#![warn(clippy::all)]
#![allow(unused_parens, unused_mut, unused_imports, nonstandard_style)]
use bitflags::bitflags;
use fidl::client::QueryResponseFut;
use fidl::endpoints::{ControlHandle as _, Responder as _};
use fuchsia_zircon_status as zx_status;
use futures::future::{self, MaybeDone, TryFutureExt};
#[cfg(target_os = "fuchsia")]
use fuchsia_zircon as zx;
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u32)]
pub enum Error {
InvalidInput = 1,
}
impl Error {
#[inline]
pub fn from_primitive(prim: u32) -> Option<Self> {
match prim {
1 => Some(Self::InvalidInput),
_ => None,
}
}
#[inline]
pub const fn into_primitive(self) -> u32 {
self as u32
}
#[deprecated = "Strict enums should not use `is_unknown`"]
#[inline]
pub fn is_unknown(&self) -> bool {
false
}
}
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct CalibratorCalibrateRequest {
pub data: Rgbc,
}
impl fidl::Persistable for CalibratorCalibrateRequest {}
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct CalibratorCalibrateResponse {
pub data: Rgbc,
}
impl fidl::Persistable for CalibratorCalibrateResponse {}
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct Rgbc {
pub red_intensity: f32,
pub green_intensity: f32,
pub blue_intensity: f32,
pub clear_intensity: f32,
}
impl fidl::Persistable for Rgbc {}
#[derive(Clone, Debug, PartialEq)]
pub struct SensorWatchResponse {
pub data: LightSensorData,
}
impl fidl::Persistable for SensorWatchResponse {}
#[derive(Clone, Debug, Default, PartialEq)]
pub struct LightSensorData {
pub rgbc: Option<Rgbc>,
pub calculated_lux: Option<f32>,
pub correlated_color_temperature: Option<f32>,
pub si_rgbc: Option<Rgbc>,
pub is_calibrated: Option<bool>,
#[doc(hidden)]
pub __source_breaking: fidl::marker::SourceBreaking,
}
impl fidl::Persistable for LightSensorData {}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct CalibratorMarker;
impl fidl::endpoints::ProtocolMarker for CalibratorMarker {
type Proxy = CalibratorProxy;
type RequestStream = CalibratorRequestStream;
#[cfg(target_os = "fuchsia")]
type SynchronousProxy = CalibratorSynchronousProxy;
const DEBUG_NAME: &'static str = "fuchsia.lightsensor.Calibrator";
}
impl fidl::endpoints::DiscoverableProtocolMarker for CalibratorMarker {}
pub type CalibratorCalibrateResult = Result<Rgbc, Error>;
pub trait CalibratorProxyInterface: Send + Sync {
type CalibrateResponseFut: std::future::Future<Output = Result<CalibratorCalibrateResult, fidl::Error>>
+ Send;
fn r#calibrate(&self, data: &Rgbc) -> Self::CalibrateResponseFut;
}
#[derive(Debug)]
#[cfg(target_os = "fuchsia")]
pub struct CalibratorSynchronousProxy {
client: fidl::client::sync::Client,
}
#[cfg(target_os = "fuchsia")]
impl fidl::endpoints::SynchronousProxy for CalibratorSynchronousProxy {
type Proxy = CalibratorProxy;
type Protocol = CalibratorMarker;
fn from_channel(inner: fidl::Channel) -> Self {
Self::new(inner)
}
fn into_channel(self) -> fidl::Channel {
self.client.into_channel()
}
fn as_channel(&self) -> &fidl::Channel {
self.client.as_channel()
}
}
#[cfg(target_os = "fuchsia")]
impl CalibratorSynchronousProxy {
pub fn new(channel: fidl::Channel) -> Self {
let protocol_name = <CalibratorMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME;
Self { client: fidl::client::sync::Client::new(channel, protocol_name) }
}
pub fn into_channel(self) -> fidl::Channel {
self.client.into_channel()
}
pub fn wait_for_event(
&self,
deadline: zx::MonotonicTime,
) -> Result<CalibratorEvent, fidl::Error> {
CalibratorEvent::decode(self.client.wait_for_event(deadline)?)
