fatfs/
boot_sector.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
use crate::core::cmp;
use crate::core::u16;
use crate::core::u8;
use crate::io;
use crate::io::prelude::*;
use crate::io::{Error, ErrorKind};

use crate::byteorder_ext::{ReadBytesExt, WriteBytesExt};
use byteorder::LittleEndian;

use crate::dir_entry::DIR_ENTRY_SIZE;
use crate::error::{FatfsError, FatfsNumericError};
use crate::fs::{FatType, FormatVolumeOptions, FsStatusFlags};
use crate::table::RESERVED_FAT_ENTRIES;

use std::collections::HashMap;

const BITS_PER_BYTE: u32 = 8;
const KB: u64 = 1024;
const MB: u64 = KB * 1024;
const GB: u64 = MB * 1024;

#[derive(Default, Debug, Clone)]
pub(crate) struct BiosParameterBlock {
    pub(crate) bytes_per_sector: u16,
    pub(crate) sectors_per_cluster: u8,
    pub(crate) reserved_sectors: u16,
    pub(crate) fats: u8,
    pub(crate) root_entries: u16,
    pub(crate) total_sectors_16: u16,
    pub(crate) media: u8,
    pub(crate) sectors_per_fat_16: u16,
    pub(crate) sectors_per_track: u16,
    pub(crate) heads: u16,
    pub(crate) hidden_sectors: u32,
    pub(crate) total_sectors_32: u32,

    // Extended BIOS Parameter Block
    pub(crate) sectors_per_fat_32: u32,
    pub(crate) extended_flags: u16,
    pub(crate) fs_version: u16,
    pub(crate) root_dir_first_cluster: u32,
    pub(crate) fs_info_sector: u16,
    pub(crate) backup_boot_sector: u16,
    pub(crate) reserved_0: [u8; 12],
    pub(crate) drive_num: u8,
    pub(crate) reserved_1: u8,
    pub(crate) ext_sig: u8,
    pub(crate) volume_id: u32,
    pub(crate) volume_label: [u8; 11],
    pub(crate) fs_type_label: [u8; 8],
}

impl BiosParameterBlock {
    fn deserialize<R: Read>(rdr: &mut R) -> io::Result<BiosParameterBlock> {
        let mut bpb: BiosParameterBlock = Default::default();
        bpb.bytes_per_sector = rdr.read_u16::<LittleEndian>()?;
        bpb.sectors_per_cluster = rdr.read_u8()?;
        bpb.reserved_sectors = rdr.read_u16::<LittleEndian>()?;
        bpb.fats = rdr.read_u8()?;
        bpb.root_entries = rdr.read_u16::<LittleEndian>()?;
        bpb.total_sectors_16 = rdr.read_u16::<LittleEndian>()?;
        bpb.media = rdr.read_u8()?;
        bpb.sectors_per_fat_16 = rdr.read_u16::<LittleEndian>()?;
        bpb.sectors_per_track = rdr.read_u16::<LittleEndian>()?;
        bpb.heads = rdr.read_u16::<LittleEndian>()?;
        bpb.hidden_sectors = rdr.read_u32::<LittleEndian>()?;
        bpb.total_sectors_32 = rdr.read_u32::<LittleEndian>()?;

        if bpb.is_fat32() {
            bpb.sectors_per_fat_32 = rdr.read_u32::<LittleEndian>()?;
            bpb.extended_flags = rdr.read_u16::<LittleEndian>()?;
            bpb.fs_version = rdr.read_u16::<LittleEndian>()?;
            bpb.root_dir_first_cluster = rdr.read_u32::<LittleEndian>()?;
            bpb.fs_info_sector = rdr.read_u16::<LittleEndian>()?;
            bpb.backup_boot_sector = rdr.read_u16::<LittleEndian>()?;
            rdr.read_exact(&mut bpb.reserved_0)?;
            bpb.drive_num = rdr.read_u8()?;
            bpb.reserved_1 = rdr.read_u8()?;
            bpb.ext_sig = rdr.read_u8()?; // 0x29
            bpb.volume_id = rdr.read_u32::<LittleEndian>()?;
            rdr.read_exact(&mut bpb.volume_label)?;
            rdr.read_exact(&mut bpb.fs_type_label)?;
        } else {
            bpb.drive_num = rdr.read_u8()?;
            bpb.reserved_1 = rdr.read_u8()?;
            bpb.ext_sig = rdr.read_u8()?; // 0x29
            bpb.volume_id = rdr.read_u32::<LittleEndian>()?;
            rdr.read_exact(&mut bpb.volume_label)?;
            rdr.read_exact(&mut bpb.fs_type_label)?;
        }

        // when the extended boot signature is anything other than 0x29, the fields are invalid
        if bpb.ext_sig != 0x29 {
            // fields after ext_sig are not used - clean them
            bpb.volume_id = 0;
            bpb.volume_label = [0; 11];
            bpb.fs_type_label = [0; 8];
        }

