either a sequence of bytecode instructions (dynamic)
83/// or as a specialized Rust function (native). It can be used to search, split
84/// or replace text. All searching is done with an implicit `.*?` at the
85/// beginning and end of an expression. To force an expression to match the
86/// whole string (or a prefix or a suffix), you must use an anchor like `^` or
87/// `$` (or `\A` and `\z`).
88///
89/// While this crate will handle Unicode strings (whether in the regular
90/// expression or in the search text), all positions returned are **byte
91/// indices**. Every byte index is guaranteed to be at a Unicode code point
92/// boundary.
93///
94/// The lifetimes `'r` and `'t` in this crate correspond to the lifetime of a
95/// compiled regular expression and text to search, respectively.
96///
97/// The only methods that allocate new strings are the string replacement
98/// methods. All other methods (searching and splitting) return borrowed
99/// pointers into the string given.
100///
101/// # Examples
102///
103/// Find the location of a US phone number:
104///
105/// ```rust
106/// # use regex::Regex;
107/// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}").unwrap();
108/// let mat = re.find("phone: 111-222-3333").unwrap();
109/// assert_eq!((mat.start(), mat.end()), (7, 19));
110/// ```
111///
112/// # Using the `std::str::pattern` methods with `Regex`
113///
114/// > **Note**: This section requires that this crate is compiled with the
115/// > `pattern` Cargo feature enabled, which **requires nightly Rust**.
116///
117/// Since `Regex` implements `Pattern`, you can use regexes with methods
118/// defined on `&str`. For example, `is_match`, `find`, `find_iter`
119/// and `split` can be replaced with `str::contains`, `str::find`,
120/// `str::match_indices` and `str::split`.
121///
122/// Here are some examples:
123///
124/// ```rust,ignore
125/// # use regex::Regex;
126/// let re = Regex::new(r"\d+").unwrap();
127/// let haystack = "a111b222c";
128///
129/// assert!(haystack.contains(&re));
130/// assert_eq!(haystack.find(&re), Some(1));
131/// assert_eq!(haystack.match_indices(&re).collect::<Vec<_>>(),
132/// vec![(1, "111"), (5, "222")]);
133/// assert_eq!(haystack.split(&re).collect::<Vec<_>>(), vec!["a", "b", "c"]);
134/// ```
135#[derive(Clone)]
136pub struct Regex(Exec);
137
138impl fmt::Display for Regex {
139 /// Shows the original regular expression.
140 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
141 write!(f, "{}", self.as_str())
142 }
143}
144
145impl fmt::Debug for Regex {
146 /// Shows the original regular expression.
147 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
148 fmt::Display::fmt(self, f)
149 }
150}
151
152#[doc(hidden)]
153impl From<Exec> for Regex {
154 fn from(exec: Exec) -> Regex {
155 Regex(exec)
156 }
157}
158
159impl FromStr for Regex {
160 type Err = Error;
161
162 /// Attempts to parse a string into a regular expression
163 fn from_str(s: &str) -> Result<Regex, Error> {
164 Regex::new(s)
165 }
166}
167
168/// Core regular expression methods.
169impl Regex {
170 /// Compiles a regular expression. Once compiled, it can be used repeatedly
171 /// to search, split or replace text in a string.
172 ///
173 /// If an invalid expression is given, then an error is returned.
174 pub fn new(re: &str) -> Result<Regex, Error> {
175 RegexBuilder::new(re).build()
176 }
177
178 /// Returns true if and only if there is a match for the regex in the
179 /// string given.
180 ///
181 /// It is recommended to use this method if all you need to do is test
182 /// a match, since the underlying matching engine may be able to do less
183 /// work.
184 ///
185 /// # Example
186 ///
187 /// Test if some text contains at least one word with exactly 13
188 /// Unicode word characters:
189 ///
190 /// ```rust
191 /// # use regex::Regex;
192 /// # fn main() {
193 /// let text = "I categorically deny having triskaidekaphobia.";
194 /// assert!(Regex::new(r"\b\w{13}\b").unwrap().is_match(text));
195 /// # }
196 /// ```
197 pub fn is_match(&self, text: &str) -> bool {
198 self.is_match_at(text, 0)
199 }
200
201 /// Returns the start and end byte range of the leftmost-first match in
202 /// `text`. If no match exists, then `None` is returned.
203 ///
204 /// Note that this should only be used if you want to discover the position
205 /// of the match. Testing the existence of a match is faster if you use
206 /// `is_match`.
207 ///
208 /// # Example
209 ///
210 /// Find the start and end location of the first word with exactly 13
211 /// Unicode word characters:
212 ///
213 /// ```rust
214 /// # use regex::Regex;
215 /// # fn main() {
216 /// let text = "I categorically deny having triskaidekaphobia.";
217 /// let mat = Regex::new(r"\b\w{13}\b").unwrap().find(text).unwrap();
218 /// assert_eq!(mat.start(), 2);
219 /// assert_eq!(mat.end(), 15);
220 /// # }
221 /// ```
222 pub fn find<'t>(&self, text: &'t str) -> Option<Match<'t>> {
223 self.find_at(text, 0)
224 }
225
226 /// Returns an iterator for each successive non-overlapping match in
227 /// `text`, returning the start and end byte indices with respect to
228 /// `text`.
