1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/* Copyright 2016 The encode_unicode Developers
 *
 * Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
 * http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
 * http://opensource.org/licenses/MIT>, at your option. This file may not be
 * copied, modified, or distributed except according to those terms.
 */

#![allow(unused_unsafe)]// explicit unsafe{} blocks in unsafe functions are a good thing.

use utf8_char::Utf8Char;
use utf16_char::Utf16Char;
use utf8_iterators::*;
use utf16_iterators::*;
use decoding_iterators::*;
use error::*;
extern crate core;
use self::core::{char, u32, mem};
use self::core::ops::{Not, Index, RangeFull};
use self::core::borrow::Borrow;
#[cfg(feature="ascii")]
extern crate ascii;
#[cfg(feature="ascii")]
use self::ascii::AsciiStr;

// TODO better docs and tests

/// Methods for working with `u8`s as UTF-8 bytes.
pub trait U8UtfExt {
    /// How many more bytes will you need to complete this codepoint?
    ///
    /// # Errors
    ///
    /// An error is returned if the byte is not a valid start of an UTF-8
    /// codepoint:
    ///
    /// * `128..192`: ContinuationByte
    /// * `248..`: TooLongSequence
    ///
    /// Values in 244..248 represent a too high codepoint, but do not cause an
    /// error.
    fn extra_utf8_bytes(self) -> Result<usize,InvalidUtf8FirstByte>;

    /// How many more bytes will you need to complete this codepoint?
    ///
    /// This function assumes that the byte is a valid UTF-8 start, and might
    /// return any value otherwise. (but the function is pure and safe to call
    /// with any value).
    fn extra_utf8_bytes_unchecked(self) -> usize;
}

impl U8UtfExt for u8 {
    #[inline]
    fn extra_utf8_bytes(self) -> Result<usize,InvalidUtf8FirstByte> {
        use error::InvalidUtf8FirstByte::{ContinuationByte,TooLongSeqence};
        // the bit twiddling is explained in extra_utf8_bytes_unchecked()
        if self < 128 {
            return Ok(0);
        }
        match ((self as u32)<<25).not().leading_zeros() {
            n @ 1...3 => Ok(n as usize),
            0 => Err(ContinuationByte),
            _ => Err(TooLongSeqence),
        }
    }
    #[inline]
    fn extra_utf8_bytes_unchecked(self) -> usize {
        // For fun I've optimized this function (for x86 instruction count):
        // The most straightforward implementation, that lets the compiler do
        // the optimizing:
        //match self {
        //    0b0000_0000...0b0111_1111 => 0,
        //    0b1100_0010...0b1101_1111 => 1,
        //    0b1110_0000...0b1110_1111 => 2,
        //    0b1111_0000...0b1111_0100 => 3,
        //                _             => whatever()
        //}
        // Using `unsafe{self::core::hint::unreachable_unchecked()}` for the
        // "don't care" case is a terrible idea: while having the function
        // non-deterministically return whatever happens to be in a register
        // MIGHT be acceptable, it permits the function to not `ret`urn at all,
        // but let execution fall through to whatever comes after it in the
        // binary! (in other words completely UB).
        // Currently unreachable_unchecked() might trap too,
        // which is certainly not what we want.
        // I also think `unsafe{mem::unitialized()}` is much more likely to
        // explicitly produce whatever happens to be in a register than tell
        // the compiler it can ignore this branch but needs to produce a value.
        //
        // From the bit patterns we see that for non-ASCII values the result is
        // (number of leading set bits) - 1
        // The standard library doesn't have a method for counting leading ones,
        // but it has leading_zeros(), which can be used after inverting.
        // This function can therefore be reduced to the one-liner
        //`self.not().leading_zeros().saturating_sub(1) as usize`, which would
        // be branchless for architectures with instructions for
        // leading_zeros() and saturating_sub().

        // Shortest version as long as ASCII-ness can be predicted: (especially
        // if the BSR instruction which leading_zeros() uses is microcoded or
        // doesn't exist)
        // u8.leading_zeros() would cast to a bigger type internally, so that's
        // free. compensating by shifting left by 24 before inverting lets the
        // compiler know that the value passed to leading_zeros() is not zero,
        // for which BSR's output is undefined and leading_zeros() normally has
        // special case with a branch.
        // Shifting one bit too many left acts as a saturating_sub(1).
        if self<128 {0} else {((self as u32)<<25).not().leading_zeros() as usize}

        // Branchless but longer version: (9 instructions)
        // It's tempting to try (self|0x80).not().leading_zeros().wrapping_sub(1),
        // but that produces high lengths for ASCII values 0b01xx_xxxx.
        // If we could somehow (branchlessy) clear that bit for ASCII values...
        // We can by masking with the value shifted right with sign extension!
        // (any nonzero number of bits in range works)
        //let extended = self as i8 as i32;
        //let ascii_cleared = (extended<<25) & (extended>>25);
        //ascii_cleared.not().leading_zeros() as usize