}
pub fn r#calibrate(
&self,
mut data: &Rgbc,
___deadline: zx::MonotonicTime,
) -> Result<CalibratorCalibrateResult, fidl::Error> {
let _response = self.client.send_query::<
CalibratorCalibrateRequest,
fidl::encoding::ResultType<CalibratorCalibrateResponse, Error>,
>(
(data,),
0x7ddb7eaf88039b02,
fidl::encoding::DynamicFlags::empty(),
___deadline,
)?;
Ok(_response.map(|x| x.data))
}
}
#[derive(Debug, Clone)]
pub struct CalibratorProxy {
client: fidl::client::Client,
}
impl fidl::endpoints::Proxy for CalibratorProxy {
type Protocol = CalibratorMarker;
fn from_channel(inner: fidl::AsyncChannel) -> Self {
Self::new(inner)
}
fn into_channel(self) -> Result<::fidl::AsyncChannel, Self> {
self.client.into_channel().map_err(|client| Self { client })
}
fn as_channel(&self) -> &::fidl::AsyncChannel {
self.client.as_channel()
}
}
impl CalibratorProxy {
pub fn new(channel: fidl::AsyncChannel) -> Self {
let protocol_name = <CalibratorMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME;
Self { client: fidl::client::Client::new(channel, protocol_name) }
}
pub fn take_event_stream(&self) -> CalibratorEventStream {
CalibratorEventStream { event_receiver: self.client.take_event_receiver() }
}
pub fn r#calibrate(
&self,
mut data: &Rgbc,
) -> fidl::client::QueryResponseFut<CalibratorCalibrateResult> {
CalibratorProxyInterface::r#calibrate(self, data)
}
}
impl CalibratorProxyInterface for CalibratorProxy {
type CalibrateResponseFut = fidl::client::QueryResponseFut<CalibratorCalibrateResult>;
fn r#calibrate(&self, mut data: &Rgbc) -> Self::CalibrateResponseFut {
fn _decode(
mut _buf: Result<fidl::MessageBufEtc, fidl::Error>,
) -> Result<CalibratorCalibrateResult, fidl::Error> {
let _response = fidl::client::decode_transaction_body::<
fidl::encoding::ResultType<CalibratorCalibrateResponse, Error>,
0x7ddb7eaf88039b02,
>(_buf?)?;
Ok(_response.map(|x| x.data))
}
self.client.send_query_and_decode::<CalibratorCalibrateRequest, CalibratorCalibrateResult>(
(data,),
0x7ddb7eaf88039b02,
fidl::encoding::DynamicFlags::empty(),
_decode,
)
}
}
pub struct CalibratorEventStream {
event_receiver: fidl::client::EventReceiver,
}
impl std::marker::Unpin for CalibratorEventStream {}
impl futures::stream::FusedStream for CalibratorEventStream {
fn is_terminated(&self) -> bool {
self.event_receiver.is_terminated()
}
}
impl futures::Stream for CalibratorEventStream {
type Item = Result<CalibratorEvent, fidl::Error>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
match futures::ready!(futures::stream::StreamExt::poll_next_unpin(
&mut self.event_receiver,
cx
)?) {
Some(buf) => std::task::Poll::Ready(Some(CalibratorEvent::decode(buf))),
None => std::task::Poll::Ready(None),
}
}
}
#[derive(Debug)]
pub enum CalibratorEvent {}
impl CalibratorEvent {
fn decode(mut buf: fidl::MessageBufEtc) -> Result<CalibratorEvent, fidl::Error> {
let (bytes, _handles) = buf.split_mut();
let (tx_header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
debug_assert_eq!(tx_header.tx_id, 0);
match tx_header.ordinal {
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: tx_header.ordinal,
protocol_name: <CalibratorMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME,
}),
}
}
}
pub struct CalibratorRequestStream {
inner: std::sync::Arc<fidl::ServeInner>,
is_terminated: bool,
}
impl std::marker::Unpin for CalibratorRequestStream {}
impl futures::stream::FusedStream for CalibratorRequestStream {
fn is_terminated(&self) -> bool {
self.is_terminated
}
}
impl fidl::endpoints::RequestStream for CalibratorRequestStream {
type Protocol = CalibratorMarker;
type ControlHandle = CalibratorControlHandle;
fn from_channel(channel: fidl::AsyncChannel) -> Self {
Self { inner: std::sync::Arc::new(fidl::ServeInner::new(channel)), is_terminated: false }
}
fn control_handle(&self) -> Self::ControlHandle {
CalibratorControlHandle { inner: self.inner.clone() }
}
fn into_inner(self) -> (::std::sync::Arc<fidl::ServeInner>, bool) {
(self.inner, self.is_terminated)
}
fn from_inner(inner: std::sync::Arc<fidl::ServeInner>, is_terminated: bool) -> Self {
Self { inner, is_terminated }
}
}
