tokio/sync/batch_semaphore.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
#![cfg_attr(not(feature = "sync"), allow(unreachable_pub, dead_code))]
//! # Implementation Details.
//!
//! The semaphore is implemented using an intrusive linked list of waiters. An
//! atomic counter tracks the number of available permits. If the semaphore does
//! not contain the required number of permits, the task attempting to acquire
//! permits places its waker at the end of a queue. When new permits are made
//! available (such as by releasing an initial acquisition), they are assigned
//! to the task at the front of the queue, waking that task if its requested
//! number of permits is met.
//!
//! Because waiters are enqueued at the back of the linked list and dequeued
//! from the front, the semaphore is fair. Tasks trying to acquire large numbers
//! of permits at a time will always be woken eventually, even if many other
//! tasks are acquiring smaller numbers of permits. This means that in a
//! use-case like tokio's read-write lock, writers will not be starved by
//! readers.
use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::{Mutex, MutexGuard};
use crate::util::linked_list::{self, LinkedList};
#[cfg(all(tokio_unstable, feature = "tracing"))]
use crate::util::trace;
use crate::util::WakeList;
use std::future::Future;
use std::marker::PhantomPinned;
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::*;
use std::task::Poll::*;
use std::task::{Context, Poll, Waker};
use std::{cmp, fmt};
/// An asynchronous counting semaphore which permits waiting on multiple permits at once.
pub(crate) struct Semaphore {
waiters: Mutex<Waitlist>,
/// The current number of available permits in the semaphore.
permits: AtomicUsize,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span,
}
struct Waitlist {
queue: LinkedList<Waiter, <Waiter as linked_list::Link>::Target>,
closed: bool,
}
/// Error returned from the [`Semaphore::try_acquire`] function.
///
/// [`Semaphore::try_acquire`]: crate::sync::Semaphore::try_acquire
#[derive(Debug, PartialEq, Eq)]
pub enum TryAcquireError {
/// The semaphore has been [closed] and cannot issue new permits.
///
/// [closed]: crate::sync::Semaphore::close
Closed,
/// The semaphore has no available permits.
NoPermits,
}
/// Error returned from the [`Semaphore::acquire`] function.
///
/// An `acquire` operation can only fail if the semaphore has been
/// [closed].
///
/// [closed]: crate::sync::Semaphore::close
/// [`Semaphore::acquire`]: crate::sync::Semaphore::acquire
#[derive(Debug)]
pub struct AcquireError(());
pub(crate) struct Acquire<'a> {
node: Waiter,
semaphore: &'a Semaphore,
num_permits: u32,
queued: bool,
}
/// An entry in the wait queue.
struct Waiter {
/// The current state of the waiter.
///
/// This is either the number of remaining permits required by
/// the waiter, or a flag indicating that the waiter is not yet queued.
state: AtomicUsize,
/// The waker to notify the task awaiting permits.
///
/// # Safety
///
/// This may only be accessed while the wait queue is locked.
waker: UnsafeCell<Option<Waker>>,
/// Intrusive linked-list pointers.
///
/// # Safety
///
/// This may only be accessed while the wait queue is locked.
///
/// TODO: Ideally, we would be able to use loom to enforce that
/// this isn't accessed concurrently. However, it is difficult to
/// use a `UnsafeCell` here, since the `Link` trait requires _returning_
/// references to `Pointers`, and `UnsafeCell` requires that checked access
/// take place inside a closure. We should consider changing `Pointers` to
/// use `UnsafeCell` internally.
pointers: linked_list::Pointers<Waiter>,
#[cfg(all(tokio_unstable, feature = "tracing"))]
ctx: trace::AsyncOpTracingCtx,
/// Should not be `Unpin`.
_p: PhantomPinned,
}
generate_addr_of_methods! {
impl<> Waiter {
unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> {
&self.pointers
}
}
}
impl Semaphore {
/// The maximum number of permits which a semaphore can hold.