        // cmov version: (7 instructions)
        //(((self as u32)<<24).not().leading_zeros() as usize).saturating_sub(1)
    }
}


/// Methods for working with `u16`s as UTF-16 units.
pub trait U16UtfExt {
    /// Will you need an extra unit to complete this codepoint?
    ///
    /// Returns `Err` for trailing surrogates, `Ok(true)` for leading surrogates,
    /// and `Ok(false)` for others.
    fn utf16_needs_extra_unit(self) -> Result<bool,InvalidUtf16FirstUnit>;

    /// Does this `u16` need another `u16` to complete a codepoint?
    /// Returns `(self & 0xfc00) == 0xd800`
    ///
    /// Is basically an unchecked variant of `utf16_needs_extra_unit()`.
    fn is_utf16_leading_surrogate(self) -> bool;
}
impl U16UtfExt for u16 {
    #[inline]
    fn utf16_needs_extra_unit(self) -> Result<bool,InvalidUtf16FirstUnit> {
        match self {
            // https://en.wikipedia.org/wiki/UTF-16#U.2B10000_to_U.2B10FFFF
            0x00_00...0xd7_ff | 0xe0_00...0xff_ff => Ok(false),
            0xd8_00...0xdb_ff => Ok(true),
                    _         => Err(InvalidUtf16FirstUnit)
        }
    }
    #[inline]
    fn is_utf16_leading_surrogate(self) -> bool {
        (self & 0xfc00) == 0xd800// Clear the ten content bytes of a surrogate,
                                 // and see if it's a leading surrogate.
    }
}




/// Extension trait for `char` that adds methods for converting to and from UTF-8 or UTF-16.
pub trait CharExt: Sized {
    /// Get the UTF-8 representation of this codepoint.
    ///
    /// `Utf8Char` is to `[u8;4]` what `char` is to `u32`:
    /// a restricted type that cannot be mutated internally.
    fn to_utf8(self) -> Utf8Char;

    /// Get the UTF-16 representation of this codepoint.
    ///
    /// `Utf16Char` is to `[u16;2]` what `char` is to `u32`:
    /// a restricted type that cannot be mutated internally.
    fn to_utf16(self) -> Utf16Char;

    /// Iterate over or [read](https://doc.rust-lang.org/std/io/trait.Read.html)
    /// the one to four bytes in the UTF-8 representation of this codepoint.
    ///
    /// An identical alternative to the unstable `char.encode_utf8()`.
    /// That method somehow still exist on stable, so I have to use a different name.
    fn iter_utf8_bytes(self) -> Utf8Iterator;

    /// Iterate over the one or two units in the UTF-16 representation of this codepoint.
    ///
    /// An identical alternative to the unstable `char.encode_utf16()`.
    /// That method somehow still exist on stable, so I have to use a different name.
    fn iter_utf16_units(self) -> Utf16Iterator;


    /// Convert this char to an UTF-8 array, and also return how many bytes of
    /// the array are used,
    ///
    /// The returned array is left-aligned with unused bytes set to zero.
    fn to_utf8_array(self) -> ([u8; 4], usize);

    /// Convert this `char` to UTF-16.
    /// The second `u16` is `Some` if a surrogate pair is required.
    fn to_utf16_tuple(self) -> (u16, Option<u16>);



    /// Create a `char` from the start of an UTF-8 slice,
    /// and also return how many bytes were used.
    ///
    /// # Errors
    ///
    /// Returns an `Err` if the slice is empty, doesn't start with a valid
    /// UTF-8 sequence or is too short for the sequence.
    ///
    /// # Examples
    ///
    /// ```
    /// use encode_unicode::CharExt;
    /// use encode_unicode::error::InvalidUtf8Slice::*;
    /// use encode_unicode::error::InvalidUtf8::*;
    ///
    /// assert_eq!(char::from_utf8_slice_start(&[b'A', b'B', b'C']), Ok(('A',1)));
    /// assert_eq!(char::from_utf8_slice_start(&[0xdd, 0xbb]), Ok(('\u{77b}',2)));
    ///
    /// assert_eq!(char::from_utf8_slice_start(&[]), Err(TooShort(1)));
    /// assert_eq!(char::from_utf8_slice_start(&[0xf0, 0x99]), Err(TooShort(4)));
    /// assert_eq!(char::from_utf8_slice_start(&[0xee, b'F', 0x80]), Err(Utf8(NotAContinuationByte(1))));
    /// assert_eq!(char::from_utf8_slice_start(&[0xee, 0x99, 0x0f]), Err(Utf8(NotAContinuationByte(2))));
    /// ```
    fn from_utf8_slice_start(src: &[u8]) -> Result<(Self,usize),InvalidUtf8Slice>;

    /// Create a `char` from the start of an UTF-16 slice,
    /// and also return how many units were used.
    ///
    /// If you want to continue after an error, continue with the next `u16` unit.
    fn from_utf16_slice_start(src: &[u16]) -> Result<(Self,usize), InvalidUtf16Slice>;