impl futures::Stream for CalibratorRequestStream {
type Item = Result<CalibratorRequest, fidl::Error>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
let this = &mut *self;
if this.inner.check_shutdown(cx) {
this.is_terminated = true;
return std::task::Poll::Ready(None);
}
if this.is_terminated {
panic!("polled CalibratorRequestStream after completion");
}
fidl::encoding::with_tls_decode_buf(|bytes, handles| {
match this.inner.channel().read_etc(cx, bytes, handles) {
std::task::Poll::Ready(Ok(())) => {}
std::task::Poll::Pending => return std::task::Poll::Pending,
std::task::Poll::Ready(Err(zx_status::Status::PEER_CLOSED)) => {
this.is_terminated = true;
return std::task::Poll::Ready(None);
}
std::task::Poll::Ready(Err(e)) => {
return std::task::Poll::Ready(Some(Err(fidl::Error::ServerRequestRead(e))))
}
}
let (header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
std::task::Poll::Ready(Some(match header.ordinal {
0x7ddb7eaf88039b02 => {
header.validate_request_tx_id(fidl::MethodType::TwoWay)?;
let mut req = fidl::new_empty!(CalibratorCalibrateRequest);
fidl::encoding::Decoder::decode_into::<CalibratorCalibrateRequest>(
&header,
_body_bytes,
handles,
&mut req,
)?;
let control_handle = CalibratorControlHandle { inner: this.inner.clone() };
Ok(CalibratorRequest::Calibrate {
data: req.data,
responder: CalibratorCalibrateResponder {
control_handle: std::mem::ManuallyDrop::new(control_handle),
tx_id: header.tx_id,
},
})
}
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: header.ordinal,
protocol_name:
<CalibratorMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME,
}),
}))
})
}
}
#[derive(Debug)]
pub enum CalibratorRequest {
Calibrate { data: Rgbc, responder: CalibratorCalibrateResponder },
}
impl CalibratorRequest {
#[allow(irrefutable_let_patterns)]
pub fn into_calibrate(self) -> Option<(Rgbc, CalibratorCalibrateResponder)> {
if let CalibratorRequest::Calibrate { data, responder } = self {
Some((data, responder))
} else {
None
}
}
pub fn method_name(&self) -> &'static str {
match *self {
CalibratorRequest::Calibrate { .. } => "calibrate",
}
}
}
#[derive(Debug, Clone)]
pub struct CalibratorControlHandle {
inner: std::sync::Arc<fidl::ServeInner>,
}
impl fidl::endpoints::ControlHandle for CalibratorControlHandle {
fn shutdown(&self) {
self.inner.shutdown()
}
fn shutdown_with_epitaph(&self, status: zx_status::Status) {
self.inner.shutdown_with_epitaph(status)
}
fn is_closed(&self) -> bool {
self.inner.channel().is_closed()
}
fn on_closed(&self) -> fidl::OnSignalsRef<'_> {
self.inner.channel().on_closed()
}
}
impl CalibratorControlHandle {}
#[must_use = "FIDL methods require a response to be sent"]
#[derive(Debug)]
pub struct CalibratorCalibrateResponder {
control_handle: std::mem::ManuallyDrop<CalibratorControlHandle>,
tx_id: u32,
}
impl std::ops::Drop for CalibratorCalibrateResponder {
fn drop(&mut self) {
self.control_handle.shutdown();
unsafe { std::mem::ManuallyDrop::drop(&mut self.control_handle) };
}
}
impl fidl::endpoints::Responder for CalibratorCalibrateResponder {
type ControlHandle = CalibratorControlHandle;
fn control_handle(&self) -> &CalibratorControlHandle {
&self.control_handle
}
fn drop_without_shutdown(mut self) {
unsafe { std::mem::ManuallyDrop::drop(&mut self.control_handle) };
std::mem::forget(self);
}
}
impl CalibratorCalibrateResponder {
pub fn send(self, mut result: Result<&Rgbc, Error>) -> Result<(), fidl::Error> {
let _result = self.send_raw(result);
if _result.is_err() {
self.control_handle.shutdown();
}
self.drop_without_shutdown();
_result
}
pub fn send_no_shutdown_on_err(
self,
mut result: Result<&Rgbc, Error>,
) -> Result<(), fidl::Error> {
let _result = self.send_raw(result);
self.drop_without_shutdown();
_result
}
fn send_raw(&self, mut result: Result<&Rgbc, Error>) -> Result<(), fidl::Error> {
self.control_handle
.inner
.send::<fidl::encoding::ResultType<CalibratorCalibrateResponse, Error>>(
result.map(|data| (data,)),
self.tx_id,
0x7ddb7eaf88039b02,
fidl::encoding::DynamicFlags::empty(),
)
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct SensorMarker;