        Ok(bpb)
    }

    fn serialize<W: Write>(&self, mut wrt: W) -> io::Result<()> {
        wrt.write_u16::<LittleEndian>(self.bytes_per_sector)?;
        wrt.write_u8(self.sectors_per_cluster)?;
        wrt.write_u16::<LittleEndian>(self.reserved_sectors)?;
        wrt.write_u8(self.fats)?;
        wrt.write_u16::<LittleEndian>(self.root_entries)?;
        wrt.write_u16::<LittleEndian>(self.total_sectors_16)?;
        wrt.write_u8(self.media)?;
        wrt.write_u16::<LittleEndian>(self.sectors_per_fat_16)?;
        wrt.write_u16::<LittleEndian>(self.sectors_per_track)?;
        wrt.write_u16::<LittleEndian>(self.heads)?;
        wrt.write_u32::<LittleEndian>(self.hidden_sectors)?;
        wrt.write_u32::<LittleEndian>(self.total_sectors_32)?;

        if self.is_fat32() {
            wrt.write_u32::<LittleEndian>(self.sectors_per_fat_32)?;
            wrt.write_u16::<LittleEndian>(self.extended_flags)?;
            wrt.write_u16::<LittleEndian>(self.fs_version)?;
            wrt.write_u32::<LittleEndian>(self.root_dir_first_cluster)?;
            wrt.write_u16::<LittleEndian>(self.fs_info_sector)?;
            wrt.write_u16::<LittleEndian>(self.backup_boot_sector)?;
            wrt.write_all(&self.reserved_0)?;
            wrt.write_u8(self.drive_num)?;
            wrt.write_u8(self.reserved_1)?;
            wrt.write_u8(self.ext_sig)?; // 0x29
            wrt.write_u32::<LittleEndian>(self.volume_id)?;
            wrt.write_all(&self.volume_label)?;
            wrt.write_all(&self.fs_type_label)?;
        } else {
            wrt.write_u8(self.drive_num)?;
            wrt.write_u8(self.reserved_1)?;
            wrt.write_u8(self.ext_sig)?; // 0x29
            wrt.write_u32::<LittleEndian>(self.volume_id)?;
            wrt.write_all(&self.volume_label)?;
            wrt.write_all(&self.fs_type_label)?;
        }
        Ok(())
    }

    fn validate(&self) -> io::Result<()> {
        // sanity checks
        if self.bytes_per_sector.count_ones() != 1 {
            return Err(Error::new(
                ErrorKind::Other,
                FatfsError::InvalidBytesPerSector(FatfsNumericError::NotPowerOfTwo),
            ));
        } else if self.bytes_per_sector < 512 {
            return Err(Error::new(
                ErrorKind::Other,
                FatfsError::InvalidBytesPerSector(FatfsNumericError::TooSmall(512)),
            ));
        } else if self.bytes_per_sector > 4096 {
            return Err(Error::new(
                ErrorKind::Other,
                FatfsError::InvalidBytesPerSector(FatfsNumericError::TooLarge(4096)),
            ));
        }

        if self.sectors_per_cluster.count_ones() != 1 {
            return Err(Error::new(
                ErrorKind::Other,
                FatfsError::InvalidSectorsPerCluster(FatfsNumericError::NotPowerOfTwo),
            ));
        } else if self.sectors_per_cluster < 1 {
            return Err(Error::new(
                ErrorKind::Other,
                FatfsError::InvalidSectorsPerCluster(FatfsNumericError::TooSmall(1)),
            ));
        } else if self.sectors_per_cluster > 128 {
            return Err(Error::new(
                ErrorKind::Other,
                FatfsError::InvalidSectorsPerCluster(FatfsNumericError::TooLarge(128)),
            ));
        }

        // bytes per sector is u16, sectors per cluster is u8, so guaranteed no overflow in multiplication
        let bytes_per_cluster = self.bytes_per_sector as u32 * self.sectors_per_cluster as u32;
        let maximum_compatibility_bytes_per_cluster: u32 = 32 * 1024;

        if bytes_per_cluster > maximum_compatibility_bytes_per_cluster {
            // 32k is the largest value to maintain greatest compatibility
            // Many implementations appear to support 64k per cluster, and some may support 128k or larger
            // However, >32k is not as thoroughly tested...
            warn!("fs compatibility: bytes_per_cluster value '{}' in BPB exceeds '{}', and thus may be incompatible with some implementations",
                bytes_per_cluster, maximum_compatibility_bytes_per_cluster);
        }

        let is_fat32 = self.is_fat32();
        if self.reserved_sectors < 1 {
            return Err(Error::new(ErrorKind::Other, FatfsError::InvalidReservedSectors));
        } else if !is_fat32 && self.reserved_sectors != 1 {
            // Microsoft document indicates fat12 and fat16 code exists that presume this value is 1
            warn!(
                "fs compatibility: reserved_sectors value '{}' in BPB is not '1', and thus is incompatible with some implementations",
                self.reserved_sectors
            );
        }

        if self.fats == 0 {
            return Err(Error::new(ErrorKind::Other, FatfsError::InvalidFats));
        } else if self.fats > 2 {
            // Microsoft document indicates that few implementations support any values other than 1 or 2
            warn!(
                "fs compatibility: numbers of FATs '{}' in BPB is greater than '2', and thus is incompatible with some implementations",
                self.fats
            );
        }

        if is_fat32 && self.root_entries != 0 {
            return Err(Error::new(ErrorKind::Other, FatfsError::NonZeroRootEntries));
        }

        if !is_fat32 && self.root_entries == 0 {
            return Err(Error::new(ErrorKind::Other, FatfsError::ZeroRootEntries));
        }

        if (u32::from(self.root_entries) * DIR_ENTRY_SIZE as u32) % u32::from(self.bytes_per_sector)
            != 0
        {
            warn!("Root entries should fill sectors fully");
        }

        if is_fat32 && self.total_sectors_16 != 0 {
            return Err(Error::new(ErrorKind::Other, FatfsError::NonZeroTotalSectors));
        }

        if (self.total_sectors_16 == 0) == (self.total_sectors_32 == 0) {
            return Err(Error::new(ErrorKind::Other, FatfsError::ZeroTotalSectors));
        }