229 ///
230 /// # Example
231 ///
232 /// Find the start and end location of every word with exactly 13 Unicode
233 /// word characters:
234 ///
235 /// ```rust
236 /// # use regex::Regex;
237 /// # fn main() {
238 /// let text = "Retroactively relinquishing remunerations is reprehensible.";
239 /// for mat in Regex::new(r"\b\w{13}\b").unwrap().find_iter(text) {
240 /// println!("{:?}", mat);
241 /// }
242 /// # }
243 /// ```
244 pub fn find_iter<'r, 't>(&'r self, text: &'t str) -> Matches<'r, 't> {
245 Matches(self.0.searcher_str().find_iter(text))
246 }
247
248 /// Returns the capture groups corresponding to the leftmost-first
249 /// match in `text`. Capture group `0` always corresponds to the entire
250 /// match. If no match is found, then `None` is returned.
251 ///
252 /// You should only use `captures` if you need access to the location of
253 /// capturing group matches. Otherwise, `find` is faster for discovering
254 /// the location of the overall match.
255 ///
256 /// # Examples
257 ///
258 /// Say you have some text with movie names and their release years,
259 /// like "'Citizen Kane' (1941)". It'd be nice if we could search for text
260 /// looking like that, while also extracting the movie name and its release
261 /// year separately.
262 ///
263 /// ```rust
264 /// # use regex::Regex;
265 /// # fn main() {
266 /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
267 /// let text = "Not my favorite movie: 'Citizen Kane' (1941).";
268 /// let caps = re.captures(text).unwrap();
269 /// assert_eq!(caps.get(1).unwrap().as_str(), "Citizen Kane");
270 /// assert_eq!(caps.get(2).unwrap().as_str(), "1941");
271 /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)");
272 /// // You can also access the groups by index using the Index notation.
273 /// // Note that this will panic on an invalid index.
274 /// assert_eq!(&caps[1], "Citizen Kane");
275 /// assert_eq!(&caps[2], "1941");
276 /// assert_eq!(&caps[0], "'Citizen Kane' (1941)");
277 /// # }
278 /// ```
279 ///
280 /// Note that the full match is at capture group `0`. Each subsequent
281 /// capture group is indexed by the order of its opening `(`.
282 ///
283 /// We can make this example a bit clearer by using *named* capture groups:
284 ///
285 /// ```rust
286 /// # use regex::Regex;
287 /// # fn main() {
288 /// let re = Regex::new(r"'(?P<title>[^']+)'\s+\((?P<year>\d{4})\)")
289 /// .unwrap();
290 /// let text = "Not my favorite movie: 'Citizen Kane' (1941).";
291 /// let caps = re.captures(text).unwrap();
292 /// assert_eq!(caps.name("title").unwrap().as_str(), "Citizen Kane");
293 /// assert_eq!(caps.name("year").unwrap().as_str(), "1941");
294 /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)");
295 /// // You can also access the groups by name using the Index notation.
296 /// // Note that this will panic on an invalid group name.
297 /// assert_eq!(&caps["title"], "Citizen Kane");
298 /// assert_eq!(&caps["year"], "1941");
299 /// assert_eq!(&caps[0], "'Citizen Kane' (1941)");
300 ///
301 /// # }
302 /// ```
303 ///
304 /// Here we name the capture groups, which we can access with the `name`
305 /// method or the `Index` notation with a `&str`. Note that the named
306 /// capture groups are still accessible with `get` or the `Index` notation
307 /// with a `usize`.
308 ///
309 /// The `0`th capture group is always unnamed, so it must always be
310 /// accessed with `get(0)` or `[0]`.
311 pub fn captures<'t>(&self, text: &'t str) -> Option<Captures<'t>> {
312 let mut locs = self.capture_locations();
313 self.captures_read_at(&mut locs, text, 0).map(move |_| Captures {
314 text,
315 locs: locs.0,
316 named_groups: self.0.capture_name_idx().clone(),
317 })
318 }
319
320 /// Returns an iterator over all the non-overlapping capture groups matched
321 /// in `text`. This is operationally the same as `find_iter`, except it
322 /// yields information about capturing group matches.
323 ///
324 /// # Example
325 ///
326 /// We can use this to find all movie titles and their release years in
327 /// some text, where the movie is formatted like "'Title' (xxxx)":
328 ///
329 /// ```rust
330 /// # use regex::Regex;
331 /// # fn main() {
332 /// let re = Regex::new(r"'(?P<title>[^']+)'\s+\((?P<year>\d{4})\)")
333 /// .unwrap();
334 /// let text = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
335 /// for caps in re.captures_iter(text) {
336 /// println!("Movie: {:?}, Released: {:?}",
337 /// &caps["title"], &caps["year"]);
338 /// }
339 /// // Output:
340 /// // Movie: Citizen Kane, Released: 1941
341 /// // Movie: The Wizard of Oz, Released: 1939
342 /// // Movie: M, Released: 1931
343 /// # }
344 /// ```
345 pub fn captures_iter<'r, 't>(
346 &'r self,
347 text: &'t str,
348 ) -> CaptureMatches<'r, 't> {
349 CaptureMatches(self.0.searcher_str().captures_iter(text))
350 }
351
352 /// Returns an iterator of substrings of `text` delimited by a match of the
353 /// regular expression. Namely, each element of the iterator corresponds to
354 /// text that *isn't* matched by the regular expression.
355 ///
356 /// This method will *not* copy the text given.
357 ///
358 /// # Example
359 ///
360 /// To split a string delimited by arbitrary amounts of spaces or tabs:
361 ///
362 /// ```rust
363 /// # use regex::Regex;
364 /// # fn main() {
365 /// let re = Regex::new(r"[ \t]+").unwrap();
366 /// let fields: Vec<&str> = re.split("a b \t c\td e").collect();
367 /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
368 /// # }
369 /// ```
370 pub fn split<'r, 't>(&'r self, text: &'t str) -> Split<'r, 't> {
371 Split { finder: self.find_iter(text), last: 0 }
372 }
373
374 /// Returns an iterator of at most `limit` substrings of `text` delimited
375 /// by a match of the regular expression. (A `limit` of `0` will return no
376 /// substrings.) Namely, each element of the iterator corresponds to text
377 /// that *isn't* matched by the regular expression. The remainder of the
378 /// string that is not split will be the last element in the iterator.