impl fidl::endpoints::ProtocolMarker for SensorMarker {
type Proxy = SensorProxy;
type RequestStream = SensorRequestStream;
#[cfg(target_os = "fuchsia")]
type SynchronousProxy = SensorSynchronousProxy;
const DEBUG_NAME: &'static str = "fuchsia.lightsensor.Sensor";
}
impl fidl::endpoints::DiscoverableProtocolMarker for SensorMarker {}
pub trait SensorProxyInterface: Send + Sync {
type WatchResponseFut: std::future::Future<Output = Result<LightSensorData, fidl::Error>> + Send;
fn r#watch(&self) -> Self::WatchResponseFut;
}
#[derive(Debug)]
#[cfg(target_os = "fuchsia")]
pub struct SensorSynchronousProxy {
client: fidl::client::sync::Client,
}
#[cfg(target_os = "fuchsia")]
impl fidl::endpoints::SynchronousProxy for SensorSynchronousProxy {
type Proxy = SensorProxy;
type Protocol = SensorMarker;
fn from_channel(inner: fidl::Channel) -> Self {
Self::new(inner)
}
fn into_channel(self) -> fidl::Channel {
self.client.into_channel()
}
fn as_channel(&self) -> &fidl::Channel {
self.client.as_channel()
}
}
#[cfg(target_os = "fuchsia")]
impl SensorSynchronousProxy {
pub fn new(channel: fidl::Channel) -> Self {
let protocol_name = <SensorMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME;
Self { client: fidl::client::sync::Client::new(channel, protocol_name) }
}
pub fn into_channel(self) -> fidl::Channel {
self.client.into_channel()
}
pub fn wait_for_event(&self, deadline: zx::MonotonicTime) -> Result<SensorEvent, fidl::Error> {
SensorEvent::decode(self.client.wait_for_event(deadline)?)
}
pub fn r#watch(&self, ___deadline: zx::MonotonicTime) -> Result<LightSensorData, fidl::Error> {
let _response =
self.client.send_query::<fidl::encoding::EmptyPayload, SensorWatchResponse>(
(),
0x3afa37aef7dc24ff,
fidl::encoding::DynamicFlags::empty(),
___deadline,
)?;
Ok(_response.data)
}
}
#[derive(Debug, Clone)]
pub struct SensorProxy {
client: fidl::client::Client,
}
impl fidl::endpoints::Proxy for SensorProxy {
type Protocol = SensorMarker;
fn from_channel(inner: fidl::AsyncChannel) -> Self {
Self::new(inner)
}
fn into_channel(self) -> Result<::fidl::AsyncChannel, Self> {
self.client.into_channel().map_err(|client| Self { client })
}
fn as_channel(&self) -> &::fidl::AsyncChannel {
self.client.as_channel()
}
}
impl SensorProxy {
pub fn new(channel: fidl::AsyncChannel) -> Self {
let protocol_name = <SensorMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME;
Self { client: fidl::client::Client::new(channel, protocol_name) }
}
pub fn take_event_stream(&self) -> SensorEventStream {
SensorEventStream { event_receiver: self.client.take_event_receiver() }
}
pub fn r#watch(&self) -> fidl::client::QueryResponseFut<LightSensorData> {
SensorProxyInterface::r#watch(self)
}
}
impl SensorProxyInterface for SensorProxy {
type WatchResponseFut = fidl::client::QueryResponseFut<LightSensorData>;
fn r#watch(&self) -> Self::WatchResponseFut {
fn _decode(
mut _buf: Result<fidl::MessageBufEtc, fidl::Error>,
) -> Result<LightSensorData, fidl::Error> {
let _response = fidl::client::decode_transaction_body::<
SensorWatchResponse,
0x3afa37aef7dc24ff,
>(_buf?)?;
Ok(_response.data)
}
self.client.send_query_and_decode::<fidl::encoding::EmptyPayload, LightSensorData>(
(),
0x3afa37aef7dc24ff,
fidl::encoding::DynamicFlags::empty(),
_decode,
)
}
}
pub struct SensorEventStream {
event_receiver: fidl::client::EventReceiver,
}
impl std::marker::Unpin for SensorEventStream {}
impl futures::stream::FusedStream for SensorEventStream {
fn is_terminated(&self) -> bool {
self.event_receiver.is_terminated()
}
}
impl futures::Stream for SensorEventStream {
type Item = Result<SensorEvent, fidl::Error>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
match futures::ready!(futures::stream::StreamExt::poll_next_unpin(
&mut self.event_receiver,
cx
)?) {
Some(buf) => std::task::Poll::Ready(Some(SensorEvent::decode(buf))),
None => std::task::Poll::Ready(None),
}
}
}
#[derive(Debug)]
pub enum SensorEvent {}
impl SensorEvent {
fn decode(mut buf: fidl::MessageBufEtc) -> Result<SensorEvent, fidl::Error> {
let (bytes, _handles) = buf.split_mut();
