fuchsia_bluetooth/
expectation.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use pretty::{BoxAllocator, DocAllocator};
use std::fmt::{self, Debug, Display, Formatter};
use std::sync::Arc;

/// Asynchronous extensions to Expectation Predicates
pub mod asynchronous;
/// Expectations for the host driver
pub mod host_driver;
/// Expectations for remote peers
pub mod peer;
/// Useful convenience methods and macros for working with expectations
#[macro_use]
pub mod prelude;
/// Tests for the expectation module
#[cfg(test)]
pub mod test;

/// A String whose `Debug` implementation pretty-prints. Used when we need to return a string which
/// we know will be printed through it's 'Debug' implementation, but we want to ensure that it is
/// not further escaped (for example, because it already is escaped, or because it contains
/// characters that we do not want to be escaped).
///
/// Essentially, formatting a DebugString with '{:?}' formats as if it was '{}'
#[derive(Clone, PartialEq)]
pub struct DebugString(String);

// The default formatting width for pretty printing output
const FMT_CHAR_WIDTH: usize = 100;

impl fmt::Debug for DebugString {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.0)
    }
}

/// Simplified `DocBuilder` alias used in this file
type DocBuilder<'a> = pretty::DocBuilder<'a, BoxAllocator>;

fn parens<'a>(alloc: &'a BoxAllocator, doc: DocBuilder<'a>) -> DocBuilder<'a> {
    alloc.text("(").append(doc).append(alloc.text(")"))
}

/// Functionalized Standard Debug Formatting
fn show_debug<T: Debug>(t: &T) -> String {
    format!("{:?}", t)
}

/// Function to compare two `T`s
type Comparison<T> = Arc<dyn Fn(&T, &T) -> bool + Send + Sync + 'static>;
/// Function to show a representation of a given `T`
type Show<T> = Arc<dyn Fn(&T) -> String + Send + Sync + 'static>;

/// A Boolean predicate on type `T`. Predicate functions are a boolean algebra
/// just as raw boolean values are; they an be ANDed, ORed, NOTed. This allows
/// a clear and concise language for declaring test expectations.
pub enum Predicate<T> {
    Equal(Arc<T>, Comparison<T>, Show<T>),
    And(Box<Predicate<T>>, Box<Predicate<T>>),
    Or(Box<Predicate<T>>, Box<Predicate<T>>),
    Not(Box<Predicate<T>>),
    Predicate(Arc<dyn Fn(&T) -> bool + Send + Sync>, String),
    // Since we can't use an existential:
    //  for<U> Over(Predicate<U>, Fn(&T) -> &U)
    // we use the trait `IsOver` to hide the type `U` of the intermediary
    Over(Arc<dyn IsOver<T> + Send + Sync>),
    // Since we can't use an existential:
    //  for<I> Any(Fn(&T) -> I, Predicate<I::Elem>)
    //  where I::Elem: Debug
    // we use the trait `IsAny` to hide the type `I` of the iterator
    Any(Arc<dyn IsAny<T> + Send + Sync + 'static>),
    // Since we can't use an existential:
    //  for<I> All(Fn(&T) -> I, Predicate<I::Elem>)
    //  where I::Elem: Debug
    // we use the trait `IsAll` to hide the type `I` of the iterator
    All(Arc<dyn IsAll<T> + Send + Sync + 'static>),
}

// Bespoke clone implementation. This implementation is equivalent to the one that would be derived
// by #[derive(Clone)] _except_ for the trait bounds. The derived impl would automatically require
// `T: Clone`, when actually `Predicate<T>` is `Clone` for _all_ `T`, even those that are not
// `Clone`.
impl<T> Clone for Predicate<T> {
    fn clone(&self) -> Self {
        match self {
            Predicate::Equal(t, comp, repr) => {
                Predicate::Equal(t.clone(), comp.clone(), repr.clone())
            }
            Predicate::And(l, r) => Predicate::And(l.clone(), r.clone()),
            Predicate::Or(l, r) => Predicate::Or(l.clone(), r.clone()),
            Predicate::Not(x) => Predicate::Not(x.clone()),
            Predicate::Predicate(p, msg) => Predicate::Predicate(p.clone(), msg.clone()),
            Predicate::Over(x) => Predicate::Over(x.clone()),
            Predicate::Any(x) => Predicate::Any(x.clone()),
            Predicate::All(x) => Predicate::All(x.clone()),
        }
    }
}

impl<T> Debug for Predicate<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.describe(&BoxAllocator).1.pretty(FMT_CHAR_WIDTH).fmt(f)
    }
}