        if is_fat32 && self.sectors_per_fat_32 == 0 {
            return Err(Error::new(ErrorKind::Other, FatfsError::InvalidSectorsPerFat));
        }

        if self.sectors_per_fat() >= std::u32::MAX / (self.fats as u32) {
            return Err(Error::new(ErrorKind::Other, FatfsError::InvalidSectorsPerFat));
        }

        if self.fs_version != 0 {
            return Err(Error::new(ErrorKind::Other, FatfsError::UnknownVersion));
        }

        if self
            .reserved_sectors()
            .checked_add(self.sectors_per_all_fats())
            .and_then(|e| e.checked_add(self.root_dir_sectors()))
            .is_none()
        {
            return Err(Error::new(ErrorKind::Other, FatfsError::TooManyReservedSectors));
        }

        if self.total_sectors() <= self.first_data_sector() {
            return Err(Error::new(ErrorKind::Other, FatfsError::TotalSectorsTooSmall));
        }

        if is_fat32 && self.backup_boot_sector() >= self.reserved_sectors() {
            return Err(Error::new(ErrorKind::Other, FatfsError::BackupBootSectorInvalid));
        }

        if is_fat32 && self.fs_info_sector() >= self.reserved_sectors() {
            return Err(Error::new(ErrorKind::Other, FatfsError::FsInfoInvalid));
        }

        let total_clusters = self.total_clusters();
        let fat_type = FatType::from_clusters(total_clusters);
        if is_fat32 != (fat_type == FatType::Fat32) {
            return Err(Error::new(ErrorKind::Other, FatfsError::InvalidNumClusters));
        }
        if fat_type == FatType::Fat32 && total_clusters > 0x0FFF_FFFF {
            return Err(Error::new(ErrorKind::Other, FatfsError::TooManyClusters));
        }

        let bits_per_fat_entry = fat_type.bits_per_fat_entry();
        let total_fat_entries =
            ((self.sectors_per_fat() as u64) * (self.bytes_per_sector as u64) * 8
                / bits_per_fat_entry as u64) as u32;
        if total_fat_entries < RESERVED_FAT_ENTRIES {
            return Err(Error::new(ErrorKind::Other, FatfsError::InvalidFatEntries));
        }
        if total_fat_entries - RESERVED_FAT_ENTRIES < total_clusters {
            warn!("FAT is too small compared to total number of clusters");
        }

        Ok(())
    }

    pub(crate) fn mirroring_enabled(&self) -> bool {
        self.extended_flags & 0x80 == 0
    }

    pub(crate) fn active_fat(&self) -> u16 {
        // The zero-based number of the active FAT is only valid if mirroring is disabled.
        if self.mirroring_enabled() {
            0
        } else {
            self.extended_flags & 0x0F
        }
    }

    pub(crate) fn status_flags(&self) -> FsStatusFlags {
        FsStatusFlags::decode(self.reserved_1)
    }

    pub(crate) fn is_fat32(&self) -> bool {
        // because this field must be zero on FAT32, and
        // because it must be non-zero on FAT12/FAT16,
        // this provides a simple way to detect FAT32
        self.sectors_per_fat_16 == 0
    }

    pub(crate) fn sectors_per_fat(&self) -> u32 {
        if self.is_fat32() {
            self.sectors_per_fat_32
        } else {
            self.sectors_per_fat_16 as u32
        }
    }

    pub(crate) fn total_sectors(&self) -> u32 {
        if self.total_sectors_16 == 0 {
            self.total_sectors_32
        } else {
            self.total_sectors_16 as u32
        }
    }

    pub(crate) fn reserved_sectors(&self) -> u32 {
        self.reserved_sectors as u32
    }

    pub(crate) fn root_dir_sectors(&self) -> u32 {
        let root_dir_bytes = self.root_entries as u32 * DIR_ENTRY_SIZE as u32;
        (root_dir_bytes + self.bytes_per_sector as u32 - 1) / self.bytes_per_sector as u32
    }

    pub(crate) fn sectors_per_all_fats(&self) -> u32 {
        self.fats as u32 * self.sectors_per_fat()
    }

    pub(crate) fn first_data_sector(&self) -> u32 {
        let root_dir_sectors = self.root_dir_sectors();
        let fat_sectors = self.sectors_per_all_fats();
        self.reserved_sectors() + fat_sectors + root_dir_sectors
    }

    pub(crate) fn total_clusters(&self) -> u32 {
        let total_sectors = self.total_sectors();
        let first_data_sector = self.first_data_sector();
        let data_sectors = total_sectors - first_data_sector;
        data_sectors / self.sectors_per_cluster as u32
    }

    pub(crate) fn bytes_from_sectors(&self, sectors: u32) -> u64 {
        // Note: total number of sectors is a 32 bit number so offsets have to be 64 bit
        (sectors as u64) * self.bytes_per_sector as u64
    }

    pub(crate) fn sectors_from_clusters(&self, clusters: u32) -> Result<u32, FatfsError> {
        // sectors_per_cluster is an 8 bit number. This shouldn't overflow on a valid FAT disk, as
        // FAT only supports up to a 32 bit sector count. The input to this function is not
        // necessarily trusted, however, so we need to do a checked multiply.
        clusters
            .checked_mul(self.sectors_per_cluster as u32)
            .ok_or(FatfsError::InvalidClusterNumber)
    }

    pub(crate) fn cluster_size(&self) -> u32 {
        self.sectors_per_cluster as u32 * self.bytes_per_sector as u32
    }