let (tx_header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
debug_assert_eq!(tx_header.tx_id, 0);
match tx_header.ordinal {
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: tx_header.ordinal,
protocol_name: <SensorMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME,
}),
}
}
}
pub struct SensorRequestStream {
inner: std::sync::Arc<fidl::ServeInner>,
is_terminated: bool,
}
impl std::marker::Unpin for SensorRequestStream {}
impl futures::stream::FusedStream for SensorRequestStream {
fn is_terminated(&self) -> bool {
self.is_terminated
}
}
impl fidl::endpoints::RequestStream for SensorRequestStream {
type Protocol = SensorMarker;
type ControlHandle = SensorControlHandle;
fn from_channel(channel: fidl::AsyncChannel) -> Self {
Self { inner: std::sync::Arc::new(fidl::ServeInner::new(channel)), is_terminated: false }
}
fn control_handle(&self) -> Self::ControlHandle {
SensorControlHandle { inner: self.inner.clone() }
}
fn into_inner(self) -> (::std::sync::Arc<fidl::ServeInner>, bool) {
(self.inner, self.is_terminated)
}
fn from_inner(inner: std::sync::Arc<fidl::ServeInner>, is_terminated: bool) -> Self {
Self { inner, is_terminated }
}
}
impl futures::Stream for SensorRequestStream {
type Item = Result<SensorRequest, fidl::Error>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
let this = &mut *self;
if this.inner.check_shutdown(cx) {
this.is_terminated = true;
return std::task::Poll::Ready(None);
}
if this.is_terminated {
panic!("polled SensorRequestStream after completion");
}
fidl::encoding::with_tls_decode_buf(|bytes, handles| {
match this.inner.channel().read_etc(cx, bytes, handles) {
std::task::Poll::Ready(Ok(())) => {}
std::task::Poll::Pending => return std::task::Poll::Pending,
std::task::Poll::Ready(Err(zx_status::Status::PEER_CLOSED)) => {
this.is_terminated = true;
return std::task::Poll::Ready(None);
}
std::task::Poll::Ready(Err(e)) => {
return std::task::Poll::Ready(Some(Err(fidl::Error::ServerRequestRead(e))))
}
}
let (header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
std::task::Poll::Ready(Some(match header.ordinal {
0x3afa37aef7dc24ff => {
header.validate_request_tx_id(fidl::MethodType::TwoWay)?;
let mut req = fidl::new_empty!(fidl::encoding::EmptyPayload);
fidl::encoding::Decoder::decode_into::<fidl::encoding::EmptyPayload>(
&header,
_body_bytes,
handles,
&mut req,
)?;
let control_handle = SensorControlHandle { inner: this.inner.clone() };
Ok(SensorRequest::Watch {
responder: SensorWatchResponder {
control_handle: std::mem::ManuallyDrop::new(control_handle),
tx_id: header.tx_id,
},
})
}
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: header.ordinal,
protocol_name: <SensorMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME,
}),
}))
})
}
}
#[derive(Debug)]
pub enum SensorRequest {
Watch { responder: SensorWatchResponder },
}
impl SensorRequest {
#[allow(irrefutable_let_patterns)]
pub fn into_watch(self) -> Option<(SensorWatchResponder)> {
if let SensorRequest::Watch { responder } = self {
Some((responder))
} else {
None
}
}
pub fn method_name(&self) -> &'static str {
match *self {
SensorRequest::Watch { .. } => "watch",
}
}
}
#[derive(Debug, Clone)]
pub struct SensorControlHandle {
inner: std::sync::Arc<fidl::ServeInner>,
}
impl fidl::endpoints::ControlHandle for SensorControlHandle {
fn shutdown(&self) {
self.inner.shutdown()
}
fn shutdown_with_epitaph(&self, status: zx_status::Status) {
self.inner.shutdown_with_epitaph(status)
}
fn is_closed(&self) -> bool {
self.inner.channel().is_closed()
}
fn on_closed(&self) -> fidl::OnSignalsRef<'_> {
self.inner.channel().on_closed()
}
}
impl SensorControlHandle {}
#[must_use = "FIDL methods require a response to be sent"]
#[derive(Debug)]
pub struct SensorWatchResponder {
control_handle: std::mem::ManuallyDrop<SensorControlHandle>,
tx_id: u32,
}
impl std::ops::Drop for SensorWatchResponder {
fn drop(&mut self) {
self.control_handle.shutdown();
unsafe { std::mem::ManuallyDrop::drop(&mut self.control_handle) };
}
}
impl fidl::endpoints::Responder for SensorWatchResponder {
type ControlHandle = SensorControlHandle;
fn control_handle(&self) -> &SensorControlHandle {