379 ///
380 /// This method will *not* copy the text given.
381 ///
382 /// # Example
383 ///
384 /// Get the first two words in some text:
385 ///
386 /// ```rust
387 /// # use regex::Regex;
388 /// # fn main() {
389 /// let re = Regex::new(r"\W+").unwrap();
390 /// let fields: Vec<&str> = re.splitn("Hey! How are you?", 3).collect();
391 /// assert_eq!(fields, vec!("Hey", "How", "are you?"));
392 /// # }
393 /// ```
394 pub fn splitn<'r, 't>(
395 &'r self,
396 text: &'t str,
397 limit: usize,
398 ) -> SplitN<'r, 't> {
399 SplitN { splits: self.split(text), n: limit }
400 }
401
402 /// Replaces the leftmost-first match with the replacement provided.
403 /// The replacement can be a regular string (where `$N` and `$name` are
404 /// expanded to match capture groups) or a function that takes the matches'
405 /// `Captures` and returns the replaced string.
406 ///
407 /// If no match is found, then a copy of the string is returned unchanged.
408 ///
409 /// # Replacement string syntax
410 ///
411 /// All instances of `$name` in the replacement text is replaced with the
412 /// corresponding capture group `name`.
413 ///
414 /// `name` may be an integer corresponding to the index of the
415 /// capture group (counted by order of opening parenthesis where `0` is the
416 /// entire match) or it can be a name (consisting of letters, digits or
417 /// underscores) corresponding to a named capture group.
418 ///
419 /// If `name` isn't a valid capture group (whether the name doesn't exist
420 /// or isn't a valid index), then it is replaced with the empty string.
421 ///
422 /// The longest possible name is used. e.g., `$1a` looks up the capture
423 /// group named `1a` and not the capture group at index `1`. To exert more
424 /// precise control over the name, use braces, e.g., `${1}a`.
425 ///
426 /// To write a literal `$` use `$$`.
427 ///
428 /// # Examples
429 ///
430 /// Note that this function is polymorphic with respect to the replacement.
431 /// In typical usage, this can just be a normal string:
432 ///
433 /// ```rust
434 /// # use regex::Regex;
435 /// # fn main() {
436 /// let re = Regex::new("[^01]+").unwrap();
437 /// assert_eq!(re.replace("1078910", ""), "1010");
438 /// # }
439 /// ```
440 ///
441 /// But anything satisfying the `Replacer` trait will work. For example,
442 /// a closure of type `|&Captures| -> String` provides direct access to the
443 /// captures corresponding to a match. This allows one to access
444 /// capturing group matches easily:
445 ///
446 /// ```rust
447 /// # use regex::Regex;
448 /// # use regex::Captures; fn main() {
449 /// let re = Regex::new(r"([^,\s]+),\s+(\S+)").unwrap();
450 /// let result = re.replace("Springsteen, Bruce", |caps: &Captures| {
451 /// format!("{} {}", &caps[2], &caps[1])
452 /// });
453 /// assert_eq!(result, "Bruce Springsteen");
454 /// # }
455 /// ```
456 ///
457 /// But this is a bit cumbersome to use all the time. Instead, a simple
458 /// syntax is supported that expands `$name` into the corresponding capture
459 /// group. Here's the last example, but using this expansion technique
460 /// with named capture groups:
461 ///
462 /// ```rust
463 /// # use regex::Regex;
464 /// # fn main() {
465 /// let re = Regex::new(r"(?P<last>[^,\s]+),\s+(?P<first>\S+)").unwrap();
466 /// let result = re.replace("Springsteen, Bruce", "$first $last");
467 /// assert_eq!(result, "Bruce Springsteen");
468 /// # }
469 /// ```
470 ///
471 /// Note that using `$2` instead of `$first` or `$1` instead of `$last`
472 /// would produce the same result. To write a literal `$` use `$$`.
473 ///
474 /// Sometimes the replacement string requires use of curly braces to
475 /// delineate a capture group replacement and surrounding literal text.
476 /// For example, if we wanted to join two words together with an
477 /// underscore:
478 ///
479 /// ```rust
480 /// # use regex::Regex;
481 /// # fn main() {
482 /// let re = Regex::new(r"(?P<first>\w+)\s+(?P<second>\w+)").unwrap();
483 /// let result = re.replace("deep fried", "${first}_$second");
484 /// assert_eq!(result, "deep_fried");
485 /// # }
486 /// ```
487 ///
488 /// Without the curly braces, the capture group name `first_` would be
489 /// used, and since it doesn't exist, it would be replaced with the empty
490 /// string.
491 ///
492 /// Finally, sometimes you just want to replace a literal string with no
493 /// regard for capturing group expansion. This can be done by wrapping a
494 /// byte string with `NoExpand`:
495 ///
496 /// ```rust
497 /// # use regex::Regex;
498 /// # fn main() {
499 /// use regex::NoExpand;
500 ///
501 /// let re = Regex::new(r"(?P<last>[^,\s]+),\s+(\S+)").unwrap();
502 /// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last"));
503 /// assert_eq!(result, "$2 $last");
504 /// # }
505 /// ```
506 pub fn replace<'t, R: Replacer>(
507 &self,
508 text: &'t str,
509 rep: R,
510 ) -> Cow<'t, str> {
511 self.replacen(text, 1, rep)
512 }
513
514 /// Replaces all non-overlapping matches in `text` with the replacement
515 /// provided. This is the same as calling `replacen` with `limit` set to
516 /// `0`.