    /// Convert an UTF-8 sequence as returned from `.to_utf8_array()` into a `char`
    ///
    /// The codepoint must start at the first byte, and leftover bytes are ignored.
    ///
    /// # Errors
    ///
    /// Returns an `Err` if the array doesn't start with a valid UTF-8 sequence.
    ///
    /// # Examples
    ///
    /// ```
    /// use encode_unicode::CharExt;
    /// use encode_unicode::error::InvalidUtf8Array::*;
    /// use encode_unicode::error::InvalidUtf8::*;
    /// use encode_unicode::error::InvalidCodepoint::*;
    ///
    /// assert_eq!(char::from_utf8_array([b'A', 0, 0, 0]), Ok('A'));
    /// assert_eq!(char::from_utf8_array([0xf4, 0x8b, 0xbb, 0xbb]), Ok('\u{10befb}'));
    /// assert_eq!(char::from_utf8_array([b'A', b'B', b'C', b'D']), Ok('A'));
    /// assert_eq!(char::from_utf8_array([0, 0, 0xcc, 0xbb]), Ok('\0'));
    ///
    /// assert_eq!(char::from_utf8_array([0xef, b'F', 0x80, 0x80]), Err(Utf8(NotAContinuationByte(1))));
    /// assert_eq!(char::from_utf8_array([0xc1, 0x80, 0, 0]), Err(Utf8(OverLong)));
    /// assert_eq!(char::from_utf8_array([0xf7, 0xaa, 0x99, 0x88]), Err(Codepoint(TooHigh)));
    /// ```
    fn from_utf8_array(utf8: [u8; 4]) -> Result<Self,InvalidUtf8Array>;

    /// Convert a UTF-16 pair as returned from `.to_utf16_tuple()` into a `char`.
    fn from_utf16_tuple(utf16: (u16, Option<u16>)) -> Result<Self, InvalidUtf16Tuple>;


    /// Convert an UTF-8 sequence into a char.
    ///
    /// The length of the slice is taken as length of the sequence;
    /// it should be 1,2,3 or 4.
    ///
    /// # Safety
    ///
    /// The slice must contain exactly one, valid, UTF-8 sequence.
    ///
    /// Passing a slice that produces an invalid codepoint is always undefined
    /// behavior; Later checks that the codepoint is valid can be removed
    /// by the compiler.
    ///
    /// # Panics
    ///
    /// If the slice is empty
    unsafe fn from_utf8_exact_slice_unchecked(src: &[u8]) -> Self;

    /// Convert a UTF-16 tuple as returned from `.to_utf16_tuple()` into a `char`.
    unsafe fn from_utf16_tuple_unchecked(utf16: (u16, Option<u16>)) -> Self;


    /// Perform some extra validations compared to `char::from_u32_unchecked()`
    ///
    /// # Errors
    ///
    /// This function will return an error if
    ///
    /// * the value is greater than 0x10ffff
    /// * the value is between 0xd800 and 0xdfff (inclusive)
    fn from_u32_detailed(c: u32) -> Result<Self,InvalidCodepoint>;
}



impl CharExt for char {
      /////////
     //UTF-8//
    /////////

    fn to_utf8(self) -> Utf8Char {
        self.into()
    }
    fn iter_utf8_bytes(self) -> Utf8Iterator {
        self.to_utf8().into_iter()
    }

    fn to_utf8_array(self) -> ([u8; 4], usize) {
        let len = self.len_utf8();
        let mut c = self as u32;
        if len == 1 {// ASCII, the common case
            ([c as u8, 0, 0, 0],  1)
        } else {
            let mut parts = 0;// convert to 6-bit bytes
                        parts |= c & 0x3f;  c>>=6;
            parts<<=8;  parts |= c & 0x3f;  c>>=6;
            parts<<=8;  parts |= c & 0x3f;  c>>=6;
            parts<<=8;  parts |= c & 0x3f;
            parts |= 0x80_80_80_80;// set the most significant bit
            parts >>= 8*(4-len);// right-align bytes
            // Now, unused bytes are zero, (which matters for Utf8Char.eq())
            // and the rest are 0b10xx_xxxx

            // set header on first byte
            parts |= (0xff_00u32 >> len)  &  0xff;// store length
            parts &= Not::not(1u32 << 7-len);// clear the next bit after it

            let bytes: [u8; 4] = unsafe{ mem::transmute(u32::from_le(parts)) };
            (bytes, len)
        }
    }