///
/// Note that this reserves three bits of flags in the permit counter, but
/// we only actually use one of them. However, the previous semaphore
/// implementation used three bits, so we will continue to reserve them to
/// avoid a breaking change if additional flags need to be added in the
/// future.
pub(crate) const MAX_PERMITS: usize = std::usize::MAX >> 3;
const CLOSED: usize = 1;
// The least-significant bit in the number of permits is reserved to use
// as a flag indicating that the semaphore has been closed. Consequently
// PERMIT_SHIFT is used to leave that bit for that purpose.
const PERMIT_SHIFT: usize = 1;
/// Creates a new semaphore with the initial number of permits
///
/// Maximum number of permits on 32-bit platforms is `1<<29`.
pub(crate) fn new(permits: usize) -> Self {
assert!(
permits <= Self::MAX_PERMITS,
"a semaphore may not have more than MAX_PERMITS permits ({})",
Self::MAX_PERMITS
);
#[cfg(all(tokio_unstable, feature = "tracing"))]
let resource_span = {
let resource_span = tracing::trace_span!(
"runtime.resource",
concrete_type = "Semaphore",
kind = "Sync",
is_internal = true
);
resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
permits = permits,
permits.op = "override",
)
});
resource_span
};
Self {
permits: AtomicUsize::new(permits << Self::PERMIT_SHIFT),
waiters: Mutex::new(Waitlist {
queue: LinkedList::new(),
closed: false,
}),
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span,
}
}
/// Creates a new semaphore with the initial number of permits.
///
/// Maximum number of permits on 32-bit platforms is `1<<29`.
#[cfg(not(all(loom, test)))]
pub(crate) const fn const_new(permits: usize) -> Self {
assert!(permits <= Self::MAX_PERMITS);
Self {
permits: AtomicUsize::new(permits << Self::PERMIT_SHIFT),
waiters: Mutex::const_new(Waitlist {
queue: LinkedList::new(),
closed: false,
}),
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span::none(),
}
}
/// Creates a new closed semaphore with 0 permits.
pub(crate) fn new_closed() -> Self {
Self {
permits: AtomicUsize::new(Self::CLOSED),
waiters: Mutex::new(Waitlist {
queue: LinkedList::new(),
closed: true,
}),
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span::none(),
}
}
/// Returns the current number of available permits.
pub(crate) fn available_permits(&self) -> usize {
self.permits.load(Acquire) >> Self::PERMIT_SHIFT
}
/// Adds `added` new permits to the semaphore.
///
/// The maximum number of permits is `usize::MAX >> 3`, and this function will panic if the limit is exceeded.
pub(crate) fn release(&self, added: usize) {
if added == 0 {
return;
}
// Assign permits to the wait queue
self.add_permits_locked(added, self.waiters.lock());
}
/// Closes the semaphore. This prevents the semaphore from issuing new
/// permits and notifies all pending waiters.
pub(crate) fn close(&self) {
let mut waiters = self.waiters.lock();
// If the semaphore's permits counter has enough permits for an
// unqueued waiter to acquire all the permits it needs immediately,
// it won't touch the wait list. Therefore, we have to set a bit on
// the permit counter as well. However, we must do this while
// holding the lock --- otherwise, if we set the bit and then wait
// to acquire the lock we'll enter an inconsistent state where the
// permit counter is closed, but the wait list is not.
self.permits.fetch_or(Self::CLOSED, Release);
waiters.closed = true;
while let Some(mut waiter) = waiters.queue.pop_back() {
let waker = unsafe { waiter.as_mut().waker.with_mut(|waker| (*waker).take()) };
if let Some(waker) = waker {
waker.wake();
}
}
}
/// Returns true if the semaphore is closed.
pub(crate) fn is_closed(&self) -> bool {
self.permits.load(Acquire) & Self::CLOSED == Self::CLOSED
}
pub(crate) fn try_acquire(&self, num_permits: u32) -> Result<(), TryAcquireError> {
assert!(
num_permits as usize <= Self::MAX_PERMITS,
"a semaphore may not have more than MAX_PERMITS permits ({})",
Self::MAX_PERMITS
);
let num_permits = (num_permits as usize) << Self::PERMIT_SHIFT;
let mut curr = self.permits.load(Acquire);
loop {
// Has the semaphore closed?