517 ///
518 /// See the documentation for `replace` for details on how to access
519 /// capturing group matches in the replacement string.
520 pub fn replace_all<'t, R: Replacer>(
521 &self,
522 text: &'t str,
523 rep: R,
524 ) -> Cow<'t, str> {
525 self.replacen(text, 0, rep)
526 }
527
528 /// Replaces at most `limit` non-overlapping matches in `text` with the
529 /// replacement provided. If `limit` is 0, then all non-overlapping matches
530 /// are replaced.
531 ///
532 /// See the documentation for `replace` for details on how to access
533 /// capturing group matches in the replacement string.
534 pub fn replacen<'t, R: Replacer>(
535 &self,
536 text: &'t str,
537 limit: usize,
538 mut rep: R,
539 ) -> Cow<'t, str> {
540 // If we know that the replacement doesn't have any capture expansions,
541 // then we can use the fast path. The fast path can make a tremendous
542 // difference:
543 //
544 // 1) We use `find_iter` instead of `captures_iter`. Not asking for
545 // captures generally makes the regex engines faster.
546 // 2) We don't need to look up all of the capture groups and do
547 // replacements inside the replacement string. We just push it
548 // at each match and be done with it.
549 if let Some(rep) = rep.no_expansion() {
550 let mut it = self.find_iter(text).enumerate().peekable();
551 if it.peek().is_none() {
552 return Cow::Borrowed(text);
553 }
554 let mut new = String::with_capacity(text.len());
555 let mut last_match = 0;
556 for (i, m) in it {
557 new.push_str(&text[last_match..m.start()]);
558 new.push_str(&rep);
559 last_match = m.end();
560 if limit > 0 && i >= limit - 1 {
561 break;
562 }
563 }
564 new.push_str(&text[last_match..]);
565 return Cow::Owned(new);
566 }
567
568 // The slower path, which we use if the replacement needs access to
569 // capture groups.
570 let mut it = self.captures_iter(text).enumerate().peekable();
571 if it.peek().is_none() {
572 return Cow::Borrowed(text);
573 }
574 let mut new = String::with_capacity(text.len());
575 let mut last_match = 0;
576 for (i, cap) in it {
577 // unwrap on 0 is OK because captures only reports matches
578 let m = cap.get(0).unwrap();
579 new.push_str(&text[last_match..m.start()]);
580 rep.replace_append(&cap, &mut new);
581 last_match = m.end();
582 if limit > 0 && i >= limit - 1 {
583 break;
584 }
585 }
586 new.push_str(&text[last_match..]);
587 Cow::Owned(new)
588 }
589}
590
591/// Advanced or "lower level" search methods.
592impl Regex {
593 /// Returns the end location of a match in the text given.
594 ///
595 /// This method may have the same performance characteristics as
596 /// `is_match`, except it provides an end location for a match. In
597 /// particular, the location returned *may be shorter* than the proper end
598 /// of the leftmost-first match.
599 ///
600 /// # Example
601 ///
602 /// Typically, `a+` would match the entire first sequence of `a` in some
603 /// text, but `shortest_match` can give up as soon as it sees the first
604 /// `a`.
605 ///
606 /// ```rust
607 /// # use regex::Regex;
608 /// # fn main() {
609 /// let text = "aaaaa";
610 /// let pos = Regex::new(r"a+").unwrap().shortest_match(text);
611 /// assert_eq!(pos, Some(1));
612 /// # }
613 /// ```
614 pub fn shortest_match(&self, text: &str) -> Option<usize> {
615 self.shortest_match_at(text, 0)
616 }
617
618 /// Returns the same as shortest_match, but starts the search at the given
619 /// offset.
620 ///
621 /// The significance of the starting point is that it takes the surrounding
622 /// context into consideration. For example, the `\A` anchor can only
623 /// match when `start == 0`.
624 pub fn shortest_match_at(
625 &self,
626 text: &str,
627 start: usize,
628 ) -> Option<usize> {
629 self.0.searcher_str().shortest_match_at(text, start)
630 }
631
632 /// Returns the same as is_match, but starts the search at the given
633 /// offset.
634 ///
635 /// The significance of the starting point is that it takes the surrounding
636 /// context into consideration. For example, the `\A` anchor can only
637 /// match when `start == 0`.
638 pub fn is_match_at(&self, text: &str, start: usize) -> bool {
639 self.0.searcher_str().is_match_at(text, start)
640 }
641
642 /// Returns the same as find, but starts the search at the given
643 /// offset.
644 ///
645 /// The significance of the starting point is that it takes the surrounding
646 /// context into consideration. For example, the `\A` anchor can only
647 /// match when `start == 0`.
648 pub fn find_at<'t>(
649 &self,
650 text: &'t str,
651 start: usize,
652 ) -> Option<Match<'t>> {
653 self.0
654 .searcher_str()
655 .find_at(text, start)
656 .map(|(s, e)| Match::new(text, s, e))
657 }
658
659 /// This is like `captures`, but uses
660 /// [`CaptureLocations`](struct.CaptureLocations.html)
661 /// instead of
662 /// [`Captures`](struct.Captures.html) in order to amortize allocations.
663 ///
664 /// To create a `CaptureLocations` value, use the
665 /// `Regex::capture_locations` method.
666 ///
667 /// This returns the overall match if this was successful, which is always
668 /// equivalence to the `0`th capture group.
