fidl_fuchsia_hardware_display_types/fidl_fuchsia_hardware_display_types.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
// WARNING: This file is machine generated by fidlgen.
#![warn(clippy::all)]
#![allow(unused_parens, unused_mut, unused_imports, nonstandard_style)]
use bitflags::bitflags;
use fidl::client::QueryResponseFut;
use fidl::encoding::{MessageBufFor, ProxyChannelBox, ResourceDialect};
use fidl::endpoints::{ControlHandle as _, Responder as _};
use futures::future::{self, MaybeDone, TryFutureExt};
use zx_status;
/// See [`fuchsia.hardware.display.types/ConfigStamp`].
pub type ConfigStampValue = u64;
/// Type of the internal value in [`fuchsia.hardware.display.types/DisplayId`].
pub type DisplayIdValue = u64;
/// Specifies how individual pixels are arranged in an image buffer.
///
/// The tiling format influences other image parameters, such as dimensions
/// and pixel format, that are supported by the display engines. Display engine
/// drivers currently express this knowledge by setting buffer constraints in
/// sysmem, and by rejecting invalid combinations.
///
/// Values other than [`IMAGE_TILING_TYPE_LINEAR`] and
/// [`IMAGE_TILING_TYPE_CAPTURE`] are an escape hatch. The driver and image
/// producer are responsible for agreeing on the meaning of the value, through
/// some mechanism outside the scope of this API.
pub type ImageTilingTypeIdValue = u32;
/// The tiling used by the display engine's capture feature.
///
/// This value is used as a signal that the image buffer will used by the
/// display engine to store displayed contents, and therefore is a slight abuse
/// of the "tiling" semantics.
///
/// Like every other tiling value, this introduces constraints on image
/// parameters such as dimensions and pixel format.
pub const IMAGE_TILING_TYPE_CAPTURE: u32 = 10;
/// Equivalent to Vulkan's linear tiling.
///
/// Pixels are arranged in the image buffer in row-major order. Each row may
/// have some padding bytes.
///
/// Default for [`ImageTilingTypeIdValue`].
pub const IMAGE_TILING_TYPE_LINEAR: u32 = 0;
pub const INVALID_CONFIG_STAMP_VALUE: u64 = 0;
/// Invalid id for displays, images, and events.
pub const INVALID_DISP_ID: u64 = 0;
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u8)]
pub enum AlphaMode {
/// Alpha is disabled for the plane (default).
Disable = 0,
/// Plane alpha is premultiplied.
Premultiplied = 1,
/// Hardware should multiply the alpha and color channels when blending.
HwMultiply = 2,
}
impl AlphaMode {
#[inline]
pub fn from_primitive(prim: u8) -> Option<Self> {
match prim {
0 => Some(Self::Disable),
1 => Some(Self::Premultiplied),
2 => Some(Self::HwMultiply),
_ => None,
}
}
#[inline]
pub const fn into_primitive(self) -> u8 {
self as u8
}
#[deprecated = "Strict enums should not use `is_unknown`"]
#[inline]
pub fn is_unknown(&self) -> bool {
false
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u8)]
pub enum ClientCompositionOpcode {
/// The client should configure the layer to use a source image.
ClientUseImage = 0,
/// The client should compose all layers with CLIENT_MERGE_BASE and CLIENT_MERGE_SRC
/// into a new, single primary layer at the CLIENT_MERGE_BASE layer's z-order. The
/// driver must accept a fullscreen layer with the default pixel format, but may
/// accept other layer parameters.
///
/// CLIENT_MERGE_BASE will only be set on one layer per display.
ClientMergeBase = 1,
/// See CLIENT_MERGE_BASE.
ClientMergeSrc = 2,
/// The client should provide a new image produced by scaling the source image
/// such that the dimensions of the new image's src_frame and dest_frame are
/// equal to the dimensions of the current image's dest_frame.
ClientFrameScale = 3,
/// The client should provide a new image produced by clipping the source image
/// to the region specified by src_frame.
ClientSrcFrame = 4,
/// The client should provide a new image produced by applying the desired
/// transformation, so that TRANSFORM_IDENTITY can be specified.
ClientTransform = 5,
/// The client should apply the color conversion itself.
ClientColorConversion = 6,
/// The client should apply the alpha itself.