if curr & Self::CLOSED == Self::CLOSED {
return Err(TryAcquireError::Closed);
}
// Are there enough permits remaining?
if curr < num_permits {
return Err(TryAcquireError::NoPermits);
}
let next = curr - num_permits;
match self.permits.compare_exchange(curr, next, AcqRel, Acquire) {
Ok(_) => {
// TODO: Instrument once issue has been solved
return Ok(());
}
Err(actual) => curr = actual,
}
}
}
pub(crate) fn acquire(&self, num_permits: u32) -> Acquire<'_> {
Acquire::new(self, num_permits)
}
/// Release `rem` permits to the semaphore's wait list, starting from the
/// end of the queue.
///
/// If `rem` exceeds the number of permits needed by the wait list, the
/// remainder are assigned back to the semaphore.
fn add_permits_locked(&self, mut rem: usize, waiters: MutexGuard<'_, Waitlist>) {
let mut wakers = WakeList::new();
let mut lock = Some(waiters);
let mut is_empty = false;
while rem > 0 {
let mut waiters = lock.take().unwrap_or_else(|| self.waiters.lock());
'inner: while wakers.can_push() {
// Was the waiter assigned enough permits to wake it?
match waiters.queue.last() {
Some(waiter) => {
if !waiter.assign_permits(&mut rem) {
break 'inner;
}
}
None => {
is_empty = true;
// If we assigned permits to all the waiters in the queue, and there are
// still permits left over, assign them back to the semaphore.
break 'inner;
}
};
let mut waiter = waiters.queue.pop_back().unwrap();
if let Some(waker) =
unsafe { waiter.as_mut().waker.with_mut(|waker| (*waker).take()) }
{
wakers.push(waker);
}
}
if rem > 0 && is_empty {
let permits = rem;
assert!(
permits <= Self::MAX_PERMITS,
"cannot add more than MAX_PERMITS permits ({})",
Self::MAX_PERMITS
);
let prev = self.permits.fetch_add(rem << Self::PERMIT_SHIFT, Release);
let prev = prev >> Self::PERMIT_SHIFT;
assert!(
prev + permits <= Self::MAX_PERMITS,
"number of added permits ({}) would overflow MAX_PERMITS ({})",
rem,
Self::MAX_PERMITS
);
// add remaining permits back
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
permits = rem,
permits.op = "add",
)
});
rem = 0;
}
drop(waiters); // release the lock
wakers.wake_all();
}
assert_eq!(rem, 0);
}
fn poll_acquire(
&self,
cx: &mut Context<'_>,
num_permits: u32,
node: Pin<&mut Waiter>,
queued: bool,
) -> Poll<Result<(), AcquireError>> {
let mut acquired = 0;
let needed = if queued {
node.state.load(Acquire) << Self::PERMIT_SHIFT
} else {
(num_permits as usize) << Self::PERMIT_SHIFT
};
let mut lock = None;
// First, try to take the requested number of permits from the
// semaphore.
let mut curr = self.permits.load(Acquire);
let mut waiters = loop {
// Has the semaphore closed?
if curr & Self::CLOSED > 0 {
return Ready(Err(AcquireError::closed()));
}
let mut remaining = 0;
let total = curr
.checked_add(acquired)
.expect("number of permits must not overflow");
let (next, acq) = if total >= needed {
let next = curr - (needed - acquired);
(next, needed >> Self::PERMIT_SHIFT)
} else {
remaining = (needed - acquired) - curr;
(0, curr >> Self::PERMIT_SHIFT)
};
if remaining > 0 && lock.is_none() {
// No permits were immediately available, so this permit will
// (probably) need to wait. We'll need to acquire a lock on the
// wait queue before continuing. We need to do this _before_ the
// CAS that sets the new value of the semaphore's `permits`
// counter. Otherwise, if we subtract the permits and then
// acquire the lock, we might miss additional permits being
// added while waiting for the lock.