/// At most how many elements of an iterator to show in a falsification, when falsifying `any` or
/// `all`
const MAX_ITER_FALSIFICATIONS: usize = 5;

fn falsify_elem<'p, 't, 'd, T: Debug>(
    pred: &'p Predicate<T>,
    index: usize,
    el: &'t T,
    doc: &'d BoxAllocator,
) -> Option<DocBuilder<'d>> {
    pred.falsify(el, doc).map(move |falsification| {
        doc.text(format!("[{}]", index))
            .append(doc.space().append(doc.text(show_debug(el))).nest(2))
            .append(doc.space().append(doc.text("BECAUSE")))
            .append(doc.space().append(falsification.group()).nest(2))
            .append(doc.text(","))
            .group()
    })
}

fn fmt_falsifications<'d>(
    i: impl Iterator<Item = DocBuilder<'d>>,
    doc: &'d BoxAllocator,
) -> Option<DocBuilder<'d>> {
    i.take(MAX_ITER_FALSIFICATIONS).fold(None, |acc: Option<DocBuilder<'d>>, falsification| {
        Some(acc.map_or(doc.nil(), |d| d.append(doc.space())).append(falsification))
    })
}

/// Trait representation of a Predicate on members of an existential iterator type
pub trait IsAny<T> {
    fn describe<'d>(&self, doc: &'d BoxAllocator) -> DocBuilder<'d>;
    fn falsify_any<'d>(&self, t: &T, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>>;
}

impl<T: 'static, Elem: Debug + 'static> IsAny<T> for Predicate<Elem>
where
    for<'a> &'a T: IntoIterator<Item = &'a Elem>,
{
    fn describe<'d>(&self, doc: &'d BoxAllocator) -> DocBuilder<'d> {
        doc.text("ANY").append(doc.space().append(self.describe(doc)).nest(2)).group()
    }
    fn falsify_any<'d>(&self, t: &T, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>> {
        if t.into_iter().any(|e| self.satisfied(e)) {
            None
        } else {
            // All are falsifications, so display all (up to MAX_ITER_FALSIFICATIONS)
            fmt_falsifications(
                t.into_iter().enumerate().filter_map(|(i, el)| falsify_elem(&self, i, &el, doc)),
                doc,
            )
            .or_else(|| Some(doc.text("<empty>")))
        }
    }
}

/// Trait representation of a Predicate on members of an existential iterator type
pub trait IsAll<T> {
    fn describe<'d>(&self, doc: &'d BoxAllocator) -> DocBuilder<'d>;
    fn falsify_all<'d>(&self, t: &T, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>>;
}

impl<T: 'static, Elem: Debug + 'static> IsAll<T> for Predicate<Elem>
where
    for<'a> &'a T: IntoIterator<Item = &'a Elem>,
{
    fn describe<'d>(&self, doc: &'d BoxAllocator) -> DocBuilder<'d> {
        doc.text("ALL").append(doc.space().append(self.describe(doc)).nest(2)).group()
    }

    fn falsify_all<'d>(&self, t: &T, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>> {
        fmt_falsifications(
            t.into_iter().enumerate().filter_map(|(i, el)| falsify_elem(&self, i, &el, doc)),
            doc,
        )
    }
}

/// A wrapping newtype to differentiate those types which are iterators themselves, from those that
/// implement `IntoIterator`.
struct OverIterator<Elem>(Predicate<Elem>);

impl<'e, Iter, Elem> IsAll<Iter> for OverIterator<Elem>
where
    Elem: Debug + 'static,
    Iter: Iterator<Item = &'e Elem> + Clone,
{
    fn describe<'d>(&self, doc: &'d BoxAllocator) -> DocBuilder<'d> {
        doc.text("ALL").append(doc.space().append(self.0.describe(doc)).nest(2)).group()
    }

    fn falsify_all<'d>(&self, iter: &Iter, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>> {
        fmt_falsifications(
            iter.clone().enumerate().filter_map(|(i, el)| falsify_elem(&self.0, i, &el, doc)),
            doc,
        )
    }
}

impl<'e, Iter, Elem> IsAny<Iter> for OverIterator<Elem>
where
    Elem: Debug + 'static,
    Iter: Iterator<Item = &'e Elem> + Clone,
{
    fn describe<'d>(&self, doc: &'d BoxAllocator) -> DocBuilder<'d> {
        doc.text("ANY").append(doc.space().append(self.0.describe(doc)).nest(2)).group()
    }

    fn falsify_any<'d>(&self, iter: &Iter, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>> {
        if iter.clone().any(|e| self.0.satisfied(e)) {
            None
        } else {
            // All are falsifications, so display all (up to MAX_ITER_FALSIFICATIONS)
            fmt_falsifications(
                iter.clone().enumerate().filter_map(|(i, el)| falsify_elem(&self.0, i, &el, doc)),
                doc,
            )
            .or_else(|| Some(doc.text("<empty>")))
        }
    }
}

