heapdump_vmo/
allocations_table_v1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use static_assertions::const_assert;
use std::collections::HashSet;
use std::mem::{align_of, size_of};
use std::sync::atomic::AtomicU32;
use std::sync::atomic::Ordering::{Relaxed, SeqCst};

use crate::memory_mapped_vmo::{MemoryMappable, MemoryMappedVmo};
pub use crate::resources_table_v1::ResourceKey;

type NodeIndex = u32;
type AtomicNodeIndex = AtomicU32;
type BucketHeads = [AtomicNodeIndex; NUM_BUCKETS];
const NUM_BUCKETS: usize = 1 << 16;
const NODE_INVALID: NodeIndex = NodeIndex::MAX;

/// Minimum memory alignment of an allocation table.
pub const MIN_ALIGNMENT: usize = align_of::<Node>();
const_assert!(MIN_ALIGNMENT % align_of::<BucketHeads>() == 0);

#[repr(C)]
#[derive(Debug)]
pub struct Node {
    next: AtomicNodeIndex,
    pub address: u64,
    pub size: u64,
    pub timestamp: zx::MonotonicInstant,
    pub thread_info_key: ResourceKey,
    pub stack_trace_key: ResourceKey,
}

// SAFETY: Our accessor functions never access this type's memory non-atomically.
unsafe impl MemoryMappable for AtomicNodeIndex {}
unsafe impl MemoryMappable for Node {}

/// Computes the capacity (number of nodes) of a memory region given its size (bytes).
fn compute_nodes_count(num_bytes: usize) -> Result<usize, crate::Error> {
    let Some(nodes_size) = num_bytes.checked_sub(size_of::<BucketHeads>()) else {
        return Err(crate::Error::BufferTooSmall);
    };

    let num_nodes = nodes_size / size_of::<Node>();
    if num_nodes > NODE_INVALID as usize {
        return Err(crate::Error::BufferTooBig);
    }

    Ok(num_nodes)
}

/// Mediates write access to a VMO containing an hash table of allocated blocks indexed by block
/// address.
///
/// All the updates happen atomically so that, at any time, snapshotting the VMO always results in a
/// coherent snapshot of the table.
///
/// Hash collisions are handled by maintaining per-bucket linked lists. Specifically, an array of
/// list heads, one for each bucket, is stored at the beginning of the VMO. The remaining part of
/// the VMO contains the linked list nodes.
pub struct AllocationsTableWriter {
    storage: MemoryMappedVmo,

    // Free nodes are managed by a simple watermark allocator and the capacity of the hash table
    // (i.e. the maximum number of nodes) is fixed.
    //
    // In order to make it possible to reuse nodes that have been freed, we also keep a linked list
    // of free nodes in addition to the watermark. When it is not empty, nodes are allocated by
    // popping the head of this list instead of incrementing the watermark.
    //
    // The watermark and the free list are not necessary for reading a snapshot. Therefore, we do
    // not need to store them in the VMO or to offer any snapshot guarantee about them, and they do
    // not need to be updated atomically.
    watermark: NodeIndex,
    max_num_nodes: usize,
    free_list_head: NodeIndex,
}

impl AllocationsTableWriter {
    /// Initializes a VMO as an empty table and creates an AllocationsTableWriter to write into it.
    ///
    /// # Safety
    /// The caller must guarantee that the `vmo` is not accessed by others while the returned
    /// instance is alive.
    pub fn new(vmo: &zx::Vmo) -> Result<AllocationsTableWriter, crate::Error> {
        let storage = MemoryMappedVmo::new_readwrite(vmo)?;
        let max_num_nodes = compute_nodes_count(storage.vmo_size())?;

        let mut result = AllocationsTableWriter {
            storage,
            watermark: 0,
            max_num_nodes,
            free_list_head: NODE_INVALID,
        };

        // Clear the hash table.
        for bucket_index in 0..NUM_BUCKETS {
            result.bucket_head_at(bucket_index).store(NODE_INVALID, SeqCst);
        }

        Ok(result)
    }

    /// This is the hash function: it turns a block address into a bucket number.
    fn compute_bucket_index(address: u64) -> usize {
        // TODO(fdurso): The hash values generated by this function are not uniformly distributed.
        let tmp = (address >> 4) as usize;
        tmp % NUM_BUCKETS
    }