    pub(crate) fn clusters_from_bytes(&self, bytes: u64) -> u32 {
        let cluster_size = self.cluster_size() as i64;
        ((bytes as i64 + cluster_size - 1) / cluster_size) as u32
    }

    pub(crate) fn fs_info_sector(&self) -> u32 {
        self.fs_info_sector as u32
    }

    pub(crate) fn backup_boot_sector(&self) -> u32 {
        self.backup_boot_sector as u32
    }
}

pub(crate) struct BootSector {
    bootjmp: [u8; 3],
    oem_name: [u8; 8],
    pub(crate) bpb: BiosParameterBlock,
    boot_code: [u8; 448],
    boot_sig: [u8; 2],
}

impl BootSector {
    pub(crate) fn deserialize<R: Read>(rdr: &mut R) -> io::Result<BootSector> {
        let mut boot: BootSector = Default::default();
        rdr.read_exact(&mut boot.bootjmp)?;
        rdr.read_exact(&mut boot.oem_name)?;
        boot.bpb = BiosParameterBlock::deserialize(rdr)?;

        if boot.bpb.is_fat32() {
            rdr.read_exact(&mut boot.boot_code[0..420])?;
        } else {
            rdr.read_exact(&mut boot.boot_code[0..448])?;
        }
        rdr.read_exact(&mut boot.boot_sig)?;
        Ok(boot)
    }

    pub(crate) fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
        wrt.write_all(&self.bootjmp)?;
        wrt.write_all(&self.oem_name)?;
        self.bpb.serialize(&mut *wrt)?;

        if self.bpb.is_fat32() {
            wrt.write_all(&self.boot_code[0..420])?;
        } else {
            wrt.write_all(&self.boot_code[0..448])?;
        }
        wrt.write_all(&self.boot_sig)?;
        Ok(())
    }

    pub(crate) fn validate(&self) -> io::Result<()> {
        if self.boot_sig != [0x55, 0xAA] {
            return Err(Error::new(ErrorKind::Other, FatfsError::InvalidBootSectorSig));
        }
        if self.bootjmp[0] != 0xEB && self.bootjmp[0] != 0xE9 {
            warn!("Unknown opcode {:x} in bootjmp boot sector field", self.bootjmp[0]);
        }
        self.bpb.validate()?;
        Ok(())
    }
}

impl Default for BootSector {
    fn default() -> BootSector {
        BootSector {
            bootjmp: Default::default(),
            oem_name: Default::default(),
            bpb: Default::default(),
            boot_code: [0; 448],
            boot_sig: Default::default(),
        }
    }
}

pub(crate) fn estimate_fat_type(total_bytes: u64) -> FatType {
    // Used only to select cluster size if FAT type has not been overriden in options
    if total_bytes < 4 * MB {
        FatType::Fat12
    } else if total_bytes < 512 * MB {
        FatType::Fat16
    } else {
        FatType::Fat32
    }
}

fn determine_bytes_per_cluster(total_bytes: u64, bytes_per_sector: u16, fat_type: FatType) -> u32 {
    let bytes_per_cluster = match fat_type {
        FatType::Fat12 => (total_bytes.next_power_of_two() / MB * 512) as u32,
        FatType::Fat16 => {
            if total_bytes <= 16 * MB {
                1 * KB as u32
            } else if total_bytes <= 128 * MB {
                2 * KB as u32
            } else {
                (total_bytes.next_power_of_two() / (64 * MB) * KB) as u32
            }
        }
        FatType::Fat32 => {
            if total_bytes <= 260 * MB {
                512
            } else if total_bytes <= 8 * GB {
                4 * KB as u32
            } else {
                (total_bytes.next_power_of_two() / (2 * GB) * KB) as u32
            }
        }
    };
    const MAX_CLUSTER_SIZE: u32 = 32 * KB as u32;
    debug_assert!(bytes_per_cluster.is_power_of_two());
    cmp::min(cmp::max(bytes_per_cluster, bytes_per_sector as u32), MAX_CLUSTER_SIZE)
}

fn determine_sectors_per_fat(
    total_sectors: u32,
    bytes_per_sector: u16,
    sectors_per_cluster: u8,
    fat_type: FatType,
    reserved_sectors: u16,
    root_dir_sectors: u32,
    fats: u8,
) -> u32 {
    //
    // FAT size formula transformations:
    //
    // Initial basic formula:
    // size of FAT in bits >= (total number of clusters + 2) * bits per FAT entry
    //
    // Note: when computing number of clusters from number of sectors rounding down is used because partial clusters
    // are not allowed
    // Note: in those transformations '/' is a floating-point division (not a rounding towards zero division)
    //
    // data_sectors = total_sectors - reserved_sectors - fats * sectors_per_fat - root_dir_sectors
    // total_clusters = floor(data_sectors / sectors_per_cluster)
    // bits_per_sector = bytes_per_sector * 8
    // sectors_per_fat * bits_per_sector >= (total_clusters + 2) * bits_per_fat_entry
    // sectors_per_fat * bits_per_sector >= (floor(data_sectors / sectors_per_cluster) + 2) * bits_per_fat_entry
    //
    // Note: omitting the floor function can cause the FAT to be bigger by 1 entry - negligible
    //
    // sectors_per_fat * bits_per_sector >= (data_sectors / sectors_per_cluster + 2) * bits_per_fat_entry
    // t0 = total_sectors - reserved_sectors - root_dir_sectors
    // sectors_per_fat * bits_per_sector >= ((t0 - fats * sectors_per_fat) / sectors_per_cluster + 2) * bits_per_fat_entry
    // sectors_per_fat * bits_per_sector / bits_per_fat_entry >= (t0 - fats * sectors_per_fat) / sectors_per_cluster + 2
    // sectors_per_fat * bits_per_sector / bits_per_fat_entry >= t0 / sectors_per_cluster + 2 - fats * sectors_per_fat / sectors_per_cluster
    // sectors_per_fat * bits_per_sector / bits_per_fat_entry + fats * sectors_per_fat / sectors_per_cluster >= t0 / sectors_per_cluster + 2
    // sectors_per_fat * (bits_per_sector / bits_per_fat_entry + fats / sectors_per_cluster) >= t0 / sectors_per_cluster + 2
    // sectors_per_fat >= (t0 / sectors_per_cluster + 2) / (bits_per_sector / bits_per_fat_entry + fats / sectors_per_cluster)
    //
    // Note: MS specification omits the constant 2 in calculations. This library is taking a better approach...
    //
    // sectors_per_fat >= ((t0 + 2 * sectors_per_cluster) / sectors_per_cluster) / (bits_per_sector / bits_per_fat_entry + fats / sectors_per_cluster)
    // sectors_per_fat >= (t0 + 2 * sectors_per_cluster) / (sectors_per_cluster * bits_per_sector / bits_per_fat_entry + fats)
    //
    // Note: compared to MS formula this one can suffer from an overflow problem if u32 type is used
    //
    // When converting formula to integer types round towards a bigger FAT:
    // * first division towards infinity
    // * second division towards zero (it is in a denominator of the first division)