/// A Predicate lifted over a mapping function from `T` to `U`. Such mappings allow converting a
/// predicate from one type - say, a struct field - to an upper type - such as a whole struct -
/// whilst maintaining information about the relationship.
enum OverPred<T, U> {
    ByRef(Predicate<U>, Arc<dyn Fn(&T) -> &U + Send + Sync + 'static>, String),
    ByValue(Predicate<U>, Arc<dyn Fn(&T) -> U + Send + Sync + 'static>, String),
}

/// Trait representation of OverPred where `U` is existential
pub trait IsOver<T> {
    fn describe<'d>(&self, doc: &'d BoxAllocator) -> DocBuilder<'d>;
    fn falsify_over<'d>(&self, t: &T, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>>;
}

impl<T, U> IsOver<T> for OverPred<T, U> {
    fn describe<'a>(&self, doc: &'a BoxAllocator) -> DocBuilder<'a> {
        let (pred, path) = match self {
            OverPred::ByRef(pred, _, path) => (pred, path),
            OverPred::ByValue(pred, _, path) => (pred, path),
        };
        doc.as_string(path).append(doc.space()).append(pred.describe(doc)).group()
    }
    fn falsify_over<'d>(&self, t: &T, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>> {
        let (d, path) = match self {
            OverPred::ByRef(pred, project, path) => (pred.falsify((project)(t), doc), path),
            OverPred::ByValue(pred, project, path) => (pred.falsify(&(project)(t), doc), path),
        };
        d.map(|falsification| {
            doc.as_string(path).append(doc.space().append(falsification).nest(2)).group()
        })
    }
}