&self.control_handle
}
fn drop_without_shutdown(mut self) {
unsafe { std::mem::ManuallyDrop::drop(&mut self.control_handle) };
std::mem::forget(self);
}
}
impl SensorWatchResponder {
pub fn send(self, mut data: &LightSensorData) -> Result<(), fidl::Error> {
let _result = self.send_raw(data);
if _result.is_err() {
self.control_handle.shutdown();
}
self.drop_without_shutdown();
_result
}
pub fn send_no_shutdown_on_err(self, mut data: &LightSensorData) -> Result<(), fidl::Error> {
let _result = self.send_raw(data);
self.drop_without_shutdown();
_result
}
fn send_raw(&self, mut data: &LightSensorData) -> Result<(), fidl::Error> {
self.control_handle.inner.send::<SensorWatchResponse>(
(data,),
self.tx_id,
0x3afa37aef7dc24ff,
fidl::encoding::DynamicFlags::empty(),
)
}
}
mod internal {
use super::*;
unsafe impl fidl::encoding::TypeMarker for Error {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
std::mem::align_of::<u32>()
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
std::mem::size_of::<u32>()
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
false
}
}
impl fidl::encoding::ValueTypeMarker for Error {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
*value
}
}
unsafe impl fidl::encoding::Encode<Self> for Error {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.into_primitive(), offset);
Ok(())
}
}
impl fidl::encoding::Decode<Self> for Error {
#[inline(always)]
fn new_empty() -> Self {
Self::InvalidInput
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u32>(offset);
*self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for CalibratorCalibrateRequest {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for CalibratorCalibrateRequest {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<CalibratorCalibrateRequest> for &CalibratorCalibrateRequest {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<CalibratorCalibrateRequest>(offset);
fidl::encoding::Encode::<CalibratorCalibrateRequest>::encode(
(<Rgbc as fidl::encoding::ValueTypeMarker>::borrow(&self.data),),
encoder,
offset,
_depth,
)
}
}
unsafe impl<T0: fidl::encoding::Encode<Rgbc>> fidl::encoding::Encode<CalibratorCalibrateRequest>
for (T0,)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<CalibratorCalibrateRequest>(offset);
self.0.encode(encoder, offset + 0, depth)?;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for CalibratorCalibrateRequest {
#[inline(always)]
fn new_empty() -> Self {
Self { data: fidl::new_empty!(Rgbc) }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
fidl::decode!(Rgbc, &mut self.data, decoder, offset + 0, _depth)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for CalibratorCalibrateResponse {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for CalibratorCalibrateResponse {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<CalibratorCalibrateResponse> for &CalibratorCalibrateResponse {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<CalibratorCalibrateResponse>(offset);
fidl::encoding::Encode::<CalibratorCalibrateResponse>::encode(
(<Rgbc as fidl::encoding::ValueTypeMarker>::borrow(&self.data),),
encoder,
offset,
_depth,
)
}
}
unsafe impl<T0: fidl::encoding::Encode<Rgbc>>
fidl::encoding::Encode<CalibratorCalibrateResponse> for (T0,)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<CalibratorCalibrateResponse>(offset);
self.0.encode(encoder, offset + 0, depth)?;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for CalibratorCalibrateResponse {
#[inline(always)]
fn new_empty() -> Self {
Self { data: fidl::new_empty!(Rgbc) }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
fidl::decode!(Rgbc, &mut self.data, decoder, offset + 0, _depth)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for Rgbc {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for Rgbc {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<Rgbc> for &Rgbc {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Rgbc>(offset);
fidl::encoding::Encode::<Rgbc>::encode(
(
<f32 as fidl::encoding::ValueTypeMarker>::borrow(&self.red_intensity),
