1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use core::ops::{Add, AddAssign, Sub, SubAssign};

#[derive(PartialEq, PartialOrd, Eq, Hash, Debug, Clone, Copy)]
pub struct DecibelMilliWatt(pub i8);

// In the past dBm values were simply added up when computing a moving average rather than first
// converting dBm to mWatt. To prevent such mistakes in the future, provide an implementation for
// adding and subtracting dBm values.
impl Add for DecibelMilliWatt {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        (FemtoWatt::from(self) + FemtoWatt::from(rhs)).into()
    }
}

impl AddAssign for DecibelMilliWatt {
    fn add_assign(&mut self, rhs: Self) {
        *self = (FemtoWatt::from(*self) + FemtoWatt::from(rhs)).into();
    }
}

impl Sub for DecibelMilliWatt {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        (FemtoWatt::from(self) - FemtoWatt::from(rhs)).into()
    }
}

impl SubAssign for DecibelMilliWatt {
    fn sub_assign(&mut self, rhs: Self) {
        *self = (FemtoWatt::from(*self) - FemtoWatt::from(rhs)).into();
    }
}

#[derive(PartialEq, Debug, Clone, Copy)]
pub struct FemtoWatt(pub u64);

impl Add for FemtoWatt {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0 + rhs.0)
    }
}

impl AddAssign for FemtoWatt {
    fn add_assign(&mut self, rhs: Self) {
        *self = Self(self.0 + rhs.0);
    }
}

impl Sub for FemtoWatt {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        Self(if self.0 > rhs.0 { self.0 - rhs.0 } else { 0 })
    }
}

impl SubAssign for FemtoWatt {
    fn sub_assign(&mut self, rhs: Self) {
        *self = Self(if self.0 > rhs.0 { self.0 - rhs.0 } else { 0 });
    }
}

impl From<FemtoWatt> for DecibelMilliWatt {
    /// Uses absolute value of femtoWatt.
    fn from(fw: FemtoWatt) -> Self {
        // Note: Negative power returns an invalid value.
        if fw.0 == 0 {
            DecibelMilliWatt(std::i8::MIN)
        } else {
            let dbm = 10.0 * ((fw.0 as f64).log10() - 12.0);
            DecibelMilliWatt(dbm.round() as i8)
        }
    }
}

impl From<DecibelMilliWatt> for i8 {
    fn from(dbm: DecibelMilliWatt) -> i8 {
        dbm.0
    }
}

/// Rust's i8 clamp requires unstable library feature 'clamp'.
fn clamp<T: PartialOrd>(v: T, lower: T, upper: T) -> T {
    if v < lower {
        lower
    } else if v > upper {
        upper
    } else {
        v
    }
}

/// Polynomial approximation of f(x)=2^x in 24:8 fixed point format minimizing the maximum relative
/// error for fractional inputs in the range [0, 1] below 2%.
fn fp_exp2(x_fp: u64) -> u64 {
    // f(x) = A + x * (B + x * (C + x * (D + x * E)))
    const A_FP: u64 = 256;
    const B_FP: u64 = 177;
    const C_FP: u64 = 61;
    const D_FP: u64 = 13;
    const E_FP: u64 = 3;

    // Note: adjustment of scaling factor needed for multiplications in fixed point format if
    // same scaling factor is used.
    let mut r_fp = D_FP + ((x_fp * E_FP) >> 8);
    r_fp = C_FP + ((x_fp * r_fp) >> 8);
    r_fp = B_FP + ((x_fp * r_fp) >> 8);
    r_fp = A_FP + ((x_fp * r_fp) >> 8);
    r_fp
}

impl From<DecibelMilliWatt> for FemtoWatt {
    /// Converts dBm to femtoWatts by approximation.
    ///
    /// FemtoWatts are approximated and within a maximum relative error of < 3% for dBm inputs in
    /// the range [-100, 48]. Inputs must lay within [-120, 48] dBm.
    ///
    /// Resulting femtoWatts are always less than 2^56.
    fn from(dbm: DecibelMilliWatt) -> Self {
        let dbm = clamp(dbm.0, -120, 48) as i16;
        // mWatts = 10^(dBm / 10)
        //        = 10^(0.1 * dBm)
        // Femtowatts = 10^12 * mWatts
        //            = 10^12 * 10^(0.1 * dBm)
        //            = 10^(0.1 * (120 + dBm))
        //
        // Convert to base 2:
        // 2^x = 10^(0.1 * (120 + dBm))
        // log(2^x) = log(10^(0.1 * (120 + dBm)))
        // xlog(2) = 0.1 * (120 + dBm) * log(10)
        // x = 0.1 * (120 + dBm) * log(10) / log(2)
        // x = C * T where T = 0.1 * log(10) / log(2)
        //                 C = 120 + dBm
        // T in 24:8 fixed point format: 0.1 * log(10)/log(2) << 8 = 85
        const T_FP: u64 = 85;
        let c = (120 + dbm) as u64;
        // x in 24:8 fixed point format.
        // Scaling factor is the product of the scaling factors of c & T_FP respectively.
        let x_fp = c * T_FP;