    let t0: u32 = total_sectors - u32::from(reserved_sectors) - root_dir_sectors;
    let t1: u64 = u64::from(t0) + u64::from(2 * u32::from(sectors_per_cluster));
    let bits_per_cluster =
        u32::from(sectors_per_cluster) * u32::from(bytes_per_sector) * BITS_PER_BYTE;
    let t2 =
        u64::from(bits_per_cluster / u32::from(fat_type.bits_per_fat_entry()) + u32::from(fats));
    let sectors_per_fat = (t1 + t2 - 1) / t2;
    // Note: casting is safe here because number of sectors per FAT cannot be bigger than total sectors number
    sectors_per_fat as u32
}

fn try_fs_geometry(
    total_sectors: u32,
    bytes_per_sector: u16,
    sectors_per_cluster: u8,
    fat_type: FatType,
    root_dir_sectors: u32,
    fats: u8,
) -> io::Result<(u16, u32)> {
    // Note: most of implementations use 32 reserved sectors for FAT32 but it's wasting of space
    // This implementation uses only 8. This is enough to fit in two boot sectors (main and backup) with additional
    // bootstrap code and one FSInfo sector. It also makes FAT alligned to 4096 which is a nice number.
    let reserved_sectors: u16 = if fat_type == FatType::Fat32 { 8 } else { 1 };

    // Check if volume has enough space to accomodate reserved sectors, FAT, root directory and some data space
    // Having less than 8 sectors for FAT and data would make a little sense
    if total_sectors <= u32::from(reserved_sectors) + u32::from(root_dir_sectors) + 8 {
        return Err(Error::new(ErrorKind::Other, FatfsError::VolumeTooSmall));
    }

    // calculate File Allocation Table size
    let sectors_per_fat = determine_sectors_per_fat(
        total_sectors,
        bytes_per_sector,
        sectors_per_cluster,
        fat_type,
        reserved_sectors,
        root_dir_sectors,
        fats,
    );

    let data_sectors = total_sectors
        - u32::from(reserved_sectors)
        - u32::from(root_dir_sectors)
        - sectors_per_fat * u32::from(fats);
    let total_clusters = data_sectors / u32::from(sectors_per_cluster);
    if fat_type != FatType::from_clusters(total_clusters) {
        return Err(Error::new(ErrorKind::Other, FatfsError::InvalidFatType));
    }
    debug_assert!(total_clusters >= fat_type.min_clusters());
    if total_clusters > fat_type.max_clusters() {
        // Note: it can happen for FAT32
        return Err(Error::new(ErrorKind::Other, FatfsError::TooManyClusters));
    }

    return Ok((reserved_sectors, sectors_per_fat));
}

fn determine_root_dir_sectors(
    root_dir_entries: u16,
    bytes_per_sector: u16,
    fat_type: FatType,
) -> u32 {
    if fat_type == FatType::Fat32 {
        0
    } else {
        let root_dir_bytes = u32::from(root_dir_entries) * DIR_ENTRY_SIZE as u32;
        (root_dir_bytes + u32::from(bytes_per_sector) - 1) / u32::from(bytes_per_sector)
    }
}