    fn from_utf8_slice_start(src: &[u8]) -> Result<(Self,usize),InvalidUtf8Slice> {
        use errors::InvalidUtf8::*;
        use errors::InvalidUtf8Slice::*;
        let first = match src.first() {
            Some(first) => *first,
            None => return Err(TooShort(1)),
        };
        let bytes = match first.extra_utf8_bytes() {
            Err(e)    => return Err(Utf8(FirstByte(e))),
            Ok(0)     => return Ok((first as char, 1)),
            Ok(extra) if extra >= src.len()
                      => return Err(TooShort(extra+1)),
            Ok(extra) => &src[..extra+1],
        };
        if let Some(i) = bytes.iter().skip(1).position(|&b| (b >> 6) != 0b10 ) {
            Err(Utf8(NotAContinuationByte(i+1)))
        } else if overlong(bytes[0], bytes[1]) {
            Err(Utf8(OverLong))
        } else {
            match char::from_u32_detailed(merge_nonascii_unchecked_utf8(bytes)) {
                Ok(c) => Ok((c, bytes.len())),
                Err(e) => Err(Codepoint(e)),
            }
        }
    }

    fn from_utf8_array(utf8: [u8; 4]) -> Result<Self,InvalidUtf8Array> {
        use errors::InvalidUtf8::*;
        use errors::InvalidUtf8Array::*;
        let src = match utf8[0].extra_utf8_bytes() {
            Err(error) => return Err(Utf8(FirstByte(error))),
            Ok(0)      => return Ok(utf8[0] as char),
            Ok(extra)  => &utf8[..extra+1],
        };
        if let Some(i) = src[1..].iter().position(|&b| (b >> 6) != 0b10 ) {
            Err(Utf8(NotAContinuationByte(i+1)))
        } else if overlong(utf8[0], utf8[1]) {
            Err(Utf8(OverLong))
        } else {
            char::from_u32_detailed(merge_nonascii_unchecked_utf8(src))
                 .map_err(|e| Codepoint(e) )
        }
    }

    unsafe fn from_utf8_exact_slice_unchecked(src: &[u8]) -> Self {
        if src.len() == 1 {
            src[0] as char
        } else {
            char::from_u32_unchecked(merge_nonascii_unchecked_utf8(src))
        }
    }



      //////////
     //UTF-16//
    //////////

    fn to_utf16(self) -> Utf16Char {
        Utf16Char::from(self)
    }
    fn iter_utf16_units(self) -> Utf16Iterator {
        self.to_utf16().into_iter()
    }

    fn to_utf16_tuple(self) -> (u16, Option<u16>) {
        let c = self as u32;
        if c <= 0x_ff_ff {// single (or reserved, which we ignore)
            (c as u16, None)
        } else {// double (or too high, which we ignore)
            let c = c - 0x_01_00_00;
            let high = 0x_d8_00 + (c >> 10);
            let low = 0x_dc_00 + (c & 0x_03_ff);
            (high as u16,  Some(low as u16))
        }
    }


    fn from_utf16_slice_start(src: &[u16]) -> Result<(Self,usize), InvalidUtf16Slice> {
        use errors::InvalidUtf16Slice::*;
        unsafe {match (src.get(0), src.get(1)) {
            (Some(&u @ 0x00_00...0xd7_ff), _) |
            (Some(&u @ 0xe0_00...0xff_ff), _)
                => Ok((char::from_u32_unchecked(u as u32), 1)),
            (Some(&0xdc_00...0xdf_ff), _) => Err(FirstLowSurrogate),
            (None, _) => Err(EmptySlice),
            (Some(&f @ 0xd8_00...0xdb_ff), Some(&s @ 0xdc_00...0xdf_ff))
                => Ok((char::from_utf16_tuple_unchecked((f, Some(s))), 2)),
            (Some(&0xd8_00...0xdb_ff), Some(_)) => Err(SecondNotLowSurrogate),
            (Some(&0xd8_00...0xdb_ff), None) => Err(MissingSecond),
            (Some(_), _) => unreachable!()
        }}
    }

    fn from_utf16_tuple(utf16: (u16, Option<u16>)) -> Result<Self, InvalidUtf16Tuple> {
        use errors::InvalidUtf16Tuple::*;
        unsafe{ match utf16 {
            (0x00_00...0xd7_ff, None) | // single
            (0xe0_00...0xff_ff, None) | // single
            (0xd8_00...0xdb_ff, Some(0xdc_00...0xdf_ff)) // correct surrogate
                => Ok(char::from_utf16_tuple_unchecked(utf16)),
            (0xd8_00...0xdb_ff, Some(_)) => Err(InvalidSecond),
            (0xd8_00...0xdb_ff, None   ) => Err(MissingSecond),
            (0xdc_00...0xdf_ff,    _   ) => Err(FirstIsTrailingSurrogate),
            (        _        , Some(_)) => Err(SuperfluousSecond),
            (        _        , None   ) => unreachable!()
        }}
    }

    unsafe fn from_utf16_tuple_unchecked(utf16: (u16, Option<u16>)) -> Self {
        match utf16.1 {
            Some(second) => combine_surrogates(utf16.0, second),
            None         => char::from_u32_unchecked(utf16.0 as u32)
        }
    }


    fn from_u32_detailed(c: u32) -> Result<Self,InvalidCodepoint> {
        match char::from_u32(c) {
            Some(c) => Ok(c),
            None if c > 0x10_ff_ff => Err(InvalidCodepoint::TooHigh),
            None => Err(InvalidCodepoint::Utf16Reserved),
        }
    }
}