        // Fixed point pow-function of x:
        // 2^x = a * b where a = 2^(integer part of C * t)
        //                   b = 2^(fraction part of C * t)
        let a = 1_u64 << (x_fp >> 8_u64);
        let b_fp = fp_exp2(x_fp & 0xFF_u64);
        // Scaling factor is the product of the scaling factors of a & b respectively.
        // Convert back to regular integer representation.
        Self((a * b_fp) >> 8)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    pub fn fp_exp2_maximum_error() {
        let mut x = 0.0;
        while x < 1.0 {
            x += 0.1;

            let approx = fp_exp2((x * 256.0) as u64) as f64 / 256.0;
            let actual = 2.0_f64.powf(x);
            let error = ((approx - actual).abs() / actual);
            if error > 0.02 {
                panic!("exceeded maximum expected error of 2% for: {} (error: {})", x, error);
            }
        }
    }

    #[test]
    pub fn dbm_femtowatt_conversion() {
        for dbm in -100_i8..=48 {
            let approx_fw: FemtoWatt = DecibelMilliWatt(dbm).into();

            // Test dbm -> femtoWatt
            let actual_fw = 10_f64.powf((dbm as f64) / 10.0) * 1e+12;
            let error = ((approx_fw.0 as f64 - actual_fw).abs() / actual_fw);
            if error > 0.03 {
                panic!("exceeded maximum expected error of 3% for: {} (error: {})", dbm, error);
            }

            // Test femtoWatt -> dbm
            assert_eq!(dbm, DecibelMilliWatt::from(approx_fw).0);
        }
    }

    #[test]
    pub fn dbm_femtowatt_conversion_bounds() {
        for dbm in std::i8::MIN..=-120 {
            let actual_fw: FemtoWatt = DecibelMilliWatt(dbm).into();
            let expected_fw: FemtoWatt = DecibelMilliWatt(-120).into();
            assert_eq!(actual_fw.0, expected_fw.0);
        }

        for dbm in 48..=std::i8::MAX {
            let actual_fw: FemtoWatt = DecibelMilliWatt(dbm).into();
            let expected_fw: FemtoWatt = DecibelMilliWatt(48).into();
            assert_eq!(actual_fw.0, expected_fw.0);
        }
    }

    #[test]
    pub fn dbm_femtowatt_maximum_size() {
        for dbm in std::i8::MIN..=-std::i8::MAX {
            let actual_fw: FemtoWatt = DecibelMilliWatt(dbm).into();
            assert!(actual_fw.0 < (1_u64 << 56));
        }
    }

    #[test]
    pub fn add_sub_dbm() {
        // 0.00158489319 mWatt + 19.9526232 mWatt = 19.9542081 mWatt
        // 19.9542081 mWatt = 13.000344971 dbm
        let dbm = DecibelMilliWatt(-28) + DecibelMilliWatt(13);
        assert_eq!(dbm.0, 13);

        // 19.95262315 mWatt - 10 mWatt = 9.9526232 mWatt
        // 9.9526232 mWatt = 9.9793756227 dbm
        let dbm = DecibelMilliWatt(13) - DecibelMilliWatt(10);
        assert_eq!(dbm.0, 10);

        // 31.622776602 - 10 mWatt = 21.6227766 mWatt
        // 21.6227766 mWatt = 13.349114613 dbm
        let dbm = DecibelMilliWatt(15) - DecibelMilliWatt(10);
        assert_eq!(dbm.0, 13);

        // Avoid underflow
        assert_eq!((DecibelMilliWatt(1) - DecibelMilliWatt(2)).0, -128);
    }

    #[test]
    pub fn add_sub_fwatt() {
        let fw = FemtoWatt(10) + FemtoWatt(20);
        assert_eq!(fw.0, 30);
        let mut fw = FemtoWatt(10);
        fw += FemtoWatt(20);
        assert_eq!(fw.0, 30);

        let fw = FemtoWatt(20) - FemtoWatt(10);
        assert_eq!(fw.0, 10);
        let mut fw = FemtoWatt(20);
        fw -= FemtoWatt(10);
        assert_eq!(fw.0, 10);

        let fw = FemtoWatt(10) - FemtoWatt(20);
        assert_eq!(fw.0, 0);
        let mut fw = FemtoWatt(10);
        fw -= FemtoWatt(20);
        assert_eq!(fw.0, 0);
    }
}