669 pub fn captures_read<'t>(
670 &self,
671 locs: &mut CaptureLocations,
672 text: &'t str,
673 ) -> Option<Match<'t>> {
674 self.captures_read_at(locs, text, 0)
675 }
676
677 /// Returns the same as captures, but starts the search at the given
678 /// offset and populates the capture locations given.
679 ///
680 /// The significance of the starting point is that it takes the surrounding
681 /// context into consideration. For example, the `\A` anchor can only
682 /// match when `start == 0`.
683 pub fn captures_read_at<'t>(
684 &self,
685 locs: &mut CaptureLocations,
686 text: &'t str,
687 start: usize,
688 ) -> Option<Match<'t>> {
689 self.0
690 .searcher_str()
691 .captures_read_at(&mut locs.0, text, start)
692 .map(|(s, e)| Match::new(text, s, e))
693 }
694
695 /// An undocumented alias for `captures_read_at`.
696 ///
697 /// The `regex-capi` crate previously used this routine, so to avoid
698 /// breaking that crate, we continue to provide the name as an undocumented
699 /// alias.
700 #[doc(hidden)]
701 pub fn read_captures_at<'t>(
702 &self,
703 locs: &mut CaptureLocations,
704 text: &'t str,
705 start: usize,
706 ) -> Option<Match<'t>> {
707 self.captures_read_at(locs, text, start)
708 }
709}
710
711/// Auxiliary methods.
712impl Regex {
713 /// Returns the original string of this regex.
714 pub fn as_str(&self) -> &str {
715 &self.0.regex_strings()[0]
716 }
717
718 /// Returns an iterator over the capture names.
719 pub fn capture_names(&self) -> CaptureNames<'_> {
720 CaptureNames(self.0.capture_names().iter())
721 }
722
723 /// Returns the number of captures.
724 pub fn captures_len(&self) -> usize {
725 self.0.capture_names().len()
726 }
727
728 /// Returns an empty set of capture locations that can be reused in
729 /// multiple calls to `captures_read` or `captures_read_at`.
730 pub fn capture_locations(&self) -> CaptureLocations {
731 CaptureLocations(self.0.searcher_str().locations())
732 }
733
734 /// An alias for `capture_locations` to preserve backward compatibility.
735 ///
736 /// The `regex-capi` crate uses this method, so to avoid breaking that
737 /// crate, we continue to export it as an undocumented API.
738 #[doc(hidden)]
739 pub fn locations(&self) -> CaptureLocations {
740 CaptureLocations(self.0.searcher_str().locations())
741 }
742}
743
744/// An iterator over the names of all possible captures.
745///
746/// `None` indicates an unnamed capture; the first element (capture 0, the
747/// whole matched region) is always unnamed.
748///
749/// `'r` is the lifetime of the compiled regular expression.
750#[derive(Clone, Debug)]
751pub struct CaptureNames<'r>(::std::slice::Iter<'r, Option<String>>);
752
753impl<'r> Iterator for CaptureNames<'r> {
754 type Item = Option<&'r str>;
755
756 fn next(&mut self) -> Option<Option<&'r str>> {
757 self.0
758 .next()
759 .as_ref()
760 .map(|slot| slot.as_ref().map(|name| name.as_ref()))
761 }
762
763 fn size_hint(&self) -> (usize, Option<usize>) {
764 self.0.size_hint()
765 }
766
767 fn count(self) -> usize {
768 self.0.count()
769 }
770}
771
772impl<'r> ExactSizeIterator for CaptureNames<'r> {}
773
774impl<'r> FusedIterator for CaptureNames<'r> {}
775
776/// Yields all substrings delimited by a regular expression match.
777///
778/// `'r` is the lifetime of the compiled regular expression and `'t` is the
779/// lifetime of the string being split.
780#[derive(Debug)]
781pub struct Split<'r, 't> {
782 finder: Matches<'r, 't>,
783 last: usize,
784}
785
786impl<'r, 't> Iterator for Split<'r, 't> {
787 type Item = &'t str;
788
789 fn next(&mut self) -> Option<&'t str> {
790 let text = self.finder.0.text();
791 match self.finder.next() {
792 None => {
793 if self.last > text.len() {
794 None
795 } else {
796 let s = &text[self.last..];
797 self.last = text.len() + 1; // Next call will return None
798 Some(s)
799 }
800 }
801 Some(m) => {
802 let matched = &text[self.last..m.start()];
803 self.last = m.end();
804 Some(matched)
805 }
806 }
807 }
808}
809
810impl<'r, 't> FusedIterator for Split<'r, 't> {}
811
812/// Yields at most `N` substrings delimited by a regular expression match.
813///
814/// The last substring will be whatever remains after splitting.
815///
816/// `'r` is the lifetime of the compiled regular expression and `'t` is the
817/// lifetime of the string being split.
818#[derive(Debug)]
819pub struct SplitN<'r, 't> {
820 splits: Split<'r, 't>,
821 n: usize,
822}
823
824impl<'r, 't> Iterator for SplitN<'r, 't> {
825 type Item = &'t str;
826
827 fn next(&mut self) -> Option<&'t str> {
828 if self.n == 0 {
829 return None;
830 }
831
832 self.n -= 1;
833 if self.n > 0 {
834 return self.splits.next();
835 }
836
837 let text = self.splits.finder.0.text();
838 if self.splits.last > text.len() {
839 // We've already returned all substrings.
