wlan_common/energy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use core::ops::{Add, AddAssign, Sub, SubAssign};
#[derive(PartialEq, PartialOrd, Eq, Hash, Debug, Clone, Copy)]
pub struct DecibelMilliWatt(pub i8);
// In the past dBm values were simply added up when computing a moving average rather than first
// converting dBm to mWatt. To prevent such mistakes in the future, provide an implementation for
// adding and subtracting dBm values.
impl Add for DecibelMilliWatt {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
(FemtoWatt::from(self) + FemtoWatt::from(rhs)).into()
}
}
impl AddAssign for DecibelMilliWatt {
fn add_assign(&mut self, rhs: Self) {
*self = (FemtoWatt::from(*self) + FemtoWatt::from(rhs)).into();
}
}
impl Sub for DecibelMilliWatt {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
(FemtoWatt::from(self) - FemtoWatt::from(rhs)).into()
}
}
impl SubAssign for DecibelMilliWatt {
fn sub_assign(&mut self, rhs: Self) {
*self = (FemtoWatt::from(*self) - FemtoWatt::from(rhs)).into();
}
}
#[derive(PartialEq, Debug, Clone, Copy)]
pub struct FemtoWatt(pub u64);
impl Add for FemtoWatt {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self(self.0 + rhs.0)
}
}
impl AddAssign for FemtoWatt {
fn add_assign(&mut self, rhs: Self) {
*self = Self(self.0 + rhs.0);
}
}
impl Sub for FemtoWatt {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self(if self.0 > rhs.0 { self.0 - rhs.0 } else { 0 })
}
}
impl SubAssign for FemtoWatt {
fn sub_assign(&mut self, rhs: Self) {
*self = Self(if self.0 > rhs.0 { self.0 - rhs.0 } else { 0 });
}
}
impl From<FemtoWatt> for DecibelMilliWatt {
/// Uses absolute value of femtoWatt.
fn from(fw: FemtoWatt) -> Self {
// Note: Negative power returns an invalid value.
if fw.0 == 0 {
DecibelMilliWatt(std::i8::MIN)
} else {
let dbm = 10.0 * ((fw.0 as f64).log10() - 12.0);
DecibelMilliWatt(dbm.round() as i8)
}
}
}
impl From<DecibelMilliWatt> for i8 {
fn from(dbm: DecibelMilliWatt) -> i8 {
dbm.0
}
}
/// Rust's i8 clamp requires unstable library feature 'clamp'.
fn clamp<T: PartialOrd>(v: T, lower: T, upper: T) -> T {
if v < lower {
lower
} else if v > upper {
upper
} else {
v
}
}
/// Polynomial approximation of f(x)=2^x in 24:8 fixed point format minimizing the maximum relative
/// error for fractional inputs in the range [0, 1] below 2%.
fn fp_exp2(x_fp: u64) -> u64 {
// f(x) = A + x * (B + x * (C + x * (D + x * E)))
const A_FP: u64 = 256;
const B_FP: u64 = 177;
const C_FP: u64 = 61;
const D_FP: u64 = 13;
const E_FP: u64 = 3;
// Note: adjustment of scaling factor needed for multiplications in fixed point format if
// same scaling factor is used.
let mut r_fp = D_FP + ((x_fp * E_FP) >> 8);
r_fp = C_FP + ((x_fp * r_fp) >> 8);
r_fp = B_FP + ((x_fp * r_fp) >> 8);
r_fp = A_FP + ((x_fp * r_fp) >> 8);
r_fp
}
impl From<DecibelMilliWatt> for FemtoWatt {
/// Converts dBm to femtoWatts by approximation.
///
/// FemtoWatts are approximated and within a maximum relative error of < 3% for dBm inputs in
/// the range [-100, 48]. Inputs must lay within [-120, 48] dBm.
///
/// Resulting femtoWatts are always less than 2^56.
fn from(dbm: DecibelMilliWatt) -> Self {
let dbm = clamp(dbm.0, -120, 48) as i16;
// mWatts = 10^(dBm / 10)
// = 10^(0.1 * dBm)
// Femtowatts = 10^12 * mWatts
// = 10^12 * 10^(0.1 * dBm)
// = 10^(0.1 * (120 + dBm))
//
// Convert to base 2:
// 2^x = 10^(0.1 * (120 + dBm))
// log(2^x) = log(10^(0.1 * (120 + dBm)))
// xlog(2) = 0.1 * (120 + dBm) * log(10)
// x = 0.1 * (120 + dBm) * log(10) / log(2)
// x = C * T where T = 0.1 * log(10) / log(2)
// C = 120 + dBm
// T in 24:8 fixed point format: 0.1 * log(10)/log(2) << 8 = 85
const T_FP: u64 = 85;
let c = (120 + dbm) as u64;
// x in 24:8 fixed point format.