<f32 as fidl::encoding::ValueTypeMarker>::borrow(&self.green_intensity),
<f32 as fidl::encoding::ValueTypeMarker>::borrow(&self.blue_intensity),
<f32 as fidl::encoding::ValueTypeMarker>::borrow(&self.clear_intensity),
),
encoder,
offset,
_depth,
)
}
}
unsafe impl<
T0: fidl::encoding::Encode<f32>,
T1: fidl::encoding::Encode<f32>,
T2: fidl::encoding::Encode<f32>,
T3: fidl::encoding::Encode<f32>,
> fidl::encoding::Encode<Rgbc> for (T0, T1, T2, T3)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Rgbc>(offset);
self.0.encode(encoder, offset + 0, depth)?;
self.1.encode(encoder, offset + 4, depth)?;
self.2.encode(encoder, offset + 8, depth)?;
self.3.encode(encoder, offset + 12, depth)?;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for Rgbc {
#[inline(always)]
fn new_empty() -> Self {
Self {
red_intensity: fidl::new_empty!(f32),
green_intensity: fidl::new_empty!(f32),
blue_intensity: fidl::new_empty!(f32),
clear_intensity: fidl::new_empty!(f32),
}
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
fidl::decode!(f32, &mut self.red_intensity, decoder, offset + 0, _depth)?;
fidl::decode!(f32, &mut self.green_intensity, decoder, offset + 4, _depth)?;
fidl::decode!(f32, &mut self.blue_intensity, decoder, offset + 8, _depth)?;
fidl::decode!(f32, &mut self.clear_intensity, decoder, offset + 12, _depth)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for SensorWatchResponse {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for SensorWatchResponse {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<SensorWatchResponse> for &SensorWatchResponse {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<SensorWatchResponse>(offset);
fidl::encoding::Encode::<SensorWatchResponse>::encode(
(<LightSensorData as fidl::encoding::ValueTypeMarker>::borrow(&self.data),),
encoder,
offset,
_depth,
)
}
}
unsafe impl<T0: fidl::encoding::Encode<LightSensorData>>
fidl::encoding::Encode<SensorWatchResponse> for (T0,)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<SensorWatchResponse>(offset);
self.0.encode(encoder, offset + 0, depth)?;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for SensorWatchResponse {
#[inline(always)]
fn new_empty() -> Self {
Self { data: fidl::new_empty!(LightSensorData) }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
fidl::decode!(LightSensorData, &mut self.data, decoder, offset + 0, _depth)?;
Ok(())
}
}
impl LightSensorData {
#[inline(always)]
fn max_ordinal_present(&self) -> u64 {
if let Some(_) = self.is_calibrated {
return 5;
}
if let Some(_) = self.si_rgbc {
return 4;
}
if let Some(_) = self.correlated_color_temperature {
return 3;
}
if let Some(_) = self.calculated_lux {
return 2;
}
if let Some(_) = self.rgbc {
return 1;
}
0
}
}
unsafe impl fidl::encoding::TypeMarker for LightSensorData {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for LightSensorData {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<LightSensorData> for &LightSensorData {
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
mut depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<LightSensorData>(offset);
let max_ordinal: u64 = self.max_ordinal_present();
encoder.write_num(max_ordinal, offset);
encoder.write_num(fidl::encoding::ALLOC_PRESENT_U64, offset + 8);
if max_ordinal == 0 {
return Ok(());
}
depth.increment()?;
let envelope_size = 8;
let bytes_len = max_ordinal as usize * envelope_size;
#[allow(unused_variables)]
let offset = encoder.out_of_line_offset(bytes_len);
let mut _prev_end_offset: usize = 0;
if 1 > max_ordinal {
return Ok(());
}
let cur_offset: usize = (1 - 1) * envelope_size;
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
fidl::encoding::encode_in_envelope_optional::<Rgbc>(
self.rgbc.as_ref().map(<Rgbc as fidl::encoding::ValueTypeMarker>::borrow),
encoder,
offset + cur_offset,
depth,
)?;
_prev_end_offset = cur_offset + envelope_size;
if 2 > max_ordinal {
return Ok(());
}
let cur_offset: usize = (2 - 1) * envelope_size;
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
fidl::encoding::encode_in_envelope_optional::<f32>(
self.calculated_lux.as_ref().map(<f32 as fidl::encoding::ValueTypeMarker>::borrow),
