fidl_fuchsia_hardware_display_types/
fidl_fuchsia_hardware_display_types.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
// WARNING: This file is machine generated by fidlgen.

#![warn(clippy::all)]
#![allow(unused_parens, unused_mut, unused_imports, nonstandard_style)]

use bitflags::bitflags;
use fidl::client::QueryResponseFut;
use fidl::encoding::{MessageBufFor, ProxyChannelBox, ResourceDialect};
use fidl::endpoints::{ControlHandle as _, Responder as _};
use futures::future::{self, MaybeDone, TryFutureExt};
use zx_status;

/// See [`fuchsia.hardware.display.types/ConfigStamp`].
pub type ConfigStampValue = u64;

/// Type of the internal value in [`fuchsia.hardware.display.types/DisplayId`].
pub type DisplayIdValue = u64;

/// Specifies how individual pixels are arranged in an image buffer.
///
/// The tiling format influences other image parameters, such as dimensions
/// and pixel format, that are supported by the display engines. Display engine
/// drivers currently express this knowledge by setting buffer constraints in
/// sysmem, and by rejecting invalid combinations.
///
/// Values other than [`IMAGE_TILING_TYPE_LINEAR`] and
/// [`IMAGE_TILING_TYPE_CAPTURE`] are an escape hatch. The driver and image
/// producer are responsible for agreeing on the meaning of the value, through
/// some mechanism outside the scope of this API.
pub type ImageTilingTypeIdValue = u32;

/// The tiling used by the display engine's capture feature.
///
/// This value is used as a signal that the image buffer will used by the
/// display engine to store displayed contents, and therefore is a slight abuse
/// of the "tiling" semantics.
///
/// Like every other tiling value, this introduces constraints on image
/// parameters such as dimensions and pixel format.
pub const IMAGE_TILING_TYPE_CAPTURE: u32 = 10;

/// Equivalent to Vulkan's linear tiling.
///
/// Pixels are arranged in the image buffer in row-major order. Each row may
/// have some padding bytes.
///
/// Default for [`ImageTilingTypeIdValue`].
pub const IMAGE_TILING_TYPE_LINEAR: u32 = 0;

pub const INVALID_CONFIG_STAMP_VALUE: u64 = 0;

/// Invalid id for displays, images, and events.
pub const INVALID_DISP_ID: u64 = 0;

#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u8)]
pub enum AlphaMode {
    /// Alpha is disabled for the plane (default).
    Disable = 0,
    /// Plane alpha is premultiplied.
    Premultiplied = 1,
    /// Hardware should multiply the alpha and color channels when blending.
    HwMultiply = 2,
}

impl AlphaMode {
    #[inline]
    pub fn from_primitive(prim: u8) -> Option<Self> {
        match prim {
            0 => Some(Self::Disable),
            1 => Some(Self::Premultiplied),
            2 => Some(Self::HwMultiply),
            _ => None,
        }
    }

    #[inline]
    pub const fn into_primitive(self) -> u8 {
        self as u8
    }

    #[deprecated = "Strict enums should not use `is_unknown`"]
    #[inline]
    pub fn is_unknown(&self) -> bool {
        false
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u8)]
pub enum ClientCompositionOpcode {
    /// The client should configure the layer to use a source image.
    ClientUseImage = 0,
    /// The client should compose all layers with CLIENT_MERGE_BASE and CLIENT_MERGE_SRC
    /// into a new, single primary layer at the CLIENT_MERGE_BASE layer's z-order. The
    /// driver must accept a fullscreen layer with the default pixel format, but may
    /// accept other layer parameters.
    ///
    /// CLIENT_MERGE_BASE will only be set on one layer per display.
    ClientMergeBase = 1,
    /// See CLIENT_MERGE_BASE.
    ClientMergeSrc = 2,
    /// The client should provide a new image produced by scaling the source image
    /// such that the dimensions of the new image's src_frame and dest_frame are
    /// equal to the dimensions of the current image's dest_frame.
    ClientFrameScale = 3,
    /// The client should provide a new image produced by clipping the source image
    /// to the region specified by src_frame.
    ClientSrcFrame = 4,
    /// The client should provide a new image produced by applying the desired
    /// transformation, so that TRANSFORM_IDENTITY can be specified.
    ClientTransform = 5,
    /// The client should apply the color conversion itself.
    ClientColorConversion = 6,
    /// The client should apply the alpha itself.
    ClientAlpha = 7,
}

impl ClientCompositionOpcode {
    #[inline]
    pub fn from_primitive(prim: u8) -> Option<Self> {
        match prim {
            0 => Some(Self::ClientUseImage),
            1 => Some(Self::ClientMergeBase),
            2 => Some(Self::ClientMergeSrc),
            3 => Some(Self::ClientFrameScale),
            4 => Some(Self::ClientSrcFrame),
            5 => Some(Self::ClientTransform),
            6 => Some(Self::ClientColorConversion),
            7 => Some(Self::ClientAlpha),
            _ => None,
        }
    }