ClientAlpha = 7,
}
impl ClientCompositionOpcode {
#[inline]
pub fn from_primitive(prim: u8) -> Option<Self> {
match prim {
0 => Some(Self::ClientUseImage),
1 => Some(Self::ClientMergeBase),
2 => Some(Self::ClientMergeSrc),
3 => Some(Self::ClientFrameScale),
4 => Some(Self::ClientSrcFrame),
5 => Some(Self::ClientTransform),
6 => Some(Self::ClientColorConversion),
7 => Some(Self::ClientAlpha),
_ => None,
}
}
#[inline]
pub const fn into_primitive(self) -> u8 {
self as u8
}
#[deprecated = "Strict enums should not use `is_unknown`"]
#[inline]
pub fn is_unknown(&self) -> bool {
false
}
}
/// The result of checking a draft display config.
///
/// Values are produced by [`fuchsia.hardware.display/Coordinator.CheckConfig`].
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u32)]
pub enum ConfigResult {
/// The config is compatible with the current hardware.
Ok = 0,
/// The config is not compatible with any hardware.
InvalidConfig = 1,
/// The config layer assignment is not supported by the current hardware.
UnsupportedConfig = 2,
/// The config uses more than the number of connected displays.
TooManyDisplays = 3,
/// The config display modes are not supported by the current hardware.
///
/// The client should try a different set of displays or display modes.
UnsupportedDisplayModes = 4,
}
impl ConfigResult {
#[inline]
pub fn from_primitive(prim: u32) -> Option<Self> {
match prim {
0 => Some(Self::Ok),
1 => Some(Self::InvalidConfig),
2 => Some(Self::UnsupportedConfig),
3 => Some(Self::TooManyDisplays),
4 => Some(Self::UnsupportedDisplayModes),
_ => None,
}
}
#[inline]
pub const fn into_primitive(self) -> u32 {
self as u32
}
#[deprecated = "Strict enums should not use `is_unknown`"]
#[inline]
pub fn is_unknown(&self) -> bool {
false
}
}
/// Transformations that can be applied by display hardware to input images.
///
/// The coordinate system transformations listed here can be implemented in
/// hardware by display engines, because they have straightforward
/// implementations for raster images.
///
/// Support for input image transformations (every member except for `IDENTITY`)
/// varies across display engines. This is because each transformation requires
/// non-trivial hardware modifications that have area (cost) and power
/// implications.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u8)]
pub enum CoordinateTransformation {
/// Image pixels are passed through without any change.
///
/// This is the only value guaranteed to be supported by all display engine
/// drivers.
Identity = 0,
/// Image pixels are reflected across a line meeting the image's center, parallel to the X axis.
///
/// This enum member's numeric value has a single bit set to 1. Any
/// transformation whose value has this bit set involves an X reflection.
///
/// This transformation is also called an "X flip".
///
/// Example:
/// |a b c d| |i j k l|
/// |e f g h| -> |e f g h|
/// |i j k l| |a b c d|
ReflectX = 1,
/// Image pixels are reflected across a line meeting the image's center, parallel to the Y axis.
///
/// This enum member's numeric value has a single bit set to 1. Any
/// transformation whose value has this bit set involves an Y reflection.
///
/// This transformation is also called an "Y flip".
///
/// Example:
/// |a b c d| |d c b a|
/// |e f g h| -> |h g f e|
/// |i j k l| |l k j i|
ReflectY = 2,
/// Image pixels are rotated around the image's center counter-clockwise by 180 degrees.
///
/// This is equivalent to applying the `REFLECT_X` and `REFLECT_Y`
/// transforms. `REFLECT_X` and `REFLECT_Y` are commutative, so their
/// ordering doesn't matter.
///
/// Example:
/// |a b c d| |l k j i|
/// |e f g h| -> |h g f e|
/// |i j k l| |d c b a|
RotateCcw180 = 3,
/// Image pixels are rotated around the image's center counter-clockwise by 90 degrees.
///
/// The image produced by this transformation has different dimensions from
/// the input image.
///
/// This enum member's numeric value has a single bit set to 1. Any
/// transformation whose value has this bit set involves a 90-degree
/// counter-clockwise rotation.
///
/// Example:
/// |a b c d| |d h l|
/// |e f g h| -> |c g k|
/// |i j k l| |b f j|
/// |a e i|
RotateCcw90 = 4,
/// Image pixels are transformed using `ROTATE_CCW_90`, followed by `REFLECT_X`.
///
/// The image produced by this transformation has different dimensions from
/// the input image.