fn determine_fs_geometry(
    fat_type: Option<FatType>,
    total_sectors: u32,
    bytes_per_sector: u16,
    bytes_per_cluster: Option<u32>,
    root_dir_entries: u16,
    fats: u8,
) -> io::Result<(FatType, u16, u32, u8)> {
    let mut failures = HashMap::new();
    let fat_types = match fat_type {
        Some(t) => vec![t],
        None => vec![FatType::Fat32, FatType::Fat16, FatType::Fat12],
    };
    for fat_type in fat_types {
        let bytes_per_cluster = bytes_per_cluster.unwrap_or_else(|| {
            let total_bytes = u64::from(total_sectors) * u64::from(bytes_per_sector);
            determine_bytes_per_cluster(total_bytes, bytes_per_sector, fat_type)
        });
        let sectors_per_cluster = {
            let sectors_per_cluster = bytes_per_cluster / u32::from(bytes_per_sector);
            assert!(sectors_per_cluster <= u32::from(u8::MAX));
            sectors_per_cluster as u8
        };
        let root_dir_sectors =
            determine_root_dir_sectors(root_dir_entries, bytes_per_sector, fat_type);
        let result = try_fs_geometry(
            total_sectors,
            bytes_per_sector,
            sectors_per_cluster,
            fat_type,
            root_dir_sectors,
            fats,
        );
        match result {
            Ok((reserved_sectors, sectors_per_fat)) => {
                return Ok((fat_type, reserved_sectors, sectors_per_fat, sectors_per_cluster));
            }
            Err(e) => failures.insert(fat_type, e),
        };
    }
    eprintln!("Failed to identify any valid geometry.  Errors:");
    for (fat_type, err) in failures {
        eprintln!(
            "type: {:?} err: {:?} total_sectors: {}, bytes_per_sector: {} bytes_per_cluster: {:?}\
            root_dir_entries: {} fats: {}",
            fat_type,
            err,
            total_sectors,
            bytes_per_sector,
            bytes_per_cluster,
            root_dir_entries,
            fats
        );
    }

    return Err(Error::new(ErrorKind::Other, FatfsError::BadDiskSize));
}

fn format_bpb(
    options: &FormatVolumeOptions,
    total_sectors: u32,
    bytes_per_sector: u16,
) -> io::Result<(BiosParameterBlock, FatType)> {
    let fats = options.fats.unwrap_or(2u8);
    let root_dir_entries = options.max_root_dir_entries.unwrap_or(512);
    let (fat_type, reserved_sectors, sectors_per_fat, sectors_per_cluster) = determine_fs_geometry(
        options.fat_type,
        total_sectors,
        bytes_per_sector,
        options.bytes_per_cluster,
        root_dir_entries,
        fats,
    )?;

    // drive_num should be 0 for floppy disks and 0x80 for hard disks - determine it using FAT type
    let drive_num =
        options.drive_num.unwrap_or_else(|| if fat_type == FatType::Fat12 { 0 } else { 0x80 });

    // reserved_0 is always zero
    let reserved_0 = [0u8; 12];

    // setup volume label
    let mut volume_label = [0u8; 11];
    if let Some(volume_label_from_opts) = options.volume_label {
        volume_label.copy_from_slice(&volume_label_from_opts);
    } else {
        volume_label.copy_from_slice(b"NO NAME    ");
    }

    // setup fs_type_label field
    let mut fs_type_label = [0u8; 8];
    let fs_type_label_str = match fat_type {
        FatType::Fat12 => b"FAT12   ",
        FatType::Fat16 => b"FAT16   ",
        FatType::Fat32 => b"FAT32   ",
    };
    fs_type_label.copy_from_slice(fs_type_label_str);

    // create Bios Parameter Block struct
    let is_fat32 = fat_type == FatType::Fat32;
    let sectors_per_fat_16 = if is_fat32 {
        0
    } else {
        debug_assert!(sectors_per_fat <= u32::from(u16::MAX));
        sectors_per_fat as u16
    };
    let bpb = BiosParameterBlock {
        bytes_per_sector,
        sectors_per_cluster,
        reserved_sectors,
        fats,
        root_entries: if is_fat32 { 0 } else { root_dir_entries },
        total_sectors_16: if total_sectors < 0x10000 { total_sectors as u16 } else { 0 },
        media: options.media.unwrap_or(0xF8),
        sectors_per_fat_16,
        sectors_per_track: options.sectors_per_track.unwrap_or(0x20),
        heads: options.heads.unwrap_or(0x40),
        hidden_sectors: 0,
        total_sectors_32: if total_sectors >= 0x10000 { total_sectors } else { 0 },
        // FAT32 fields start
        sectors_per_fat_32: if is_fat32 { sectors_per_fat } else { 0 },
        extended_flags: 0, // mirroring enabled
        fs_version: 0,
        root_dir_first_cluster: if is_fat32 { 2 } else { 0 },
        fs_info_sector: if is_fat32 { 1 } else { 0 },
        backup_boot_sector: if is_fat32 { 6 } else { 0 },
        reserved_0,
        // FAT32 fields end
        drive_num,
        reserved_1: 0,
        ext_sig: 0x29,
        volume_id: options.volume_id.unwrap_or(0x12345678),
        volume_label,
        fs_type_label,
    };

    // Check if number of clusters is proper for used FAT type
    if FatType::from_clusters(bpb.total_clusters()) != fat_type {
        return Err(Error::new(ErrorKind::Other, FatfsError::ClusterFatMismatch));
    }