840 None
841 } else {
842 // self.n == 0, so future calls will return None immediately
843 Some(&text[self.splits.last..])
844 }
845 }
846
847 fn size_hint(&self) -> (usize, Option<usize>) {
848 (0, Some(self.n))
849 }
850}
851
852impl<'r, 't> FusedIterator for SplitN<'r, 't> {}
853
854/// CaptureLocations is a low level representation of the raw offsets of each
855/// submatch.
856///
857/// You can think of this as a lower level
858/// [`Captures`](struct.Captures.html), where this type does not support
859/// named capturing groups directly and it does not borrow the text that these
860/// offsets were matched on.
861///
862/// Primarily, this type is useful when using the lower level `Regex` APIs
863/// such as `read_captures`, which permits amortizing the allocation in which
864/// capture match locations are stored.
865///
866/// In order to build a value of this type, you'll need to call the
867/// `capture_locations` method on the `Regex` being used to execute the search.
868/// The value returned can then be reused in subsequent searches.
869#[derive(Clone, Debug)]
870pub struct CaptureLocations(re_trait::Locations);
871
872/// A type alias for `CaptureLocations` for backwards compatibility.
873///
874/// Previously, we exported `CaptureLocations` as `Locations` in an
875/// undocumented API. To prevent breaking that code (e.g., in `regex-capi`),
876/// we continue re-exporting the same undocumented API.
877#[doc(hidden)]
878pub type Locations = CaptureLocations;
879
880impl CaptureLocations {
881 /// Returns the start and end positions of the Nth capture group. Returns
882 /// `None` if `i` is not a valid capture group or if the capture group did
883 /// not match anything. The positions returned are *always* byte indices
884 /// with respect to the original string matched.
885 #[inline]
886 pub fn get(&self, i: usize) -> Option<(usize, usize)> {
887 self.0.pos(i)
888 }
889
890 /// Returns the total number of capture groups (even if they didn't match).
891 ///
892 /// This is always at least `1` since every regex has at least `1`
893 /// capturing group that corresponds to the entire match.
894 #[inline]
895 pub fn len(&self) -> usize {
896 self.0.len()
897 }
898
899 /// An alias for the `get` method for backwards compatibility.
900 ///
901 /// Previously, we exported `get` as `pos` in an undocumented API. To
902 /// prevent breaking that code (e.g., in `regex-capi`), we continue
903 /// re-exporting the same undocumented API.
904 #[doc(hidden)]
905 #[inline]
906 pub fn pos(&self, i: usize) -> Option<(usize, usize)> {
907 self.get(i)
908 }
909}
910
911/// Captures represents a group of captured strings for a single match.
912///
913/// The 0th capture always corresponds to the entire match. Each subsequent
914/// index corresponds to the next capture group in the regex. If a capture
915/// group is named, then the matched string is *also* available via the `name`
916/// method. (Note that the 0th capture is always unnamed and so must be
917/// accessed with the `get` method.)
918///
919/// Positions returned from a capture group are always byte indices.
920///
921/// `'t` is the lifetime of the matched text.
922pub struct Captures<'t> {
923 text: &'t str,
924 locs: re_trait::Locations,
925 named_groups: Arc<HashMap<String, usize>>,
926}
927
928impl<'t> Captures<'t> {
929 /// Returns the match associated with the capture group at index `i`. If
930 /// `i` does not correspond to a capture group, or if the capture group
931 /// did not participate in the match, then `None` is returned.
932 ///
933 /// # Examples
934 ///
935 /// Get the text of the match with a default of an empty string if this
936 /// group didn't participate in the match:
937 ///
938 /// ```rust
939 /// # use regex::Regex;
940 /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))").unwrap();
941 /// let caps = re.captures("abc123").unwrap();
942 ///
943 /// let text1 = caps.get(1).map_or("", |m| m.as_str());
944 /// let text2 = caps.get(2).map_or("", |m| m.as_str());
945 /// assert_eq!(text1, "123");
946 /// assert_eq!(text2, "");
947 /// ```
948 pub fn get(&self, i: usize) -> Option<Match<'t>> {
949 self.locs.pos(i).map(|(s, e)| Match::new(self.text, s, e))
950 }
951
952 /// Returns the match for the capture group named `name`. If `name` isn't a
953 /// valid capture group or didn't match anything, then `None` is returned.
954 pub fn name(&self, name: &str) -> Option<Match<'t>> {
955 self.named_groups.get(name).and_then(|&i| self.get(i))
956 }
957
958 /// An iterator that yields all capturing matches in the order in which
959 /// they appear in the regex. If a particular capture group didn't
960 /// participate in the match, then `None` is yielded for that capture.
961 ///
962 /// The first match always corresponds to the overall match of the regex.
963 pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 't> {
964 SubCaptureMatches { caps: self, it: self.locs.iter() }
965 }
966
967 /// Expands all instances of `$name` in `replacement` to the corresponding
968 /// capture group `name`, and writes them to the `dst` buffer given.
969 ///
970 /// `name` may be an integer corresponding to the index of the capture
971 /// group (counted by order of opening parenthesis where `0` is the
972 /// entire match) or it can be a name (consisting of letters, digits or
973 /// underscores) corresponding to a named capture group.
974 ///
975 /// If `name` isn't a valid capture group (whether the name doesn't exist
976 /// or isn't a valid index), then it is replaced with the empty string.
977 ///
978 /// The longest possible name consisting of the characters `[_0-9A-Za-z]`
979 /// is used. e.g., `$1a` looks up the capture group named `1a` and not the
980 /// capture group at index `1`. To exert more precise control over the
981 /// name, or to refer to a capture group name that uses characters outside
982 /// of `[_0-9A-Za-z]`, use braces, e.g., `${1}a` or `${foo[bar].baz}`. When
983 /// using braces, any sequence of characters is permitted. If the sequence
984 /// does not refer to a capture group name in the corresponding regex, then
985 /// it is replaced with an empty string.