lock = Some(self.waiters.lock());
}
match self.permits.compare_exchange(curr, next, AcqRel, Acquire) {
Ok(_) => {
acquired += acq;
if remaining == 0 {
if !queued {
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
permits = acquired,
permits.op = "sub",
);
tracing::trace!(
target: "runtime::resource::async_op::state_update",
permits_obtained = acquired,
permits.op = "add",
)
});
return Ready(Ok(()));
} else if lock.is_none() {
break self.waiters.lock();
}
}
break lock.expect("lock must be acquired before waiting");
}
Err(actual) => curr = actual,
}
};
if waiters.closed {
return Ready(Err(AcquireError::closed()));
}
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
permits = acquired,
permits.op = "sub",
)
});
if node.assign_permits(&mut acquired) {
self.add_permits_locked(acquired, waiters);
return Ready(Ok(()));
}
assert_eq!(acquired, 0);
let mut old_waker = None;
// Otherwise, register the waker & enqueue the node.
node.waker.with_mut(|waker| {
// Safety: the wait list is locked, so we may modify the waker.
let waker = unsafe { &mut *waker };
// Do we need to register the new waker?
if waker
.as_ref()
.map(|waker| !waker.will_wake(cx.waker()))
.unwrap_or(true)
{
old_waker = std::mem::replace(waker, Some(cx.waker().clone()));
}
});
// If the waiter is not already in the wait queue, enqueue it.
if !queued {
let node = unsafe {
let node = Pin::into_inner_unchecked(node) as *mut _;
NonNull::new_unchecked(node)
};
waiters.queue.push_front(node);
}
drop(waiters);
drop(old_waker);
Pending
}
}
impl fmt::Debug for Semaphore {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Semaphore")
.field("permits", &self.available_permits())
.finish()
}
}
impl Waiter {
fn new(
num_permits: u32,
#[cfg(all(tokio_unstable, feature = "tracing"))] ctx: trace::AsyncOpTracingCtx,
) -> Self {
Waiter {
waker: UnsafeCell::new(None),
state: AtomicUsize::new(num_permits as usize),
pointers: linked_list::Pointers::new(),
#[cfg(all(tokio_unstable, feature = "tracing"))]
ctx,
_p: PhantomPinned,
}
}
/// Assign permits to the waiter.
///
/// Returns `true` if the waiter should be removed from the queue
fn assign_permits(&self, n: &mut usize) -> bool {
let mut curr = self.state.load(Acquire);
loop {
let assign = cmp::min(curr, *n);
let next = curr - assign;
match self.state.compare_exchange(curr, next, AcqRel, Acquire) {
Ok(_) => {
*n -= assign;
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.ctx.async_op_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::async_op::state_update",
permits_obtained = assign,
permits.op = "add",
);
});
return next == 0;
}
Err(actual) => curr = actual,
}
}
}
}
impl Future for Acquire<'_> {
type Output = Result<(), AcquireError>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let _resource_span = self.node.ctx.resource_span.clone().entered();
#[cfg(all(tokio_unstable, feature = "tracing"))]
let _async_op_span = self.node.ctx.async_op_span.clone().entered();
#[cfg(all(tokio_unstable, feature = "tracing"))]
let _async_op_poll_span = self.node.ctx.async_op_poll_span.clone().entered();
let (node, semaphore, needed, queued) = self.project();
// First, ensure the current task has enough budget to proceed.