    Ok((bpb, fat_type))
}

pub(crate) fn format_boot_sector(
    options: &FormatVolumeOptions,
    total_sectors: u32,
    bytes_per_sector: u16,
) -> io::Result<(BootSector, FatType)> {
    let mut boot: BootSector = Default::default();
    let (bpb, fat_type) = format_bpb(options, total_sectors, bytes_per_sector)?;
    boot.bpb = bpb;
    boot.oem_name.copy_from_slice(b"MSWIN4.1");
    // Boot code copied from FAT32 boot sector initialized by mkfs.fat
    boot.bootjmp = [0xEB, 0x58, 0x90];
    let boot_code: [u8; 129] = [
        0x0E, 0x1F, 0xBE, 0x77, 0x7C, 0xAC, 0x22, 0xC0, 0x74, 0x0B, 0x56, 0xB4, 0x0E, 0xBB, 0x07,
        0x00, 0xCD, 0x10, 0x5E, 0xEB, 0xF0, 0x32, 0xE4, 0xCD, 0x16, 0xCD, 0x19, 0xEB, 0xFE, 0x54,
        0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6E, 0x6F, 0x74, 0x20, 0x61, 0x20, 0x62, 0x6F,
        0x6F, 0x74, 0x61, 0x62, 0x6C, 0x65, 0x20, 0x64, 0x69, 0x73, 0x6B, 0x2E, 0x20, 0x20, 0x50,
        0x6C, 0x65, 0x61, 0x73, 0x65, 0x20, 0x69, 0x6E, 0x73, 0x65, 0x72, 0x74, 0x20, 0x61, 0x20,
        0x62, 0x6F, 0x6F, 0x74, 0x61, 0x62, 0x6C, 0x65, 0x20, 0x66, 0x6C, 0x6F, 0x70, 0x70, 0x79,
        0x20, 0x61, 0x6E, 0x64, 0x0D, 0x0A, 0x70, 0x72, 0x65, 0x73, 0x73, 0x20, 0x61, 0x6E, 0x79,
        0x20, 0x6B, 0x65, 0x79, 0x20, 0x74, 0x6F, 0x20, 0x74, 0x72, 0x79, 0x20, 0x61, 0x67, 0x61,
        0x69, 0x6E, 0x20, 0x2E, 0x2E, 0x2E, 0x20, 0x0D, 0x0A,
    ];
    boot.boot_code[..boot_code.len()].copy_from_slice(&boot_code);
    boot.boot_sig = [0x55, 0xAA];

    // fix offsets in bootjmp and boot code for non-FAT32 filesystems (bootcode is on a different offset)
    if fat_type != FatType::Fat32 {
        // offset of boot code
        let boot_code_offset: u8 = 0x36 + 8;
        boot.bootjmp[1] = boot_code_offset - 2;
        // offset of message
        const MESSAGE_OFFSET: u16 = 29;
        let message_offset_in_sector = u16::from(boot_code_offset) + MESSAGE_OFFSET + 0x7c00;
        boot.boot_code[3] = (message_offset_in_sector & 0xff) as u8;
        boot.boot_code[4] = (message_offset_in_sector >> 8) as u8;
    }

    Ok((boot, fat_type))
}

#[cfg(test)]
mod tests {
    use super::*;
    extern crate env_logger;
    use crate::core::u32;

    fn init() {
        let _ = env_logger::builder().is_test(true).try_init();
    }

    #[test]
    fn test_estimate_fat_type() {
        assert_eq!(estimate_fat_type(3 * MB), FatType::Fat12);
        assert_eq!(estimate_fat_type(4 * MB), FatType::Fat16);
        assert_eq!(estimate_fat_type(511 * MB), FatType::Fat16);
        assert_eq!(estimate_fat_type(512 * MB), FatType::Fat32);
    }

    #[test]
    fn test_determine_bytes_per_cluster_fat12() {
        assert_eq!(determine_bytes_per_cluster(1 * MB + 0, 512, FatType::Fat12), 512);
        assert_eq!(determine_bytes_per_cluster(1 * MB + 1, 512, FatType::Fat12), 1024);
        assert_eq!(determine_bytes_per_cluster(1 * MB, 4096, FatType::Fat12), 4096);
    }

    #[test]
    fn test_determine_bytes_per_cluster_fat16() {
        assert_eq!(determine_bytes_per_cluster(1 * MB, 512, Some(FatType::Fat16)), 1 * KB as u32);
        assert_eq!(
            determine_bytes_per_cluster(1 * MB, 4 * KB as u16, Some(FatType::Fat16)),
            4 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(16 * MB + 0, 512, Some(FatType::Fat16)),
            1 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(16 * MB + 1, 512, Some(FatType::Fat16)),
            2 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(128 * MB + 0, 512, Some(FatType::Fat16)),
            2 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(128 * MB + 1, 512, Some(FatType::Fat16)),
            4 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(256 * MB + 0, 512, Some(FatType::Fat16)),
            4 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(256 * MB + 1, 512, Some(FatType::Fat16)),
            8 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(512 * MB + 0, 512, Some(FatType::Fat16)),
            8 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(512 * MB + 1, 512, Some(FatType::Fat16)),
            16 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(1024 * MB + 0, 512, Some(FatType::Fat16)),
            16 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(1024 * MB + 1, 512, Some(FatType::Fat16)),
            32 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(99999 * MB, 512, Some(FatType::Fat16)),
            32 * KB as u32
        );
    }

    #[test]
    fn test_determine_bytes_per_cluster_fat32() {
        assert_eq!(determine_bytes_per_cluster(260 * MB as u64, 512, Some(FatType::Fat32)), 512);
        assert_eq!(
            determine_bytes_per_cluster(260 * MB as u64, 4 * KB as u16, Some(FatType::Fat32)),
            4 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(260 * MB as u64 + 1, 512, Some(FatType::Fat32)),
            4 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(8 * GB as u64, 512, Some(FatType::Fat32)),
            4 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(8 * GB as u64 + 1, 512, Some(FatType::Fat32)),
            8 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(16 * GB as u64 + 0, 512, Some(FatType::Fat32)),
            8 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(16 * GB as u64 + 1, 512, Some(FatType::Fat32)),
            16 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(32 * GB as u64, 512, Some(FatType::Fat32)),
            16 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(32 * GB as u64 + 1, 512, Some(FatType::Fat32)),
            32 * KB as u32
        );
        assert_eq!(
            determine_bytes_per_cluster(999 * GB as u64, 512, Some(FatType::Fat32)),
            32 * KB as u32
        );
    }