    /// Returns a mutable reference to the head of a given bucket's linked list.
    fn bucket_head_at(&mut self, bucket_index: usize) -> &mut AtomicNodeIndex {
        // The bucket heads are stored at the beginning of the VMO.
        let bucket_heads = self.storage.get_object_mut::<BucketHeads>(0).unwrap();
        &mut bucket_heads[bucket_index]
    }

    /// Returns a mutable reference to a given node.
    fn node_at(&mut self, node_index: NodeIndex) -> &mut Node {
        // The nodes are stored consecutively immediately after the bucket heads.
        let byte_offset = size_of::<BucketHeads>() + node_index as usize * size_of::<Node>();
        self.storage.get_object_mut::<Node>(byte_offset).unwrap()
    }

    /// Inserts a new entry in the hash table.
    ///
    /// Returns Ok(true) if it has been inserted, Ok(false) if a previous entry with the same
    /// address already existed, or an error if no free nodes are available.
    pub fn insert_allocation(
        &mut self,
        address: u64,
        size: u64,
        thread_info_key: ResourceKey,
        stack_trace_key: ResourceKey,
        timestamp: zx::MonotonicInstant,
    ) -> Result<bool, crate::Error> {
        let bucket_index = Self::compute_bucket_index(address);
        let old_head = self.bucket_head_at(bucket_index).load(Relaxed);

        // Verify that no entry with the same address already exists.
        let mut curr_index = old_head;
        while curr_index != NODE_INVALID {
            let curr_data = self.node_at(curr_index);
            if curr_data.address == address {
                return Ok(false);
            }
            curr_index = curr_data.next.load(Relaxed);
        }

        // Insert a new entry at the head of the list.
        let new_index = self.pop_free_node()?;
        *self.node_at(new_index) = Node {
            address,
            size,
            timestamp,
            thread_info_key,
            stack_trace_key,
            next: AtomicNodeIndex::new(old_head),
        };
        self.bucket_head_at(bucket_index).store(new_index, SeqCst);
        Ok(true)
    }

    /// Removes an entry from the hash table and returns the value of the removed entry's size
    /// field.
    pub fn erase_allocation(&mut self, address: u64) -> Option<u64> {
        let bucket_index = Self::compute_bucket_index(address);

        // Search the entry to be removed.
        let mut prev_index = None;
        let mut curr_index = self.bucket_head_at(bucket_index).load(Relaxed);
        while curr_index != NODE_INVALID {
            let curr_data = self.node_at(curr_index);
            let curr_data_size = curr_data.size;
            let curr_data_next = curr_data.next.load(Relaxed);

            // Is this the entry we were looking for?
            if curr_data.address == address {
                if let Some(prev_index) = prev_index {
                    self.node_at(prev_index).next.store(curr_data_next, SeqCst);
                } else {
                    self.bucket_head_at(bucket_index).store(curr_data_next, SeqCst);
                }
                self.push_free_node(curr_index);
                return Some(curr_data_size);
            }

            prev_index = Some(curr_index);
            curr_index = curr_data.next.load(Relaxed);
        }

        // Not found.
        None
    }

    /// Atomically updates metadata for the given address in the hash table.
    ///
    /// Returns Ok(Some(old_size)) if it has been updated, Ok(None) if no entry with the given
    /// address exists, or an error if no free nodes are available.
    pub fn replace_allocation(
        &mut self,
        address: u64,
        size: u64,
        thread_info_key: ResourceKey,
        stack_trace_key: ResourceKey,
        timestamp: zx::MonotonicInstant,
    ) -> Result<Option<u64>, crate::Error> {
        // Updates are implemented as an atomic insertion of a new node at the head followed by an
        // atomic deletion of the old node. Therefore, while an update is in progress, two nodes
        // with the same address may exist. `AllocationsTableReader`` is aware of this, and it
        // only returns the first one (i.e. the newer one) in such a case.
        // Note: the body of this function has been split in two parts to test reads of the
        // intermediate state.

