1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use {
    crate::config::{BridgeControlRegister, SecondaryStatusRegister, Type01Config},
    crate::device::Device,
    crate::util::format_bytes,
    std::fmt,
    zerocopy::Ref,
};

// A PCI Bridge is a Device with a different (Type 01) configuration layout, but much of the
// information displayed is similar.
pub struct Bridge<'a> {
    device: &'a Device<'a>,
    cfg: Ref<&'a [u8], Type01Config>,
}

impl<'a> Bridge<'a> {
    pub fn new(device: &'a Device<'_>) -> Self {
        let cfg = Type01Config::new(&device.device.config);
        Bridge { device, cfg }
    }

    pub fn decode_bridge_io(&self) -> Option<(u32, u32)> {
        // Bits 15:4 of both registers reflect the address bits that are writable
        let mut io_base: u32 = (self.cfg.io_base >> 4).into();
        let mut io_limit: u32 = (self.cfg.io_limit >> 4).into();
        let is_32bit: bool = self.cfg.io_base & 0xF == 1;
        // A valid IO base/limit pair is a [io_base, io_limit] range.
        if (io_base == 0 && io_limit == 0) || io_base > io_limit {
            return None;
        }

        // PCI-to-PCI bridge arch spec 3.2.5.6
        // Bridges assume the bottom 12 bits of base are 000
        io_base <<= 12;
        // Bridges assume the bottom 12 bits of limit are 0xFFF
        io_limit <<= 12;
        io_limit |= 0xFFF;
        if is_32bit {
            Some((
                (io_base) | self.cfg.io_base_upper_16 as u32,
                (io_limit) | self.cfg.io_limit_upper_16 as u32,
            ))
        } else {
            Some((io_base, io_limit))
        }
    }

    pub fn decode_bridge_mem(&self) -> Option<(u32, u32)> {
        // Bits 15:4 of both registers reflect the address bits that are writable
        let mut mem_base: u32 = (self.cfg.memory_base >> 4).into();
        let mut mem_limit: u32 = (self.cfg.memory_limit >> 4).into();
        // A valid base/limit pair is a [mem_base, mem_limit] range.
        if (mem_base == 0 && mem_limit == 0) || mem_base > mem_limit {
            return None;
        }

        // PCI-to-PCI bridge arch spec 3.2.5.8
        // Bridges assume the bottom 20 bits of base are 00000
        mem_base <<= 20;
        // Bridges assume the bottom 20 bits of memory limit are 0xFFFFF
        mem_limit <<= 20;
        mem_limit |= 0xFFFFF;
        Some((mem_base, mem_limit))
    }

    pub fn decode_bridge_pf(&self) -> Option<(u64, u64)> {
        // Bits 15:4 of both registers reflect the address bits that are writable
        let mut pf_base: u64 = (self.cfg.pf_memory_base >> 4).into();
        let mut pf_limit: u64 = (self.cfg.pf_memory_limit >> 4).into();
        let is_64bit: bool = self.cfg.pf_memory_base & 0xF == 1;
        // A valid IO base/limit pair is a [pf_base, pf_limit] range.
        if (pf_base == 0 && pf_limit == 0) || pf_base > pf_limit {
            return None;
        }

        // PCI-to-PCI bridge arch spec 3.2.5.9
        // Bridges assume the bottom 20 bits of base are 00000
        pf_base <<= 20;
        // Bridges assume the bottom 20 bits of limit are 0xFFFFF
        pf_limit <<= 20;
        pf_limit |= 0xFFFFF;
        if is_64bit {
            Some((
                (pf_base) | (self.cfg.pf_base_upper_32 as u64) << 32,
                (pf_limit) | (self.cfg.pf_limit_upper_32 as u64) << 32,
            ))
        } else {
            Some((pf_base, pf_limit))
        }
    }
}

// Add a method to device like is_bridge() -> bool that checks the type header
impl<'a> fmt::Display for Bridge<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.device.print_common_header(f)?;
        if self.device.args.verbose {
            writeln!(
            f,
            "\tBus: primary = 0x{:02x}, secondary = 0x{:02x}, subordinate = 0x{:02x}, sec-latency = {}",
            self.cfg.primary_bus_number,
            self.cfg.secondary_bus_number,
            self.cfg.subordinate_bus_number,
            self.cfg.secondary_latency_timer)?;

            write!(f, "\tI/O behind bridge: ")?;
            if let Some((base, limit)) = self.decode_bridge_io() {
                writeln!(
                    f,
                    "[0x{:8x}, 0x{:8x}] [size={}]",
                    base,
                    limit,
                    format_bytes((limit - base + 1) as u64)
                )?;
            } else {
                writeln!(f, "[disabled]")?;
            }
            write!(f, "\tMemory behind bridge: ")?;
            if let Some((base, limit)) = self.decode_bridge_mem() {
                writeln!(
                    f,
                    "[0x{:8x}, 0x{:8x}] [size={}]",
                    base,
                    limit,
                    format_bytes((limit - base + 1) as u64)
                )?;
            } else {
                writeln!(f, "[disabled]")?;
            }
            write!(f, "\tPrefetchable memory behind bridge: ")?;
            if let Some((base, limit)) = self.decode_bridge_pf() {
                writeln!(
                    f,
                    "[0x{:16x}, 0x{:16x}] [size={}]",
                    base,
                    limit,
                    format_bytes((limit - base + 1) as u64)
                )?;
            } else {
                writeln!(f, "[disabled]")?;
            }
            writeln!(
                f,
                "\tSecondary Status: {}",
                SecondaryStatusRegister(self.cfg.secondary_status)
            )?;
            writeln!(f, "\tBridge Control: {}", BridgeControlRegister(self.cfg.bridge_control))?;
        }
        self.device.print_common_footer(f)
    }
}