// Adapted from https://www.cl.cam.ac.uk/~mgk25/ucs/utf8_check.c
fn overlong(first: u8, second: u8) -> bool {
    if first < 0x80 {
        false
    } else if (first & 0xe0) == 0xc0 {
        (first & 0xfe) == 0xc0
    } else if (first & 0xf0) == 0xe0 {
        first == 0xe0 && (second & 0xe0) == 0x80
    } else {
        first == 0xf0 && (second & 0xf0) == 0x80
    }
}

/// Decodes the codepoint represented by a multi-byte UTF-8 sequence.
///
/// Does not check that the codepoint is valid,
/// and returns `u32` because casting invalid codepoints to `char` is insta UB.
fn merge_nonascii_unchecked_utf8(src: &[u8]) -> u32 {
    let mut c = src[0] as u32 & (0x7f >> src.len());
    for b in &src[1..] {
        c = (c << 6)  |  (b & 0b0011_1111) as u32;
    }
    c
}

// Create a `char` from a leading and a trailing surrogate.
unsafe fn combine_surrogates(first: u16, second: u16) -> char {
    let high = (first & 0x_03_ff) as u32;
    let low = (second & 0x_03_ff) as u32;
    let c = ((high << 10) | low) + 0x_01_00_00; // no, the constant can't be or'd in
    char::from_u32_unchecked(c)
}



/// Adds `.utf8chars()` and `.utf16chars()` iterator constructors to `&str`.
pub trait StrExt: AsRef<str> {
    /// Equivalent to `.chars()` but produces `Utf8Char`s.
    fn utf8chars(&self) -> Utf8Chars;
    /// Equivalent to `.chars()` but produces `Utf16Char`s.
    fn utf16chars(&self) -> Utf16Chars;
    /// Equivalent to `.char_indices()` but produces `Utf8Char`s.
    fn utf8char_indices(&self) -> Utf8CharIndices;
    /// Equivalent to `.char_indices()` but produces `Utf16Char`s.
    fn utf16char_indices(&self) -> Utf16CharIndices;
}

impl StrExt for str {
    fn utf8chars(&self) -> Utf8Chars {
        Utf8Chars::from(self)
    }
    fn utf16chars(&self) -> Utf16Chars {
        Utf16Chars::from(self)
    }
    fn utf8char_indices(&self) -> Utf8CharIndices {
        Utf8CharIndices::from(self)
    }
    fn utf16char_indices(&self) -> Utf16CharIndices {
        Utf16CharIndices::from(self)
    }
}

#[cfg(feature="ascii")]
impl StrExt for AsciiStr {
    fn utf8chars(&self) -> Utf8Chars {
        Utf8Chars::from(self.as_str())
    }
    fn utf16chars(&self) -> Utf16Chars {
        Utf16Chars::from(self.as_str())
    }
    fn utf8char_indices(&self) -> Utf8CharIndices {
        Utf8CharIndices::from(self.as_str())
    }
    fn utf16char_indices(&self) -> Utf16CharIndices {
        Utf16CharIndices::from(self.as_str())
    }
}



/// Iterator methods that convert between `u8`s and `Utf8Char` or `u16`s and `Utf16Char`
///
/// All the iterator adapters also accept iterators that produce references of
/// the type they convert from.
pub trait IterExt: Iterator+Sized {
    /// Converts an iterator of `Utf8Char`s or `&Utf8Char`s to an iterator of
    /// `u8`s.
    ///
    /// Has the same effect as `.flat_map()` or `.flatten()`, but the returned
    /// iterator is ~40% faster.
    ///
    /// The iterator also implements `Read`
    /// (when the `std` feature isn't disabled).  
    /// Reading will never produce an error, and calls to `.read()` and `.next()`
    /// can be mixed.
    ///
    /// The exact number of bytes cannot be known in advance, but `size_hint()`
    /// gives the possible range.
    /// (min: all remaining characters are ASCII, max: all require four bytes)
    ///
    /// # Examples
    ///
    /// From iterator of values:
    ///
    /// ```
    /// use encode_unicode::{IterExt, StrExt};
    ///
    /// let iterator = "foo".utf8chars();
    /// let mut bytes = [0; 4];
    /// for (u,dst) in iterator.to_bytes().zip(&mut bytes) {*dst=u;}
    /// assert_eq!(&bytes, b"foo\0");
    /// ```
    ///
    /// From iterator of references:
    ///
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::{IterExt, StrExt, Utf8Char};
    ///
    /// let chars: Vec<Utf8Char> = "💣 bomb 💣".utf8chars().collect();
    /// let bytes: Vec<u8> = chars.iter().to_bytes().collect();
    /// let flat_map: Vec<u8> = chars.iter().flat_map(|u8c| *u8c ).collect();
    /// assert_eq!(bytes, flat_map);
    /// ```
    ///
    /// `Read`ing from it:
    ///
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::{IterExt, StrExt};
    /// use std::io::Read;
    ///
    /// let s = "Ååh‽";
    /// assert_eq!(s.len(), 8);
    /// let mut buf = [b'E'; 9];
    /// let mut reader = s.utf8chars().to_bytes();
    /// assert_eq!(reader.read(&mut buf[..]).unwrap(), 8);
    /// assert_eq!(reader.read(&mut buf[..]).unwrap(), 0);
    /// assert_eq!(&buf[..8], s.as_bytes());
    /// assert_eq!(buf[8], b'E');
    /// ```
    fn to_bytes(self) -> Utf8CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf8Char>;