    fn test_determine_sectors_per_fat_single(
        total_bytes: u64,
        bytes_per_sector: u16,
        bytes_per_cluster: u32,
        fat_type: FatType,
        reserved_sectors: u16,
        fats: u8,
        root_dir_entries: u32,
    ) {
        let total_sectors = total_bytes / u64::from(bytes_per_sector);
        debug_assert!(total_sectors <= u64::from(u32::MAX), "{:x}", total_sectors);
        let total_sectors = total_sectors as u32;

        let sectors_per_cluster = (bytes_per_cluster / u32::from(bytes_per_sector)) as u8;
        let root_dir_size = root_dir_entries * DIR_ENTRY_SIZE as u32;
        let root_dir_sectors =
            (root_dir_size + u32::from(bytes_per_sector) - 1) / u32::from(bytes_per_sector);
        let sectors_per_fat = determine_sectors_per_fat(
            total_sectors,
            bytes_per_sector,
            sectors_per_cluster,
            fat_type,
            reserved_sectors,
            root_dir_sectors,
            fats,
        );

        let sectors_per_all_fats = u32::from(fats) * sectors_per_fat;
        let total_data_sectors =
            total_sectors - u32::from(reserved_sectors) - sectors_per_all_fats - root_dir_sectors;
        let total_clusters = total_data_sectors / u32::from(sectors_per_cluster);
        if FatType::from_clusters(total_clusters) != fat_type {
            // Skip impossible FAT configurations
            return;
        }
        let bits_per_sector = u32::from(bytes_per_sector) * BITS_PER_BYTE;
        let bits_per_fat = u64::from(sectors_per_fat) * u64::from(bits_per_sector);
        let total_fat_entries = (bits_per_fat / u64::from(fat_type.bits_per_fat_entry())) as u32;
        let fat_clusters = total_fat_entries - RESERVED_FAT_ENTRIES;
        // Note: fat_entries_per_sector is rounded down for FAT12
        let fat_entries_per_sector = u32::from(bits_per_sector) / fat_type.bits_per_fat_entry();
        let desc = format!("total_clusters {}, fat_clusters {}, total_sectors {}, bytes/sector {}, sectors/cluster {}, fat_type {:?}, reserved_sectors {}, root_dir_sectors {}, sectors_per_fat {}",
            total_clusters, fat_clusters, total_sectors, bytes_per_sector, sectors_per_cluster, fat_type, reserved_sectors, root_dir_sectors, sectors_per_fat);
        assert!(fat_clusters >= total_clusters, "Too small FAT: {}", desc);
        assert!(
            fat_clusters <= total_clusters + 2 * fat_entries_per_sector,
            "Too big FAT: {}",
            desc
        );
    }

    fn test_determine_sectors_per_fat_for_multiple_sizes(
        bytes_per_sector: u16,
        fat_type: FatType,
        reserved_sectors: u16,
        fats: u8,
        root_dir_entries: u32,
    ) {
        let mut bytes_per_cluster = u32::from(bytes_per_sector);
        while bytes_per_cluster <= 64 * KB as u32 {
            let mut size = 1 * MB;
            while size < 2048 * GB {
                test_determine_sectors_per_fat_single(
                    size,
                    bytes_per_sector,
                    bytes_per_cluster,
                    fat_type,
                    reserved_sectors,
                    fats,
                    root_dir_entries,
                );
                size = size + size / 7;
            }
            size = 2048 * GB - 1;
            test_determine_sectors_per_fat_single(
                size,
                bytes_per_sector,
                bytes_per_cluster,
                fat_type,
                reserved_sectors,
                fats,
                root_dir_entries,
            );
            bytes_per_cluster *= 2;
        }
    }

    #[test]
    fn test_determine_sectors_per_fat() {
        init();

        test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat12, 1, 2, 512);
        test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat12, 1, 1, 512);
        test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat12, 1, 2, 8192);
        test_determine_sectors_per_fat_for_multiple_sizes(4096, FatType::Fat12, 1, 2, 512);

        test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat16, 1, 2, 512);
        test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat16, 1, 1, 512);
        test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat16, 1, 2, 8192);
        test_determine_sectors_per_fat_for_multiple_sizes(4096, FatType::Fat16, 1, 2, 512);

        test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat32, 32, 2, 0);
        test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat32, 32, 1, 0);
        test_determine_sectors_per_fat_for_multiple_sizes(4096, FatType::Fat32, 32, 2, 0);
    }

    #[test]
    fn test_determine_fs_geometry() {
        init();

        // Regression test for a specific case.
        assert!(determine_fs_geometry(
            None, /*total_sectors=*/ 8227, /*bytes_per_sector=*/ 512, None,
            /*root_dir_entries=*/ 512, /*fats=*/ 2
        )
        .is_ok());
    }

    #[test]
    fn test_format_boot_sector() {
        init();

        let bytes_per_sector = 512u16;
        // test all partition sizes from 1MB to 2TB (u32::MAX sectors is 2TB - 1 for 512 byte sectors)
        let mut total_sectors_vec = Vec::new();
        let mut size = 1 * MB;
        while size < 2048 * GB {
            total_sectors_vec.push((size / u64::from(bytes_per_sector)) as u32);
            size = size + size / 7;
        }
        total_sectors_vec.push(u32::MAX);
        for total_sectors in total_sectors_vec {
            let (boot, _) =
                format_boot_sector(&FormatVolumeOptions::new(), total_sectors, bytes_per_sector)
                    .expect("format_boot_sector");
            boot.validate().expect("validate");
        }
    }
}