986 ///
987 /// To write a literal `$` use `$$`.
988 pub fn expand(&self, replacement: &str, dst: &mut String) {
989 expand_str(self, replacement, dst)
990 }
991
992 /// Returns the total number of capture groups (even if they didn't match).
993 ///
994 /// This is always at least `1`, since every regex has at least one capture
995 /// group that corresponds to the full match.
996 #[inline]
997 pub fn len(&self) -> usize {
998 self.locs.len()
999 }
1000}
1001
1002impl<'t> fmt::Debug for Captures<'t> {
1003 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1004 f.debug_tuple("Captures").field(&CapturesDebug(self)).finish()
1005 }
1006}
1007
1008struct CapturesDebug<'c, 't>(&'c Captures<'t>);
1009
1010impl<'c, 't> fmt::Debug for CapturesDebug<'c, 't> {
1011 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1012 // We'd like to show something nice here, even if it means an
1013 // allocation to build a reverse index.
1014 let slot_to_name: HashMap<&usize, &String> =
1015 self.0.named_groups.iter().map(|(a, b)| (b, a)).collect();
1016 let mut map = f.debug_map();
1017 for (slot, m) in self.0.locs.iter().enumerate() {
1018 let m = m.map(|(s, e)| &self.0.text[s..e]);
1019 if let Some(name) = slot_to_name.get(&slot) {
1020 map.entry(&name, &m);
1021 } else {
1022 map.entry(&slot, &m);
1023 }
1024 }
1025 map.finish()
1026 }
1027}
1028
1029/// Get a group by index.
1030///
1031/// `'t` is the lifetime of the matched text.
1032///
1033/// The text can't outlive the `Captures` object if this method is
1034/// used, because of how `Index` is defined (normally `a[i]` is part
1035/// of `a` and can't outlive it); to do that, use `get()` instead.
1036///
1037/// # Panics
1038///
1039/// If there is no group at the given index.
1040impl<'t> Index<usize> for Captures<'t> {
1041 type Output = str;
1042
1043 fn index(&self, i: usize) -> &str {
1044 self.get(i)
1045 .map(|m| m.as_str())
1046 .unwrap_or_else(|| panic!("no group at index '{}'", i))
1047 }
1048}
1049
1050/// Get a group by name.
1051///
1052/// `'t` is the lifetime of the matched text and `'i` is the lifetime
1053/// of the group name (the index).
1054///
1055/// The text can't outlive the `Captures` object if this method is
1056/// used, because of how `Index` is defined (normally `a[i]` is part
1057/// of `a` and can't outlive it); to do that, use `name` instead.
1058///
1059/// # Panics
1060///
1061/// If there is no group named by the given value.
1062impl<'t, 'i> Index<&'i str> for Captures<'t> {
1063 type Output = str;
1064
1065 fn index<'a>(&'a self, name: &'i str) -> &'a str {
1066 self.name(name)
1067 .map(|m| m.as_str())
1068 .unwrap_or_else(|| panic!("no group named '{}'", name))
1069 }
1070}
1071
1072/// An iterator that yields all capturing matches in the order in which they
1073/// appear in the regex.
1074///
1075/// If a particular capture group didn't participate in the match, then `None`
1076/// is yielded for that capture. The first match always corresponds to the
1077/// overall match of the regex.
1078///
1079/// The lifetime `'c` corresponds to the lifetime of the `Captures` value, and
1080/// the lifetime `'t` corresponds to the originally matched text.
1081#[derive(Clone, Debug)]
1082pub struct SubCaptureMatches<'c, 't> {
1083 caps: &'c Captures<'t>,
1084 it: SubCapturesPosIter<'c>,
1085}
1086
1087impl<'c, 't> Iterator for SubCaptureMatches<'c, 't> {
1088 type Item = Option<Match<'t>>;
1089
1090 fn next(&mut self) -> Option<Option<Match<'t>>> {
1091 self.it
1092 .next()
1093 .map(|cap| cap.map(|(s, e)| Match::new(self.caps.text, s, e)))
1094 }
1095
1096 fn size_hint(&self) -> (usize, Option<usize>) {
1097 self.it.size_hint()
1098 }
1099
1100 fn count(self) -> usize {
1101 self.it.count()
1102 }
1103}
1104
1105impl<'c, 't> ExactSizeIterator for SubCaptureMatches<'c, 't> {}
1106
1107impl<'c, 't> FusedIterator for SubCaptureMatches<'c, 't> {}
1108
1109/// An iterator that yields all non-overlapping capture groups matching a
1110/// particular regular expression.
1111///
1112/// The iterator stops when no more matches can be found.
1113///
1114/// `'r` is the lifetime of the compiled regular expression and `'t` is the
1115/// lifetime of the matched string.
1116#[derive(Debug)]
1117pub struct CaptureMatches<'r, 't>(
1118 re_trait::CaptureMatches<'t, ExecNoSyncStr<'r>>,
1119);
1120
1121impl<'r, 't> Iterator for CaptureMatches<'r, 't> {
1122 type Item = Captures<'t>;
1123
1124 fn next(&mut self) -> Option<Captures<'t>> {
1125 self.0.next().map(|locs| Captures {
1126 text: self.0.text(),
1127 locs,
1128 named_groups: self.0.regex().capture_name_idx().clone(),
1129 })
1130 }
1131}
1132
1133impl<'r, 't> FusedIterator for CaptureMatches<'r, 't> {}
1134
1135/// An iterator over all non-overlapping matches for a particular string.