// Scaling factor is the product of the scaling factors of c & T_FP respectively.
let x_fp = c * T_FP;
// Fixed point pow-function of x:
// 2^x = a * b where a = 2^(integer part of C * t)
// b = 2^(fraction part of C * t)
let a = 1_u64 << (x_fp >> 8_u64);
let b_fp = fp_exp2(x_fp & 0xFF_u64);
// Scaling factor is the product of the scaling factors of a & b respectively.
// Convert back to regular integer representation.
Self((a * b_fp) >> 8)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
pub fn fp_exp2_maximum_error() {
let mut x = 0.0;
while x < 1.0 {
x += 0.1;
let approx = fp_exp2((x * 256.0) as u64) as f64 / 256.0;
let actual = 2.0_f64.powf(x);
let error = (approx - actual).abs() / actual;
if error > 0.02 {
panic!("exceeded maximum expected error of 2% for: {} (error: {})", x, error);
}
}
}
#[test]
pub fn dbm_femtowatt_conversion() {
for dbm in -100_i8..=48 {
let approx_fw: FemtoWatt = DecibelMilliWatt(dbm).into();
// Test dbm -> femtoWatt
let actual_fw = 10_f64.powf((dbm as f64) / 10.0) * 1e+12;
let error = (approx_fw.0 as f64 - actual_fw).abs() / actual_fw;
if error > 0.03 {
panic!("exceeded maximum expected error of 3% for: {} (error: {})", dbm, error);
}
// Test femtoWatt -> dbm
assert_eq!(dbm, DecibelMilliWatt::from(approx_fw).0);
}
}
#[test]
pub fn dbm_femtowatt_conversion_bounds() {
for dbm in std::i8::MIN..=-120 {
let actual_fw: FemtoWatt = DecibelMilliWatt(dbm).into();
let expected_fw: FemtoWatt = DecibelMilliWatt(-120).into();
assert_eq!(actual_fw.0, expected_fw.0);
}
for dbm in 48..=std::i8::MAX {
let actual_fw: FemtoWatt = DecibelMilliWatt(dbm).into();
let expected_fw: FemtoWatt = DecibelMilliWatt(48).into();
assert_eq!(actual_fw.0, expected_fw.0);
}
}
#[test]
pub fn dbm_femtowatt_maximum_size() {
for dbm in std::i8::MIN..=-std::i8::MAX {
let actual_fw: FemtoWatt = DecibelMilliWatt(dbm).into();
assert!(actual_fw.0 < (1_u64 << 56));
}
}
#[test]
pub fn add_sub_dbm() {
// 0.00158489319 mWatt + 19.9526232 mWatt = 19.9542081 mWatt
// 19.9542081 mWatt = 13.000344971 dbm
let dbm = DecibelMilliWatt(-28) + DecibelMilliWatt(13);
assert_eq!(dbm.0, 13);
// 19.95262315 mWatt - 10 mWatt = 9.9526232 mWatt
// 9.9526232 mWatt = 9.9793756227 dbm
let dbm = DecibelMilliWatt(13) - DecibelMilliWatt(10);
assert_eq!(dbm.0, 10);
// 31.622776602 - 10 mWatt = 21.6227766 mWatt
// 21.6227766 mWatt = 13.349114613 dbm
let dbm = DecibelMilliWatt(15) - DecibelMilliWatt(10);
assert_eq!(dbm.0, 13);
// Avoid underflow
assert_eq!((DecibelMilliWatt(1) - DecibelMilliWatt(2)).0, -128);
}
#[test]
pub fn add_sub_fwatt() {
let fw = FemtoWatt(10) + FemtoWatt(20);
assert_eq!(fw.0, 30);
let mut fw = FemtoWatt(10);
fw += FemtoWatt(20);
assert_eq!(fw.0, 30);
let fw = FemtoWatt(20) - FemtoWatt(10);
assert_eq!(fw.0, 10);
let mut fw = FemtoWatt(20);
fw -= FemtoWatt(10);
assert_eq!(fw.0, 10);
let fw = FemtoWatt(10) - FemtoWatt(20);
assert_eq!(fw.0, 0);
let mut fw = FemtoWatt(10);
fw -= FemtoWatt(20);
assert_eq!(fw.0, 0);
}
}