    /// Converts an iterator of `Utf16Char` (or `&Utf16Char`) to an iterator of
    /// `u16`s.
    ///
    /// Has the same effect as `.flat_map()` or `.flatten()`, but the returned
    /// iterator is about twice as fast.
    ///
    /// The exact number of units cannot be known in advance, but `size_hint()`
    /// gives the possible range.
    ///
    /// # Examples
    ///
    /// From iterator of values:
    ///
    /// ```
    /// use encode_unicode::{IterExt, StrExt};
    ///
    /// let iterator = "foo".utf16chars();
    /// let mut units = [0; 4];
    /// for (u,dst) in iterator.to_units().zip(&mut units) {*dst=u;}
    ///
    /// assert_eq!(units, ['f' as u16, 'o' as u16, 'o' as u16, 0]);
    /// ```
    ///
    /// From iterator of references:
    ///
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::{IterExt, StrExt, Utf16Char};
    ///
    /// // (💣 takes two units)
    /// let chars: Vec<Utf16Char> = "💣 bomb 💣".utf16chars().collect();
    /// let units: Vec<u16> = chars.iter().to_units().collect();
    /// let flat_map: Vec<u16> = chars.iter().flat_map(|u16c| *u16c ).collect();
    ///
    /// assert_eq!(units, flat_map);
    /// ```
    fn to_units(self) -> Utf16CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf16Char>;

    /// Decodes bytes as UTF-8 and groups them into `Utf8Char`s
    ///
    /// When errors (invalid values or sequences) are encountered,
    /// it continues with the byte right after the start of the error sequence.  
    /// This is neither the most intelligent choiche (sometimes it is guaranteed to
    ///  produce another error), nor the easiest to implement, but I believe it to
    /// be the most predictable.
    /// It also means that ASCII characters are never hidden by errors.
    ///
    /// # Examples
    ///
    /// Replace all errors with u+FFFD REPLACEMENT_CHARACTER:
    /// ```
    /// use encode_unicode::{Utf8Char, IterExt};
    ///
    /// let mut buf = [b'\0'; 255];
    /// let len = b"foo\xCFbar".iter()
    ///     .to_utf8chars()
    ///     .flat_map(|r| r.unwrap_or(Utf8Char::from('\u{FFFD}')).into_iter() )
    ///     .zip(&mut buf[..])
    ///     .map(|(byte, dst)| *dst = byte )
    ///     .count();
    ///
    /// assert_eq!(&buf[..len], "foo\u{FFFD}bar".as_bytes());
    /// ```
    ///
    /// Collect everything up until the first error into a string:
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::iterator::Utf8CharMerger;
    /// let mut good = String::new();
    /// for r in Utf8CharMerger::from(b"foo\xcc\xbbbar\xcc\xddbaz") {
    ///     if let Ok(uc) = r {
    ///         good.push_str(uc.as_str());
    ///     } else {
    ///         break;
    ///     }
    /// }
    /// assert_eq!(good, "foo̻bar");
    /// ```
    ///
    /// Abort decoding on error:
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::{IterExt, Utf8Char};
    /// use encode_unicode::error::{InvalidUtf8Slice, InvalidUtf8};
    ///
    /// let result = b"ab\0\xe0\xbc\xa9 \xf3\x80\x77".iter()
    ///     .to_utf8chars()
    ///     .collect::<Result<String,InvalidUtf8Slice>>();
    ///
    /// assert_eq!(result, Err(InvalidUtf8Slice::Utf8(InvalidUtf8::NotAContinuationByte(2))));
    /// ```
    fn to_utf8chars(self) -> Utf8CharMerger<Self::Item,Self> where Self::Item: Borrow<u8>;