1136///
1137/// The iterator yields a `Match` value. The iterator stops when no more
1138/// matches can be found.
1139///
1140/// `'r` is the lifetime of the compiled regular expression and `'t` is the
1141/// lifetime of the matched string.
1142#[derive(Debug)]
1143pub struct Matches<'r, 't>(re_trait::Matches<'t, ExecNoSyncStr<'r>>);
1144
1145impl<'r, 't> Iterator for Matches<'r, 't> {
1146 type Item = Match<'t>;
1147
1148 fn next(&mut self) -> Option<Match<'t>> {
1149 let text = self.0.text();
1150 self.0.next().map(|(s, e)| Match::new(text, s, e))
1151 }
1152}
1153
1154impl<'r, 't> FusedIterator for Matches<'r, 't> {}
1155
1156/// Replacer describes types that can be used to replace matches in a string.
1157///
1158/// In general, users of this crate shouldn't need to implement this trait,
1159/// since implementations are already provided for `&str` along with other
1160/// variants of string types and `FnMut(&Captures) -> String` (or any
1161/// `FnMut(&Captures) -> T` where `T: AsRef<str>`), which covers most use cases.
1162pub trait Replacer {
1163 /// Appends text to `dst` to replace the current match.
1164 ///
1165 /// The current match is represented by `caps`, which is guaranteed to
1166 /// have a match at capture group `0`.
1167 ///
1168 /// For example, a no-op replacement would be
1169 /// `dst.push_str(caps.get(0).unwrap().as_str())`.
1170 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String);
1171
1172 /// Return a fixed unchanging replacement string.
1173 ///
1174 /// When doing replacements, if access to `Captures` is not needed (e.g.,
1175 /// the replacement byte string does not need `$` expansion), then it can
1176 /// be beneficial to avoid finding sub-captures.
1177 ///
1178 /// In general, this is called once for every call to `replacen`.
1179 fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>> {
1180 None
1181 }
1182
1183 /// Return a `Replacer` that borrows and wraps this `Replacer`.
1184 ///
1185 /// This is useful when you want to take a generic `Replacer` (which might
1186 /// not be cloneable) and use it without consuming it, so it can be used
1187 /// more than once.
1188 ///
1189 /// # Example
1190 ///
1191 /// ```
1192 /// use regex::{Regex, Replacer};
1193 ///
1194 /// fn replace_all_twice<R: Replacer>(
1195 /// re: Regex,
1196 /// src: &str,
1197 /// mut rep: R,
1198 /// ) -> String {
1199 /// let dst = re.replace_all(src, rep.by_ref());
1200 /// let dst = re.replace_all(&dst, rep.by_ref());
1201 /// dst.into_owned()
1202 /// }
1203 /// ```
1204 fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> {
1205 ReplacerRef(self)
1206 }
1207}
1208
1209/// By-reference adaptor for a `Replacer`
1210///
1211/// Returned by [`Replacer::by_ref`](trait.Replacer.html#method.by_ref).
1212#[derive(Debug)]
1213pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R);
1214
1215impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> {
1216 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
1217 self.0.replace_append(caps, dst)
1218 }
1219 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
1220 self.0.no_expansion()
1221 }
1222}
1223
1224impl<'a> Replacer for &'a str {
1225 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
1226 caps.expand(*self, dst);
1227 }
1228
1229 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
1230 no_expansion(self)
1231 }
1232}
1233
1234impl<'a> Replacer for &'a String {
1235 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
1236 self.as_str().replace_append(caps, dst)
1237 }
1238
1239 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
1240 no_expansion(self)
1241 }
1242}
1243
1244impl Replacer for String {
1245 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
1246 self.as_str().replace_append(caps, dst)
1247 }
1248
1249 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
1250 no_expansion(self)
1251 }
1252}
1253
1254impl<'a> Replacer for Cow<'a, str> {
1255 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
1256 self.as_ref().replace_append(caps, dst)
1257 }
1258
1259 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
1260 no_expansion(self)
1261 }
1262}
1263
1264impl<'a> Replacer for &'a Cow<'a, str> {
1265 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
1266 self.as_ref().replace_append(caps, dst)
1267 }
1268
1269 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
1270 no_expansion(self)
1271 }
1272}
1273
1274fn no_expansion<T: AsRef<str>>(t: &T) -> Option<Cow<'_, str>> {
1275 let s = t.as_ref();
1276 match find_byte(b'$', s.as_bytes()) {
1277 Some(_) => None,
1278 None => Some(Cow::Borrowed(s)),
1279 }
1280}
1281
1282impl<F, T> Replacer for F
1283where
1284 F: FnMut(&Captures<'_>) -> T,
1285 T: AsRef<str>,
1286{
1287 fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
1288 dst.push_str((*self)(caps).as_ref());
1289 }
1290}
1291
1292/// `NoExpand` indicates literal string replacement.
1293///
1294/// It can be used with `replace` and `replace_all` to do a literal string
1295/// replacement without expanding `$name` to their corresponding capture
1296/// groups. This can be both convenient (to avoid escaping `$`, for example)
1297/// and performant (since capture groups don't need to be found).
1298///
1299/// `'t` is the lifetime of the literal text.
1300#[derive(Clone, Debug)]
1301pub struct NoExpand<'t>(pub &'t str);
1302
1303impl<'t> Replacer for NoExpand<'t> {
1304 fn replace_append(&mut self, _: &Captures<'_>, dst: &mut String) {
1305 dst.push_str(self.0);
1306 }
1307
1308 fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
1309 Some(Cow::Borrowed(self.0))
1310 }
1311}