///
/// Example:
/// |a b c d| |a e i|
/// |e f g h| -> |b f k|
/// |i j k l| |c g k|
/// |d h l|
RotateCcw90ReflectX = 5,
/// Image pixels are transformed using `ROTATE_CCW_90`, followed by `REFLECT_Y`.
///
/// The image produced by this transformation has different dimensions from
/// the input image.
///
/// Example:
/// |a b c d| |l h d|
/// |e f g h| -> |k g c|
/// |i j k l| |j f b|
/// |i e a|
RotateCcw90ReflectY = 6,
/// Image pixels are rotated around the image's center counter-clockwise by 270 degrees.
///
/// The image produced by this transformation has different dimensions from
/// the input image.
///
/// This is equivalent to applying the `ROTATE_CCW_90` transform, followed
/// by `REFLECT_X` and `REFLECT_Y`. `REFLECT_X` and `REFLECT_Y` are
/// commutative, so their ordering doesn't matter.
///
/// Example:
/// |a b c d| |i e a|
/// |e f g h| -> |j f b|
/// |i j k l| |k g c|
/// |l h d|
RotateCcw270 = 7,
}
impl CoordinateTransformation {
#[inline]
pub fn from_primitive(prim: u8) -> Option<Self> {
match prim {
0 => Some(Self::Identity),
1 => Some(Self::ReflectX),
2 => Some(Self::ReflectY),
3 => Some(Self::RotateCcw180),
4 => Some(Self::RotateCcw90),
5 => Some(Self::RotateCcw90ReflectX),
6 => Some(Self::RotateCcw90ReflectY),
7 => Some(Self::RotateCcw270),
_ => None,
}
}
#[inline]
pub const fn into_primitive(self) -> u8 {
self as u8
}
#[deprecated = "Strict enums should not use `is_unknown`"]
#[inline]
pub fn is_unknown(&self) -> bool {
false
}
}
/// A color constant.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Color {
/// The format of pixel data stored in `bytes`.
///
/// The format must use a single plane. The encoding of one pixel
/// must fit within the `bytes` array.
pub format: fidl_fuchsia_images2::PixelFormat,
/// The constant color, expressed as one pixel encoded using `format`.
///
/// The pixel is encoded using little-endian byte ordering and zero padding.
/// In other words, the bytes obtained by encoding the pixel using `format`
/// are stored starting at the first byte in the array. If the pixel
/// requires fewer bytes per pixel than the array size, any unused bytes
/// (towards the end of the array) must be set to 0 (zero).
pub bytes: [u8; 8],
}
impl fidl::Persistable for Color {}
/// Identifies an accepted display config.
///
/// This is a type-safe wrapper for a
/// [`fuchsia.hardware.display.types/ConfigStampValue`], which is a raw numeric
/// value.
///
/// Each successful call to [`fuchsia.hardware.display/Coordinator.ApplyConfig`]
/// generates a valid value. Values are reported in
/// [`fuchsia.hardware.display/Coordinator.Vsync`] events.
///
/// Generated values are strictly increasing (unique, strictly monotonic) within
/// the lifetime of a [`fuchsia.display/Coordinator`] connection.
///
/// [`fuchsia.hardware.display.types/INVALID_CONFIG_STAMP_VALUE`] represents an
/// invalid value.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct ConfigStamp {
pub value: u64,
}
impl fidl::Persistable for ConfigStamp {}
/// Unique identifier for a display device attached to the system.
///
/// [`fuchsia.hardware.display.types/INVALID_DISP_ID`] represents an invalid
/// value.
///
/// Values are unique within a [`fuchsia.hardware.display/Controller`]
/// connection. An external display will be associated with different display ID
/// values if it is disconnected and reconnected.
///
/// A display device may be identified by different values across boot cycles or
/// across different Controller connections. Software that needs to identify
/// displays (for example, to honor display-specific preferences) should use
/// [`fuchsia.hardware.display/Info`] identifiers, not display IDs.
///
/// This type is not related to the VESA DisplayID standard.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct DisplayId {
pub value: u64,
}
impl fidl::Persistable for DisplayId {}
/// The intended usage for a sysmem BufferCollection holding image buffers.
///
/// Each buffer in the collection will store a single image, which is intended
/// to be used as described below.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct ImageBufferUsage {
/// Specifies how individual pixels are arranged in an image buffer.