impl<T> Predicate<T> {
    fn is_equal(&self) -> bool {
        if let Predicate::Equal(_, _, _) = self {
            true
        } else {
            false
        }
    }
    pub fn describe<'a>(&self, doc: &'a BoxAllocator) -> DocBuilder<'a> {
        match self {
            Predicate::Equal(expected, _, repr) => {
                doc.text("==").append(doc.space()).append(doc.text(repr(expected))).group()
            }
            Predicate::And(left, right) => parens(doc, left.describe(doc))
                .append(doc.space())
                .append(doc.text("AND"))
                .append(doc.space())
                .append(parens(doc, right.describe(doc)))
                .group(),
            Predicate::Or(left, right) => parens(doc, left.describe(doc))
                .nest(2)
                .append(doc.space())
                .append(doc.text("OR"))
                .append(doc.space())
                .append(parens(doc, right.describe(doc)).nest(2))
                .group(),
            // Succinct override for NOT-Equal cases
            Predicate::Not(inner) if inner.is_equal() => {
                if let Predicate::Equal(expected, _, repr) = &**inner {
                    doc.text("!=").append(doc.space()).append(doc.text(repr(&*expected))).group()
                } else {
                    // This branch is guarded by inner.is_equal()
                    unreachable!()
                }
            }
            Predicate::Not(inner) => {
                doc.text("NOT").append(doc.space().append(inner.describe(doc)).nest(2)).group()
            }
            Predicate::Predicate(_, desc) => doc.as_string(desc).group(),
            Predicate::Over(over) => over.describe(doc),
            Predicate::Any(any) => any.describe(doc),
            Predicate::All(all) => all.describe(doc),
        }
    }
    /// Provide a minimized falsification of the predicate, if possible
    pub fn falsify<'d>(&self, t: &T, doc: &'d BoxAllocator) -> Option<DocBuilder<'d>> {
        match self {
            Predicate::Equal(expected, are_eq, repr) => {
                if are_eq(expected, t) {
                    None
                } else {
                    Some(
                        doc.text(repr(t))
                            .append(doc.space())
                            .append(doc.text("!="))
                            .append(doc.space())
                            .append(doc.text(repr(expected)))
                            .group(),
                    )
                }
            }
            Predicate::And(left, right) => match (left.falsify(t, doc), right.falsify(t, doc)) {
                (Some(l), Some(r)) => Some(
                    parens(doc, l)
                        .append(doc.space())
                        .append(doc.text("AND"))
                        .append(doc.space())
                        .append(parens(doc, r))
                        .group(),
                ),
                (Some(l), None) => Some(l),
                (None, Some(r)) => Some(r),
                (None, None) => None,
            },
            Predicate::Or(left, right) => left
                .falsify(t, doc)
                .and_then(|l| right.falsify(t, doc).map(|r| parens(doc, l).append(parens(doc, r)))),
            Predicate::Not(inner) => match inner.falsify(t, doc) {
                Some(_) => None,
                None => match &**inner {
                    Predicate::Equal(expected, _, repr) => Some(
                        doc.text(repr(t))
                            .append(doc.space())
                            .append(doc.text("=="))
                            .append(doc.space())
                            .append(doc.text(repr(&expected))),
                    ),
                    _ => Some(
                        doc.text("NOT")
                            .append(doc.space().append(inner.describe(doc)).nest(2))
                            .group(),
                    ),
                },
            },
            Predicate::Predicate(pred, desc) => {
                if pred(t) {
                    None
                } else {
                    Some(doc.text("NOT").append(doc.space().append(doc.as_string(desc)).nest(2)))
                }
            }
            Predicate::Over(over) => over.falsify_over(t, doc),
            Predicate::Any(any) => any.falsify_any(t, doc),
            Predicate::All(all) => all.falsify_all(t, doc),
        }
    }
    pub fn satisfied<'t>(&self, t: &'t T) -> bool {
        match self {
            Predicate::Equal(expected, are_eq, _) => are_eq(t, expected),
            Predicate::And(left, right) => left.satisfied(t) && right.satisfied(t),
            Predicate::Or(left, right) => left.satisfied(t) || right.satisfied(t),
            Predicate::Not(inner) => !inner.satisfied(t),
            Predicate::Predicate(pred, _) => pred(t),
            Predicate::Over(over) => over.falsify_over(t, &BoxAllocator).is_none(),
            Predicate::Any(any) => any.falsify_any(t, &BoxAllocator).is_none(),
            Predicate::All(all) => all.falsify_all(t, &BoxAllocator).is_none(),
        }
    }
    pub fn assert_satisfied(&self, t: &T) -> Result<(), DebugString> {
        let doc = BoxAllocator;
        match self.falsify(t, &doc) {
            Some(falsification) => {
                let d = doc
                    .text("FAILED EXPECTATION")
                    .append(doc.newline().append(self.describe(&doc)).nest(2))
                    .append(doc.newline().append(doc.text("BECAUSE")))
                    .append(doc.newline().append(falsification).nest(2));
                Err(DebugString(d.1.pretty(FMT_CHAR_WIDTH).to_string()))
            }
            None => Ok(()),
        }
    }
    pub fn and(self, rhs: Predicate<T>) -> Predicate<T> {
        Predicate::And(Box::new(self), Box::new(rhs))
    }
    pub fn or(self, rhs: Predicate<T>) -> Predicate<T> {
        Predicate::Or(Box::new(self), Box::new(rhs))
    }
    pub fn not(self) -> Predicate<T> {
        Predicate::Not(Box::new(self))
    }
    /// Construct a simple predicate function
    pub fn predicate<F, S>(f: F, label: S) -> Predicate<T>
    where
        F: for<'t> Fn(&'t T) -> bool + Send + Sync + 'static,
        S: Into<String>,
    {
        Predicate::Predicate(Arc::new(f), label.into())
    }
}

/// Convenient implementations that rely on `Debug` to provide output on falsification, and
/// `PartialEq` to provide equality. If you wish to create predicates for `?Debug` types, use the
/// `Predicate` or `Equal` constructors directly.
impl<T: PartialEq + Debug + 'static> Predicate<T> {
    /// Construct a Predicate that expects two `T`s to be equal
    pub fn equal(t: T) -> Predicate<T> {
        Predicate::Equal(Arc::new(t), Arc::new(T::eq), Arc::new(show_debug))
    }
    /// Construct a Predicate that expects two `T`s to be non-equal
    pub fn not_equal(t: T) -> Predicate<T> {
        Predicate::Equal(Arc::new(t), Arc::new(T::eq), Arc::new(show_debug)).not()
    }
}

/// Predicates on iterable types, those convertible into iterators via IntoIterator (e.g. Vec<_>)
impl<Elem, T> Predicate<T>
where
    T: Send + Sync + 'static,
    for<'a> &'a T: IntoIterator<Item = &'a Elem>,
    Elem: Debug + Send + Sync + 'static,
{
    /// Construct a predicate that all elements of an iterable type match a given predicate
    /// If the iterable is empty, the predicate will succeed
    pub fn all(pred: Predicate<Elem>) -> Predicate<T> {
        Predicate::All(Arc::new(pred))
    }