        // Check preconditions and insert the new node.
        let Some((new_node, old_node, old_size)) = self.replace_allocation_begin(
            address,
            size,
            thread_info_key,
            stack_trace_key,
            timestamp,
        )?
        else {
            return Ok(None);
        };

        // Remove the old node.
        self.replace_allocation_end(new_node, old_node);
        Ok(Some(old_size))
    }

    /// First part of `replace_allocation`. Locates the old node and inserts the new one at the head
    fn replace_allocation_begin(
        &mut self,
        address: u64,
        size: u64,
        thread_info_key: ResourceKey,
        stack_trace_key: ResourceKey,
        timestamp: zx::MonotonicInstant,
    ) -> Result<Option<(NodeIndex, NodeIndex, u64)>, crate::Error> {
        let bucket_index = Self::compute_bucket_index(address);
        let old_head = self.bucket_head_at(bucket_index).load(Relaxed);

        // Search the existing entry with the requested address.
        let (old_index, old_size) = 'search: {
            let mut curr_index = old_head;
            while curr_index != NODE_INVALID {
                let curr_data = self.node_at(curr_index);
                if curr_data.address == address {
                    break 'search (curr_index, curr_data.size); // Found.
                }
                curr_index = curr_data.next.load(Relaxed);
            }

            return Ok(None); // Not found.
        };

        // Insert a new entry at the head of the list.
        let new_index = self.pop_free_node()?;
        *self.node_at(new_index) = Node {
            address,
            size,
            timestamp,
            thread_info_key,
            stack_trace_key,
            next: AtomicNodeIndex::new(old_head),
        };
        self.bucket_head_at(bucket_index).store(new_index, SeqCst);
        Ok(Some((new_index, old_index, old_size)))
    }

    // Second part of `replace_allocation`. Removes the old node.
    fn replace_allocation_end(&mut self, new_node: NodeIndex, old_node: NodeIndex) {
        let tail = self.node_at(old_node).next.load(Relaxed);

        // Note: `replace_allocation_begin` always inserts the new node at the head; therefore, the
        // old node will always be one of its successors.
        let mut scan_node = new_node;
        loop {
            assert_ne!(scan_node, NODE_INVALID, "the old node must be a successor of new node");
            let scan_data = self.node_at(scan_node);
            if scan_data.next.load(Relaxed) == old_node {
                scan_data.next.store(tail, SeqCst);
                self.push_free_node(old_node);
                return;
            }
            scan_node = scan_data.next.load(Relaxed);
        }
    }

    /// Inserts a node into the free list.
    fn push_free_node(&mut self, index: NodeIndex) {
        let current_head = self.free_list_head;

        let node_data = self.node_at(index);
        node_data.next.store(current_head, Relaxed);

        self.free_list_head = index;
    }

    /// Takes a node from the free list or allocates a new one if the free list is empty.
    fn pop_free_node(&mut self) -> Result<NodeIndex, crate::Error> {
        if self.free_list_head != NODE_INVALID {
            // Pop a node from the free list.
            let result = self.free_list_head;
            self.free_list_head = self.node_at(result).next.load(Relaxed);
            Ok(result)
        } else if (self.watermark as usize) < self.max_num_nodes {
            // Allocate one node with the watermark allocator.
            let result = self.watermark;
            self.watermark += 1;
            Ok(result)
        } else {
            // We are out of space.
            Err(crate::Error::OutOfSpace)
        }
    }
}

/// Mediates read access to a VMO written by AllocationsTableWriter.
pub struct AllocationsTableReader {
    storage: MemoryMappedVmo,
    max_num_nodes: usize,
}

impl AllocationsTableReader {
    pub fn new(vmo: &zx::Vmo) -> Result<AllocationsTableReader, crate::Error> {
        let storage = MemoryMappedVmo::new_readonly(vmo)?;
        let max_num_nodes = compute_nodes_count(storage.vmo_size())?;

        Ok(AllocationsTableReader { storage, max_num_nodes })
    }

    /// Iterates all the allocated blocks that are present in the hash table.
    pub fn iter(&self) -> impl Iterator<Item = Result<&Node, crate::Error>> {
        // The bucket heads are stored at the beginning of the VMO.
        let bucket_heads = self.storage.get_object::<BucketHeads>(0).unwrap();
        bucket_heads.iter().map(|head| self.iterate_bucket(head.load(Relaxed))).flatten()
    }

    fn iterate_bucket(&self, head: NodeIndex) -> impl Iterator<Item = Result<&Node, crate::Error>> {
        let mut curr_index = head;
        let mut seen_addresses = HashSet::new();
        std::iter::from_fn(move || {
            while curr_index != NODE_INVALID {
                if (curr_index as usize) < self.max_num_nodes {
                    // The nodes are stored consecutively immediately after the bucket heads.
                    let byte_offset =
                        size_of::<BucketHeads>() + curr_index as usize * size_of::<Node>();
                    let curr_data = self.storage.get_object::<Node>(byte_offset).unwrap();
                    curr_index = curr_data.next.load(Relaxed);