#[cfg(all(tokio_unstable, feature = "tracing"))]
let coop = ready!(trace_poll_op!(
"poll_acquire",
crate::runtime::coop::poll_proceed(cx),
));
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let coop = ready!(crate::runtime::coop::poll_proceed(cx));
let result = match semaphore.poll_acquire(cx, needed, node, *queued) {
Pending => {
*queued = true;
Pending
}
Ready(r) => {
coop.made_progress();
r?;
*queued = false;
Ready(Ok(()))
}
};
#[cfg(all(tokio_unstable, feature = "tracing"))]
return trace_poll_op!("poll_acquire", result);
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
return result;
}
}
impl<'a> Acquire<'a> {
fn new(semaphore: &'a Semaphore, num_permits: u32) -> Self {
#[cfg(any(not(tokio_unstable), not(feature = "tracing")))]
return Self {
node: Waiter::new(num_permits),
semaphore,
num_permits,
queued: false,
};
#[cfg(all(tokio_unstable, feature = "tracing"))]
return semaphore.resource_span.in_scope(|| {
let async_op_span =
tracing::trace_span!("runtime.resource.async_op", source = "Acquire::new");
let async_op_poll_span = async_op_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::async_op::state_update",
permits_requested = num_permits,
permits.op = "override",
);
tracing::trace!(
target: "runtime::resource::async_op::state_update",
permits_obtained = 0usize,
permits.op = "override",
);
tracing::trace_span!("runtime.resource.async_op.poll")
});
let ctx = trace::AsyncOpTracingCtx {
async_op_span,
async_op_poll_span,
resource_span: semaphore.resource_span.clone(),
};
Self {
node: Waiter::new(num_permits, ctx),
semaphore,
num_permits,
queued: false,
}
});
}
fn project(self: Pin<&mut Self>) -> (Pin<&mut Waiter>, &Semaphore, u32, &mut bool) {
fn is_unpin<T: Unpin>() {}
unsafe {
// Safety: all fields other than `node` are `Unpin`
is_unpin::<&Semaphore>();
is_unpin::<&mut bool>();
is_unpin::<u32>();
let this = self.get_unchecked_mut();
(
Pin::new_unchecked(&mut this.node),
this.semaphore,
this.num_permits,
&mut this.queued,
)
}
}
}
impl Drop for Acquire<'_> {
fn drop(&mut self) {
// If the future is completed, there is no node in the wait list, so we
// can skip acquiring the lock.
if !self.queued {
return;
}
// This is where we ensure safety. The future is being dropped,
// which means we must ensure that the waiter entry is no longer stored
// in the linked list.
let mut waiters = self.semaphore.waiters.lock();
// remove the entry from the list
let node = NonNull::from(&mut self.node);
// Safety: we have locked the wait list.
unsafe { waiters.queue.remove(node) };
let acquired_permits = self.num_permits as usize - self.node.state.load(Acquire);
if acquired_permits > 0 {
self.semaphore.add_permits_locked(acquired_permits, waiters);
}
}
}
// Safety: the `Acquire` future is not `Sync` automatically because it contains
// a `Waiter`, which, in turn, contains an `UnsafeCell`. However, the
// `UnsafeCell` is only accessed when the future is borrowed mutably (either in
// `poll` or in `drop`). Therefore, it is safe (although not particularly
// _useful_) for the future to be borrowed immutably across threads.
unsafe impl Sync for Acquire<'_> {}
// ===== impl AcquireError ====
impl AcquireError {
fn closed() -> AcquireError {
AcquireError(())
}
}
impl fmt::Display for AcquireError {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "semaphore closed")
}
}
impl std::error::Error for AcquireError {}
// ===== impl TryAcquireError =====
impl TryAcquireError {
/// Returns `true` if the error was caused by a closed semaphore.
#[allow(dead_code)] // may be used later!
pub(crate) fn is_closed(&self) -> bool {
matches!(self, TryAcquireError::Closed)
}
/// Returns `true` if the error was caused by calling `try_acquire` on a
/// semaphore with no available permits.
#[allow(dead_code)] // may be used later!
pub(crate) fn is_no_permits(&self) -> bool {
matches!(self, TryAcquireError::NoPermits)
}
}
impl fmt::Display for TryAcquireError {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
TryAcquireError::Closed => write!(fmt, "semaphore closed"),
TryAcquireError::NoPermits => write!(fmt, "no permits available"),
}
}
}
impl std::error::Error for TryAcquireError {}
/// # Safety
///
/// `Waiter` is forced to be !Unpin.
unsafe impl linked_list::Link for Waiter {
type Handle = NonNull<Waiter>;
type Target = Waiter;
fn as_raw(handle: &Self::Handle) -> NonNull<Waiter> {
*handle
}
unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
ptr
}
unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
Waiter::addr_of_pointers(target)
}
}