    /// Decodes bytes as UTF-16 and groups them into `Utf16Char`s
    ///
    /// When errors (unmatched leading surrogates or unexpected trailing surrogates)
    /// are encountered, an error is produced for every unit.
    ///
    /// # Examples
    ///
    /// Replace errors with '�':
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::{IterExt, Utf16Char};
    ///
    /// let slice = &['a' as u16, 0xdf00, 0xd83c, 0xdca0][..];
    /// let string = slice.iter()
    ///     .to_utf16chars()
    ///     .map(|r| r.unwrap_or(Utf16Char::from('\u{fffd}')) ) // REPLACEMENT_CHARACTER
    ///     .collect::<String>();
    ///
    /// assert_eq!(string, "a�🂠");
    /// ```
    ///
    /// ```
    /// use encode_unicode::{IterExt, Utf16Char};
    /// use encode_unicode::error::Utf16PairError::*;
    ///
    /// let slice = [0xdcba, 0xdeff, 0xd8be, 0xdeee, 'Y' as u16, 0xdab1, 0xdab1];
    /// let mut iter = slice.iter().to_utf16chars();
    /// assert_eq!(iter.size_hint(), (3, Some(7)));
    /// assert_eq!(iter.next(), Some(Err(UnexpectedTrailingSurrogate)));
    /// assert_eq!(iter.next(), Some(Err(UnexpectedTrailingSurrogate)));
    /// assert_eq!(iter.next(), Some(Ok(Utf16Char::from('\u{3faee}'))));
    /// assert_eq!(iter.next(), Some(Ok(Utf16Char::from('Y'))));
    /// assert_eq!(iter.next(), Some(Err(UnmatchedLeadingSurrogate)));
    /// assert_eq!(iter.next(), Some(Err(Incomplete)));
    /// assert_eq!(iter.into_remaining_units().next(), None);
    /// ```
    ///
    /// Search for a codepoint and return the codepoint index of the first match:
    /// ```
    /// use encode_unicode::{IterExt, Utf16Char};
    ///
    /// let position = [0xd875, 0xdd4f, '≈' as u16, '2' as u16].iter()
    ///     .to_utf16chars()
    ///     .position(|r| r == Ok(Utf16Char::from('≈')) );
    ///
    /// assert_eq!(position, Some(1));
    /// ```
    fn to_utf16chars(self) -> Utf16CharMerger<Self::Item,Self> where Self::Item: Borrow<u16>;
}

impl<I:Iterator> IterExt for I {
    fn to_bytes(self) -> Utf8CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf8Char> {
        iter_bytes(self)
    }
    fn to_units(self) -> Utf16CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf16Char> {
        iter_units(self)
    }
    fn to_utf8chars(self) -> Utf8CharMerger<Self::Item,Self> where Self::Item: Borrow<u8> {
        Utf8CharMerger::from(self)
    }
    fn to_utf16chars(self) -> Utf16CharMerger<Self::Item,Self> where Self::Item: Borrow<u16> {
        Utf16CharMerger::from(self)
    }
}


/// Methods for iterating over `u8` and `u16` slices as UTF-8 or UTF-16 characters.
///
/// The iterators are slightly faster than the similar methods in [`IterExt`](trait.IterExt.html)
/// because they con "push back" items for free after errors and don't need a
/// separate buffer that must be checked on every call to `.next()`.
pub trait SliceExt: Index<RangeFull> {
    /// Decode `u8` slices as UTF-8 and iterate over the codepoints as `Utf8Char`s,
    ///
    /// # Examples
    ///
    /// Get the index and error type of the first error:
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::{SliceExt, Utf8Char};
    /// use encode_unicode::error::InvalidUtf8Slice;
    ///
    /// let slice = b"ab\0\xe0\xbc\xa9 \xf3\x80\x77";
    /// let result = slice.utf8char_indices()
    ///     .map(|(offset,r,length)| r.map_err(|e| (offset,e,length) ) )
    ///     .collect::<Result<String,(usize,InvalidUtf8Slice,usize)>>();
    ///
    /// assert_eq!(result, Err((7, InvalidUtf8Slice::TooShort(4), 1)));
    /// ```
    ///
    /// ```
    /// use encode_unicode::{SliceExt, Utf8Char};
    /// use std::error::Error;
    ///
    /// let slice = b"\xf0\xbf\xbf\xbfXY\xdd\xbb\xe1\x80\x99quux123";
    /// let mut fixed_size = [Utf8Char::default(); 8];
    /// for (cp_i, (byte_index, r, _)) in slice.utf8char_indices().enumerate().take(8) {
    ///     match r {
    ///         Ok(u8c) => fixed_size[cp_i] = u8c,
    ///         Err(e) => panic!("Invalid codepoint at index {} ({})", cp_i, e.description()),
    ///     }
    /// }
    /// let chars = ['\u{3ffff}', 'X', 'Y', '\u{77b}', '\u{1019}', 'q', 'u', 'u'];
    /// assert_eq!(fixed_size, chars);
    /// ```
    ///
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::{SliceExt, Utf8Char};
    /// use encode_unicode::error::InvalidUtf8Slice::*;
    /// use encode_unicode::error::{InvalidUtf8, InvalidUtf8FirstByte, InvalidCodepoint};
    ///
    /// let bytes = b"\xfa-\xf4\x8f\xee\xa1\x8f-\xed\xa9\x87\xf0\xcc\xbb";
    /// let mut errors = Vec::new();
    /// let mut lengths = Vec::new();
    /// let mut string = String::new();
    /// for (offset,result,length) in bytes.utf8char_indices() {
    ///     lengths.push((offset,length));
    ///     let c = result.unwrap_or_else(|error| {
    ///         errors.push((offset,error));
    ///         Utf8Char::from('\u{fffd}') // replacement character
    ///     });
    ///     string.push_str(c.as_str());
    /// }
    ///
    /// assert_eq!(string, "�-��\u{e84f}-����\u{33b}");
    /// assert_eq!(lengths, [(0,1), (1,1), (2,1), (3,1), (4,3), (7,1),
    ///                      (8,1), (9,1), (10,1), (11,1), (12,2)]);
    /// assert_eq!(errors, [
    ///     ( 0, Utf8(InvalidUtf8::FirstByte(InvalidUtf8FirstByte::TooLongSeqence))),
    ///     ( 2, Utf8(InvalidUtf8::NotAContinuationByte(2))),
    ///     ( 3, Utf8(InvalidUtf8::FirstByte(InvalidUtf8FirstByte::ContinuationByte))),
    ///     ( 8, Codepoint(InvalidCodepoint::Utf16Reserved)),
    ///     ( 9, Utf8(InvalidUtf8::FirstByte(InvalidUtf8FirstByte::ContinuationByte))),
    ///     (10, Utf8(InvalidUtf8::FirstByte(InvalidUtf8FirstByte::ContinuationByte))),
    ///     (11, TooShort(4)), // (but it was not the last element returned!)
    /// ]);
    /// ```
    fn utf8char_indices(&self) -> Utf8CharDecoder where Self::Output: Borrow<[u8]>;