encoder,
offset + cur_offset,
depth,
)?;
_prev_end_offset = cur_offset + envelope_size;
if 3 > max_ordinal {
return Ok(());
}
let cur_offset: usize = (3 - 1) * envelope_size;
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
fidl::encoding::encode_in_envelope_optional::<f32>(
self.correlated_color_temperature
.as_ref()
.map(<f32 as fidl::encoding::ValueTypeMarker>::borrow),
encoder,
offset + cur_offset,
depth,
)?;
_prev_end_offset = cur_offset + envelope_size;
if 4 > max_ordinal {
return Ok(());
}
let cur_offset: usize = (4 - 1) * envelope_size;
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
fidl::encoding::encode_in_envelope_optional::<Rgbc>(
self.si_rgbc.as_ref().map(<Rgbc as fidl::encoding::ValueTypeMarker>::borrow),
encoder,
offset + cur_offset,
depth,
)?;
_prev_end_offset = cur_offset + envelope_size;
if 5 > max_ordinal {
return Ok(());
}
let cur_offset: usize = (5 - 1) * envelope_size;
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
fidl::encoding::encode_in_envelope_optional::<bool>(
self.is_calibrated.as_ref().map(<bool as fidl::encoding::ValueTypeMarker>::borrow),
encoder,
offset + cur_offset,
depth,
)?;
_prev_end_offset = cur_offset + envelope_size;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for LightSensorData {
#[inline(always)]
fn new_empty() -> Self {
Self::default()
}
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
mut depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let len = match fidl::encoding::decode_vector_header(decoder, offset)? {
None => return Err(fidl::Error::NotNullable),
Some(len) => len,
};
if len == 0 {
return Ok(());
};
depth.increment()?;
let envelope_size = 8;
let bytes_len = len * envelope_size;
let offset = decoder.out_of_line_offset(bytes_len)?;
let mut _next_ordinal_to_read = 0;
let mut next_offset = offset;
let end_offset = offset + bytes_len;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
while _next_ordinal_to_read < 1 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size =
<Rgbc as fidl::encoding::TypeMarker>::inline_size(decoder.context);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref = self.rgbc.get_or_insert_with(|| fidl::new_empty!(Rgbc));
fidl::decode!(Rgbc, val_ref, decoder, inner_offset, inner_depth)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
while _next_ordinal_to_read < 2 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size =
<f32 as fidl::encoding::TypeMarker>::inline_size(decoder.context);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref = self.calculated_lux.get_or_insert_with(|| fidl::new_empty!(f32));
fidl::decode!(f32, val_ref, decoder, inner_offset, inner_depth)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
while _next_ordinal_to_read < 3 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size =
<f32 as fidl::encoding::TypeMarker>::inline_size(decoder.context);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref =
self.correlated_color_temperature.get_or_insert_with(|| fidl::new_empty!(f32));
fidl::decode!(f32, val_ref, decoder, inner_offset, inner_depth)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
while _next_ordinal_to_read < 4 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size =
<Rgbc as fidl::encoding::TypeMarker>::inline_size(decoder.context);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref = self.si_rgbc.get_or_insert_with(|| fidl::new_empty!(Rgbc));
fidl::decode!(Rgbc, val_ref, decoder, inner_offset, inner_depth)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
while _next_ordinal_to_read < 5 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size =
<bool as fidl::encoding::TypeMarker>::inline_size(decoder.context);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref = self.is_calibrated.get_or_insert_with(|| fidl::new_empty!(bool));
fidl::decode!(bool, val_ref, decoder, inner_offset, inner_depth)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
while next_offset < end_offset {
_next_ordinal_to_read += 1;
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
next_offset += envelope_size;
}
Ok(())
}
}
}