    /// Construct a predicate that at least one element of an iterable type match a given predicate
    /// If the iterable is empty, the predicate will fail
    pub fn any(pred: Predicate<Elem>) -> Predicate<T> {
        Predicate::Any(Arc::new(pred))
    }
}

/// Predicates on types which are an `Iterator`
impl<'e, Elem, Iter> Predicate<Iter>
where
    Iter: Iterator<Item = &'e Elem> + Clone,
    Elem: Debug + Send + Sync + 'static,
{
    /// Construct a predicate that all elements of an Iterator match a given predicate
    /// If the Iterator is empty, the predicate will succeed
    pub fn iter_all(pred: Predicate<Elem>) -> Predicate<Iter> {
        Predicate::All(Arc::new(OverIterator(pred)))
    }

    /// Construct a predicate that at least one element of an Iterator match a given predicate
    /// If the iterator is empty, the predicate will fail
    pub fn iter_any(pred: Predicate<Elem>) -> Predicate<Iter> {
        Predicate::Any(Arc::new(OverIterator(pred)))
    }
}

impl<U: Send + Sync + 'static> Predicate<U> {
    /// Lift a predicate over a projection from `T -> &U`. This constructs a Predicate<T> from a
    /// predicate on some field (or arbitrary projection) of type `U`.
    ///
    /// This allows:
    ///   * Creating a Predicate on a struct from a predicate on a field (or field of a field) of
    ///     that struct.
    ///   * Creating a Predicate on a type from a predicate on some value computable from that type
    ///
    /// Compared to writing an arbitrary function using the `predicate()` method, an
    /// `over` projection allows for more minimal falsification and better error reporting in
    /// failure cases.
    ///
    /// Use `over` when your projection function returns a reference. If you need to return a value
    /// (for example, a temporary whose reference lifetime would not escape the function), use
    /// `over_value`.
    pub fn over<F, T, P>(self, project: F, path: P) -> Predicate<T>
    where
        F: Fn(&T) -> &U + Send + Sync + 'static,
        P: Into<String>,
        T: 'static,
    {
        Predicate::Over(Arc::new(OverPred::ByRef(self, Arc::new(project), path.into())))
    }

    /// Lift a predicate over a projection from `T -> U`. This constructs a Predicate<T> from a
    /// predicate on some field (or arbitrary projection) of type `U`.
    ///
    /// This allows:
    ///   * Creating a Predicate on a struct from a predicate on a field (or field of a field) of
    ///     that struct.
    ///   * Creating a Predicate on a type from a predicate on some value computable from that type
    ///
    /// Compared to writing an arbitrary function using the `predicate()` method, an
    /// `over` projection allows for more minimal falsification and better error reporting in
    /// failure cases.
    ///
    /// Use `over_value` when your projection function needs to return a value. If you can return a
    /// reference, use `over`.
    pub fn over_value<F, T, P>(self, project: F, path: P) -> Predicate<T>
    where
        F: Fn(&T) -> U + Send + Sync + 'static,
        P: Into<String>,
        T: 'static,
    {
        Predicate::Over(Arc::new(OverPred::ByValue(self, Arc::new(project), path.into())))
    }
}

/// A macro for allowing more ergonomic projection of predicates 'over' some projection function
/// that focuses on a subset of a data type.
///
/// Specify the name of the parent type, the field to focus on, and then pass in the predicate over
/// that field
///
/// usage: over!(Type:field, predicate)
///
/// e.g.
///
/// ```
/// let predicate = over!(RemoteDevice:name, P::equal(Some("INCORRECT_NAME".to_string())));
/// ```
#[macro_export]
macro_rules! over {
    ($type:ty : $selector:tt, $pred:expr) => {
        $pred.over(|var: &$type| &var.$selector, format!(".{}", stringify!($selector)))
    };
}

/// A simple macro to allow idiomatic assertion of predicates, producing well formatted
/// falsifications if the predicate fails.
///
/// usage:
///
/// ```
/// let predicate = correct_name().or(correct_address());
/// assert_satisfies!(&test_peer(), predicate);
/// ```
#[macro_export]
macro_rules! assert_satisfies {
    ($subject:expr, $pred:expr) => {
        if let Err(msg) = $pred.assert_satisfied($subject) {
            panic!("{}", msg.0)
        }
    };
}