                    // Only return the first occurrence of each address. This ensures that only the
                    // newer record is returned if an update is in progress.
                    if seen_addresses.insert(curr_data.address) {
                        return Some(Ok(curr_data));
                    }
                } else {
                    return Some(Err(crate::Error::InvalidInput));
                };
            }

            None
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use assert_matches::assert_matches;
    use std::alloc::Layout;
    use std::collections::HashMap;

    // Some tests below use this constant to ensure that each bucket is been used at least 10 times.
    const NUM_ITERATIONS: usize = NUM_BUCKETS * 10;

    // Ensure we allocate enough nodes to store all the blocks the tests need plus some buffer.
    const NUM_NODES: usize = NUM_ITERATIONS + 100;

    // Placeholder values used in the tests below:
    const THREAD_INFO_RESOURCE_KEY_1: ResourceKey = ResourceKey::from_raw(0x1122);
    const THREAD_INFO_RESOURCE_KEY_2: ResourceKey = ResourceKey::from_raw(0x3344);
    const STACK_TRACE_RESOURCE_KEY_1: ResourceKey = ResourceKey::from_raw(0x1212);
    const STACK_TRACE_RESOURCE_KEY_2: ResourceKey = ResourceKey::from_raw(0x3434);

    struct TestStorage {
        vmo: zx::Vmo,
    }

    impl TestStorage {
        pub fn new(num_nodes: usize) -> TestStorage {
            let nodes_layout = Layout::array::<Node>(num_nodes).unwrap();
            let (layout, nodes_offset) = Layout::new::<BucketHeads>().extend(nodes_layout).unwrap();
            assert_eq!(nodes_offset, size_of::<BucketHeads>());

            let vmo = zx::Vmo::create(layout.size() as u64).unwrap();
            TestStorage { vmo }
        }

        fn create_writer(&self) -> AllocationsTableWriter {
            AllocationsTableWriter::new(&self.vmo).unwrap()
        }

        fn create_reader(&self) -> AllocationsTableReader {
            AllocationsTableReader::new(&self.vmo).unwrap()
        }
    }

    #[test]
    fn test_cannot_insert_twice() {
        let storage = TestStorage::new(NUM_NODES);
        let mut writer = storage.create_writer();

        let result = writer.insert_allocation(
            0x1234,
            0x5678,
            THREAD_INFO_RESOURCE_KEY_1,
            STACK_TRACE_RESOURCE_KEY_1,
            zx::MonotonicInstant::ZERO,
        );
        assert_eq!(result, Ok(true));

        let result = writer.insert_allocation(
            0x1234,
            0x5678,
            THREAD_INFO_RESOURCE_KEY_1,
            STACK_TRACE_RESOURCE_KEY_1,
            zx::MonotonicInstant::ZERO,
        );
        assert_eq!(result, Ok(false));
    }

    #[test]
    fn test_cannot_erase_twice() {
        let storage = TestStorage::new(NUM_NODES);
        let mut writer = storage.create_writer();

        let result = writer.insert_allocation(
            0x1234,
            0x5678,
            THREAD_INFO_RESOURCE_KEY_1,
            STACK_TRACE_RESOURCE_KEY_1,
            zx::MonotonicInstant::ZERO,
        );
        assert_eq!(result, Ok(true));

        let result = writer.erase_allocation(0x1234);
        assert_eq!(result, Some(0x5678));

        let result = writer.erase_allocation(0x1234);
        assert_eq!(result, None);
    }

    #[test]
    fn test_out_of_space() {
        let storage = TestStorage::new(NUM_NODES);
        let mut writer = storage.create_writer();

        // Test that inserting up to `NUM_NODES` works.
        for i in 0..NUM_NODES {
            let result = writer.insert_allocation(
                i as u64,
                1,
                THREAD_INFO_RESOURCE_KEY_1,
                STACK_TRACE_RESOURCE_KEY_1,
                zx::MonotonicInstant::ZERO,
            );
            assert_eq!(result, Ok(true));
        }