///
/// See [`fuchsia.hardware.display.types/ImageTilingTypeIdValue`].
pub tiling_type: u32,
}
impl fidl::Persistable for ImageBufferUsage {}
/// Describes how an image is stored in a buffer of a sysmem BufferCollection.
///
/// The buffer is dedicated to storing a single image. The properties below are
/// needed for decoding the image from the buffer.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct ImageMetadata {
/// The width and height of the image in pixels.
pub width: u32,
pub height: u32,
/// Specifies how individual pixels are arranged in an image buffer.
///
/// See [`fuchsia.hardware.display.types/ImageTilingTypeIdValue`].
pub tiling_type: u32,
}
impl fidl::Persistable for ImageMetadata {}
mod internal {
use super::*;
unsafe impl fidl::encoding::TypeMarker for AlphaMode {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
std::mem::align_of::<u8>()
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
std::mem::size_of::<u8>()
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
false
}
}
impl fidl::encoding::ValueTypeMarker for AlphaMode {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
*value
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Self, D> for AlphaMode {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.into_primitive(), offset);
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for AlphaMode {
#[inline(always)]
fn new_empty() -> Self {
Self::Disable
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u8>(offset);
*self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for ClientCompositionOpcode {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
std::mem::align_of::<u8>()
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
std::mem::size_of::<u8>()
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
false
}
}
impl fidl::encoding::ValueTypeMarker for ClientCompositionOpcode {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
*value
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Self, D>
for ClientCompositionOpcode
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.into_primitive(), offset);
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D>
for ClientCompositionOpcode
{
#[inline(always)]
fn new_empty() -> Self {
Self::ClientUseImage
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u8>(offset);
*self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for ConfigResult {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
std::mem::align_of::<u32>()
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
std::mem::size_of::<u32>()
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
false
}
}
impl fidl::encoding::ValueTypeMarker for ConfigResult {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
*value
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Self, D> for ConfigResult {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.into_primitive(), offset);
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for ConfigResult {
#[inline(always)]
fn new_empty() -> Self {
Self::Ok
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u32>(offset);
*self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for CoordinateTransformation {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
std::mem::align_of::<u8>()
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
std::mem::size_of::<u8>()
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
false
}
}
impl fidl::encoding::ValueTypeMarker for CoordinateTransformation {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
*value
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Self, D>
for CoordinateTransformation
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.into_primitive(), offset);
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D>
for CoordinateTransformation
{
#[inline(always)]
fn new_empty() -> Self {
Self::Identity
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u8>(offset);
*self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
Ok(())
}
}
impl fidl::encoding::ValueTypeMarker for Color {
type Borrowed<'a> = &'a Self;
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
value
}
}
unsafe impl fidl::encoding::TypeMarker for Color {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
12
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Color, D> for &Color {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Color>(offset);
// Delegate to tuple encoding.
fidl::encoding::Encode::<Color, D>::encode(
(
<fidl_fuchsia_images2::PixelFormat as fidl::encoding::ValueTypeMarker>::borrow(
&self.format,
),
<fidl::encoding::Array<u8, 8> as fidl::encoding::ValueTypeMarker>::borrow(
&self.bytes,
),
),
encoder,
offset,
_depth,
)
}
}
unsafe impl<
D: fidl::encoding::ResourceDialect,
T0: fidl::encoding::Encode<fidl_fuchsia_images2::PixelFormat, D>,
T1: fidl::encoding::Encode<fidl::encoding::Array<u8, 8>, D>,
> fidl::encoding::Encode<Color, D> for (T0, T1)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Color>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
self.1.encode(encoder, offset + 4, depth)?;
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for Color {
#[inline(always)]
fn new_empty() -> Self {
Self {
format: fidl::new_empty!(fidl_fuchsia_images2::PixelFormat, D),
bytes: fidl::new_empty!(fidl::encoding::Array<u8, 8>, D),
}
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
// Verify that padding bytes are zero.
fidl::decode!(
fidl_fuchsia_images2::PixelFormat,
D,
&mut self.format,
decoder,
offset + 0,
_depth
)?;
fidl::decode!(fidl::encoding::Array<u8, 8>, D, &mut self.bytes, decoder, offset + 4, _depth)?;
Ok(())
}
}
impl fidl::encoding::ValueTypeMarker for ConfigStamp {
type Borrowed<'a> = &'a Self;
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
value
}
}
unsafe impl fidl::encoding::TypeMarker for ConfigStamp {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
true
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<ConfigStamp, D>
for &ConfigStamp
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<ConfigStamp>(offset);
unsafe {
// Copy the object into the buffer.
let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
(buf_ptr as *mut ConfigStamp).write_unaligned((self as *const ConfigStamp).read());
// Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
// done second because the memcpy will write garbage to these bytes.