    /// Decode `u16` slices as UTF-16 and iterate over the codepoints as `Utf16Char`s,
    ///
    /// The iterator produces `(usize,Result<Utf16Char,Utf16Error>,usize)`,
    /// and the slice is validated as you go.
    ///
    /// The first `usize` contains the offset from the start of the slice and
    /// the last `usize` contains the length of the codepoint or error.
    /// The length is either 1 or 2, and always 1 for errors.
    ///
    /// # Examples
    ///
    #[cfg_attr(feature="std", doc=" ```")]
    #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
    /// use encode_unicode::{SliceExt, Utf8Char};
    ///
    /// let slice = &['a' as u16, 0xdf00, 0xd83c, 0xdca0][..];
    /// let mut errors = Vec::new();
    /// let string = slice.utf16char_indices().map(|(offset,r,_)| match r {
    ///     Ok(u16c) => Utf8Char::from(u16c),
    ///     Err(_) => {
    ///         errors.push(offset);
    ///         Utf8Char::from('\u{fffd}') // REPLACEMENT_CHARACTER
    ///     }
    /// }).collect::<String>();
    ///
    /// assert_eq!(string, "a�🂠");
    /// assert_eq!(errors, [1]);
    /// ```
    ///
    /// Search for a codepoint and return its unit and codepoint index.
    /// ```
    /// use encode_unicode::{SliceExt, Utf16Char};
    ///
    /// let slice = [0xd875,/*'𝕏'*/ 0xdd4f, '≈' as u16, '2' as u16];
    /// let position = slice.utf16char_indices()
    ///     .enumerate()
    ///     .find(|&(_,(_,r,_))| r == Ok(Utf16Char::from('≈')) )
    ///     .map(|(codepoint, (offset, _, _))| (codepoint, offset) );
    ///
    /// assert_eq!(position, Some((1,2)));
    /// ```
    ///
    /// Error types:
    /// ```
    /// use encode_unicode::{SliceExt, Utf16Char};
    /// use encode_unicode::error::Utf16PairError::*;
    ///
    /// let slice = [0xdcba, 0xdeff, 0xd8be, 0xdeee, 'λ' as u16, 0xdab1, 0xdab1];
    /// let mut iter = slice.utf16char_indices();
    /// assert_eq!(iter.next(), Some((0, Err(UnexpectedTrailingSurrogate), 1)));
    /// assert_eq!(iter.next(), Some((1, Err(UnexpectedTrailingSurrogate), 1)));
    /// assert_eq!(iter.next(), Some((2, Ok(Utf16Char::from('\u{3faee}')), 2)));
    /// assert_eq!(iter.next(), Some((4, Ok(Utf16Char::from('λ')), 1)));
    /// assert_eq!(iter.next(), Some((5, Err(UnmatchedLeadingSurrogate), 1)));
    /// assert_eq!(iter.next(), Some((6, Err(Incomplete), 1)));
    /// assert_eq!(iter.next(), None);
    /// assert_eq!(iter.as_slice(), [])
    /// ```
    fn utf16char_indices(&self) -> Utf16CharDecoder where Self::Output: Borrow<[u16]>;
}

impl<S: ?Sized+Index<RangeFull>> SliceExt for S {
    fn utf8char_indices(&self) -> Utf8CharDecoder where Self::Output: Borrow<[u8]> {
        Utf8CharDecoder::from(self[..].borrow())
    }
    fn utf16char_indices(&self) -> Utf16CharDecoder where Self::Output: Borrow<[u16]> {
        Utf16CharDecoder::from(self[..].borrow())
    }
}