        // Test that inserting an extra node fails.
        let result = writer.insert_allocation(
            NUM_NODES as u64,
            1,
            THREAD_INFO_RESOURCE_KEY_1,
            STACK_TRACE_RESOURCE_KEY_1,
            zx::MonotonicInstant::ZERO,
        );
        assert_eq!(result, Err(crate::Error::OutOfSpace));

        // Test that removing an element and then inserting again succeeds.
        let result = writer.erase_allocation(0);
        assert_eq!(result, Some(1));
        let result = writer.insert_allocation(
            NUM_NODES as u64,
            1,
            THREAD_INFO_RESOURCE_KEY_1,
            STACK_TRACE_RESOURCE_KEY_1,
            zx::MonotonicInstant::ZERO,
        );
        assert_eq!(result, Ok(true));
    }

    #[test]
    fn test_loop_insert_then_erase() {
        let storage = TestStorage::new(NUM_NODES);
        let mut writer = storage.create_writer();

        for i in 0..NUM_ITERATIONS {
            let result = writer.insert_allocation(
                i as u64,
                1,
                THREAD_INFO_RESOURCE_KEY_1,
                STACK_TRACE_RESOURCE_KEY_1,
                zx::MonotonicInstant::ZERO,
            );
            assert_eq!(result, Ok(true), "failed to insert 0x{:x}", i);

            let result = writer.erase_allocation(i as u64);
            assert_eq!(result, Some(1), "failed to erase 0x{:x}", i);
        }
    }

    #[test]
    fn test_bulk_insert_then_erase_same_order() {
        let storage = TestStorage::new(NUM_NODES);
        let mut writer = storage.create_writer();

        for i in 0..NUM_ITERATIONS {
            let result = writer.insert_allocation(
                i as u64,
                1,
                THREAD_INFO_RESOURCE_KEY_1,
                STACK_TRACE_RESOURCE_KEY_1,
                zx::MonotonicInstant::ZERO,
            );
            assert_eq!(result, Ok(true), "failed to insert 0x{:x}", i);
        }
        for i in 0..NUM_ITERATIONS {
            let result = writer.erase_allocation(i as u64);
            assert_eq!(result, Some(1), "failed to erase 0x{:x}", i);
        }
    }

    #[test]
    fn test_bulk_insert_then_erase_reverse_order() {
        let storage = TestStorage::new(NUM_NODES);
        let mut writer = storage.create_writer();

        for i in 0..NUM_ITERATIONS {
            let result = writer.insert_allocation(
                i as u64,
                1,
                THREAD_INFO_RESOURCE_KEY_1,
                STACK_TRACE_RESOURCE_KEY_1,
                zx::MonotonicInstant::ZERO,
            );
            assert_eq!(result, Ok(true), "failed to insert 0x{:x}", i);
        }
        for i in (0..NUM_ITERATIONS).rev() {
            let result = writer.erase_allocation(i as u64);
            assert_eq!(result, Some(1), "failed to erase 0x{:x}", i);
        }
    }

    #[test]
    fn test_read_empty() {
        let storage = TestStorage::new(NUM_NODES);

        // Initialize the hash table.
        storage.create_writer();

        // Read it back and verify that it is empty.
        let reader = storage.create_reader();
        assert_eq!(reader.iter().count(), 0);
    }

    #[test]
    fn test_read_populated() {
        let storage = TestStorage::new(NUM_NODES);

        // Fill the hash table.
        let mut writer = storage.create_writer();
        let mut expected_map = HashMap::new();
        for i in 0..NUM_ITERATIONS as u64 {
            let thread_info_key =
                if i % 4 >= 2 { THREAD_INFO_RESOURCE_KEY_1 } else { THREAD_INFO_RESOURCE_KEY_2 };
            let stack_trace_key =
                if i % 2 == 0 { STACK_TRACE_RESOURCE_KEY_1 } else { STACK_TRACE_RESOURCE_KEY_2 };
            let timestamp =
                zx::MonotonicInstant::from_nanos((NUM_ITERATIONS as i64 / 2) - (i as i64)); // test negative values too
            let result =
                writer.insert_allocation(i, 1, thread_info_key, stack_trace_key, timestamp);
            assert_eq!(result, Ok(true), "failed to insert 0x{:x}", i);

            expected_map.insert(i, (1, thread_info_key, stack_trace_key, timestamp));
        }