}
Ok(())
}
}
unsafe impl<D: fidl::encoding::ResourceDialect, T0: fidl::encoding::Encode<u64, D>>
fidl::encoding::Encode<ConfigStamp, D> for (T0,)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<ConfigStamp>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for ConfigStamp {
#[inline(always)]
fn new_empty() -> Self {
Self { value: fidl::new_empty!(u64, D) }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
// Verify that padding bytes are zero.
// Copy from the buffer into the object.
unsafe {
std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 8);
}
Ok(())
}
}
impl fidl::encoding::ValueTypeMarker for DisplayId {
type Borrowed<'a> = &'a Self;
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
value
}
}
unsafe impl fidl::encoding::TypeMarker for DisplayId {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
true
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<DisplayId, D>
for &DisplayId
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<DisplayId>(offset);
unsafe {
// Copy the object into the buffer.
let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
(buf_ptr as *mut DisplayId).write_unaligned((self as *const DisplayId).read());
// Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
// done second because the memcpy will write garbage to these bytes.
}
Ok(())
}
}
unsafe impl<D: fidl::encoding::ResourceDialect, T0: fidl::encoding::Encode<u64, D>>
fidl::encoding::Encode<DisplayId, D> for (T0,)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<DisplayId>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for DisplayId {
#[inline(always)]
fn new_empty() -> Self {
Self { value: fidl::new_empty!(u64, D) }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
// Verify that padding bytes are zero.
// Copy from the buffer into the object.
unsafe {
std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 8);
}
Ok(())
}
}
impl fidl::encoding::ValueTypeMarker for ImageBufferUsage {
type Borrowed<'a> = &'a Self;
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
value
}
}
unsafe impl fidl::encoding::TypeMarker for ImageBufferUsage {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
true
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<ImageBufferUsage, D>
for &ImageBufferUsage
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<ImageBufferUsage>(offset);
unsafe {
// Copy the object into the buffer.
let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
(buf_ptr as *mut ImageBufferUsage)
.write_unaligned((self as *const ImageBufferUsage).read());
// Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
// done second because the memcpy will write garbage to these bytes.
}
Ok(())
}
}
unsafe impl<D: fidl::encoding::ResourceDialect, T0: fidl::encoding::Encode<u32, D>>
fidl::encoding::Encode<ImageBufferUsage, D> for (T0,)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<ImageBufferUsage>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for ImageBufferUsage {
#[inline(always)]
fn new_empty() -> Self {
Self { tiling_type: fidl::new_empty!(u32, D) }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
// Verify that padding bytes are zero.
// Copy from the buffer into the object.
unsafe {
std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 4);
}
Ok(())
}
}
impl fidl::encoding::ValueTypeMarker for ImageMetadata {
type Borrowed<'a> = &'a Self;
fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
value
}
}
unsafe impl fidl::encoding::TypeMarker for ImageMetadata {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
12
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
true
}
}
unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<ImageMetadata, D>
for &ImageMetadata
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<ImageMetadata>(offset);
unsafe {
// Copy the object into the buffer.
let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
(buf_ptr as *mut ImageMetadata)
.write_unaligned((self as *const ImageMetadata).read());
// Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
// done second because the memcpy will write garbage to these bytes.
}
Ok(())
}
}
unsafe impl<
D: fidl::encoding::ResourceDialect,
T0: fidl::encoding::Encode<u32, D>,
T1: fidl::encoding::Encode<u32, D>,
T2: fidl::encoding::Encode<u32, D>,
> fidl::encoding::Encode<ImageMetadata, D> for (T0, T1, T2)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_, D>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<ImageMetadata>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
self.1.encode(encoder, offset + 4, depth)?;
self.2.encode(encoder, offset + 8, depth)?;
Ok(())
}
}
impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for ImageMetadata {
#[inline(always)]
fn new_empty() -> Self {
Self {
width: fidl::new_empty!(u32, D),
height: fidl::new_empty!(u32, D),
tiling_type: fidl::new_empty!(u32, D),
}
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_, D>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
// Verify that padding bytes are zero.
// Copy from the buffer into the object.
unsafe {
std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 12);
}
Ok(())
}
}
}