        // Read it back and verify.
        let reader = storage.create_reader();
        let mut actual_map = HashMap::new();
        for node in reader.iter() {
            let Node { address, size, thread_info_key, stack_trace_key, timestamp, .. } =
                node.unwrap();
            assert!(
                actual_map
                    .insert(*address, (*size, *thread_info_key, *stack_trace_key, *timestamp))
                    .is_none(),
                "address 0x{:x} was read more than once",
                address
            );
        }

        assert_eq!(actual_map, expected_map);
    }

    #[test]
    fn test_read_bad_bucket_head() {
        let storage = TestStorage::new(NUM_NODES);

        // Initialize the hash table and corrupt one of the heads.
        let mut writer = storage.create_writer();
        writer.bucket_head_at(NUM_BUCKETS / 2).store(NODE_INVALID - 1, SeqCst);

        // Try to read it back and verify that the iterator returns an error.
        let reader = storage.create_reader();
        let contains_error = reader.iter().any(|e| e.is_err());

        assert!(contains_error);
    }

    #[test]
    fn test_read_bad_node_next() {
        let storage = TestStorage::new(NUM_NODES);

        // Initialize the hash table and insert a node with a bad next pointer.
        let mut writer = storage.create_writer();
        writer.bucket_head_at(NUM_BUCKETS / 2).store(0, SeqCst);
        *writer.node_at(0) = Node {
            next: AtomicNodeIndex::new(NODE_INVALID - 1),
            address: 0x1234,
            size: 0x5678,
            thread_info_key: THREAD_INFO_RESOURCE_KEY_1,
            stack_trace_key: STACK_TRACE_RESOURCE_KEY_1,
            timestamp: zx::MonotonicInstant::from_nanos(99999999),
        };

        // Try to read it back and verify that the iterator returns an error.
        let reader = storage.create_reader();
        let contains_error = reader.iter().any(|e| e.is_err());

        assert!(contains_error);
    }

    #[test]
    fn test_replace() {
        let storage = TestStorage::new(NUM_NODES);
        let mut writer = storage.create_writer();

        let result = writer.insert_allocation(
            0x1234,
            0x1111,
            THREAD_INFO_RESOURCE_KEY_1,
            STACK_TRACE_RESOURCE_KEY_1,
            zx::MonotonicInstant::ZERO,
        );
        assert_eq!(result, Ok(true));

        // Verify initial contents.
        let reader = storage.create_reader();
        let mut iter = reader.iter();
        assert_matches!(iter.next(), Some(Ok(Node { address: 0x1234, size: 0x1111, .. })));
        assert_matches!(iter.next(), None);

        let result = writer.replace_allocation_begin(
            0x1234,
            0x2222,
            THREAD_INFO_RESOURCE_KEY_2,
            STACK_TRACE_RESOURCE_KEY_2,
            zx::MonotonicInstant::ZERO,
        );
        let Ok(Some((new_node, old_node, old_size))) = result else {
            panic!("Update begin is supposed to succeed in this test, got {:?} instead", result)
        };
        assert_eq!(old_size, 0x1111);

        // Verify that intermediate contents already reflect the update.
        let reader = storage.create_reader();
        let mut iter = reader.iter();
        assert_matches!(iter.next(), Some(Ok(Node { address: 0x1234, size: 0x2222, .. })));
        assert_matches!(iter.next(), None);

        writer.replace_allocation_end(new_node, old_node);

        // Verify that final contents reflect the update.
        let reader = storage.create_reader();
        let mut iter = reader.iter();
        assert_matches!(iter.next(), Some(Ok(Node { address: 0x1234, size: 0x2222, .. })));
        assert_matches!(iter.next(), None);
    }

    #[test]
    fn test_cannot_replace_nonexisting() {
        let storage = TestStorage::new(NUM_NODES);
        let mut writer = storage.create_writer();

        let result = writer.replace_allocation(
            0x1234,
            0x5678,
            THREAD_INFO_RESOURCE_KEY_1,
            STACK_TRACE_RESOURCE_KEY_1,
            zx::MonotonicInstant::ZERO,
        );
        assert_eq!(result, Ok(None));
    }
}