    #[inline]
    pub const fn into_primitive(self) -> u8 {
        self as u8
    }

    #[deprecated = "Strict enums should not use `is_unknown`"]
    #[inline]
    pub fn is_unknown(&self) -> bool {
        false
    }
}

/// The result of checking a draft display config.
///
/// Values are produced by [`fuchsia.hardware.display/Coordinator.CheckConfig`].
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u32)]
pub enum ConfigResult {
    /// The config is compatible with the current hardware.
    Ok = 0,
    /// The config is not compatible with any hardware.
    InvalidConfig = 1,
    /// The config layer assignment is not supported by the current hardware.
    UnsupportedConfig = 2,
    /// The config uses more than the number of connected displays.
    TooManyDisplays = 3,
    /// The config display modes are not supported by the current hardware.
    ///
    /// The client should try a different set of displays or display modes.
    UnsupportedDisplayModes = 4,
}

impl ConfigResult {
    #[inline]
    pub fn from_primitive(prim: u32) -> Option<Self> {
        match prim {
            0 => Some(Self::Ok),
            1 => Some(Self::InvalidConfig),
            2 => Some(Self::UnsupportedConfig),
            3 => Some(Self::TooManyDisplays),
            4 => Some(Self::UnsupportedDisplayModes),
            _ => None,
        }
    }

    #[inline]
    pub const fn into_primitive(self) -> u32 {
        self as u32
    }

    #[deprecated = "Strict enums should not use `is_unknown`"]
    #[inline]
    pub fn is_unknown(&self) -> bool {
        false
    }
}

/// Transformations that can be applied by display hardware to input images.
///
/// The coordinate system transformations listed here can be implemented in
/// hardware by display engines, because they have straightforward
/// implementations for raster images.
///
/// Support for input image transformations (every member except for `IDENTITY`)
/// varies across display engines. This is because each transformation requires
/// non-trivial hardware modifications that have area (cost) and power
/// implications.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(u8)]
pub enum CoordinateTransformation {
    /// Image pixels are passed through without any change.
    ///
    /// This is the only value guaranteed to be supported by all display engine
    /// drivers.
    Identity = 0,
    /// Image pixels are reflected across a line meeting the image's center, parallel to the X axis.
    ///
    /// This enum member's numeric value has a single bit set to 1. Any
    /// transformation whose value has this bit set involves an X reflection.
    ///
    /// This transformation is also called an "X flip".
    ///
    /// Example:
    /// |a b c d|      |i j k l|
    /// |e f g h|  ->  |e f g h|
    /// |i j k l|      |a b c d|
    ReflectX = 1,
    /// Image pixels are reflected across a line meeting the image's center, parallel to the Y axis.
    ///
    /// This enum member's numeric value has a single bit set to 1. Any
    /// transformation whose value has this bit set involves an Y reflection.
    ///
    /// This transformation is also called an "Y flip".
    ///
    /// Example:
    /// |a b c d|      |d c b a|
    /// |e f g h|  ->  |h g f e|
    /// |i j k l|      |l k j i|
    ReflectY = 2,
    /// Image pixels are rotated around the image's center counter-clockwise by 180 degrees.
    ///
    /// This is equivalent to applying the `REFLECT_X` and `REFLECT_Y`
    /// transforms. `REFLECT_X` and `REFLECT_Y` are commutative, so their
    /// ordering doesn't matter.
    ///
    /// Example:
    /// |a b c d|      |l k j i|
    /// |e f g h|  ->  |h g f e|
    /// |i j k l|      |d c b a|
    RotateCcw180 = 3,
    /// Image pixels are rotated around the image's center counter-clockwise by 90 degrees.
    ///
    /// The image produced by this transformation has different dimensions from
    /// the input image.
    ///
    /// This enum member's numeric value has a single bit set to 1. Any
    /// transformation whose value has this bit set involves a 90-degree
    /// counter-clockwise rotation.
    ///
    /// Example:
    /// |a b c d|      |d h l|
    /// |e f g h|  ->  |c g k|
    /// |i j k l|      |b f j|
    ///                |a e i|
    RotateCcw90 = 4,
    /// Image pixels are transformed using `ROTATE_CCW_90`, followed by `REFLECT_X`.
    ///
    /// The image produced by this transformation has different dimensions from
    /// the input image.
    ///
    /// Example:
    /// |a b c d|      |a e i|
    /// |e f g h|  ->  |b f k|
    /// |i j k l|      |c g k|
    ///                |d h l|
    RotateCcw90ReflectX = 5,
    /// Image pixels are transformed using `ROTATE_CCW_90`, followed by `REFLECT_Y`.
    ///
    /// The image produced by this transformation has different dimensions from
    /// the input image.
    ///
    /// Example:
    /// |a b c d|      |l h d|
    /// |e f g h|  ->  |k g c|
    /// |i j k l|      |j f b|
    ///                |i e a|
    RotateCcw90ReflectY = 6,
    /// Image pixels are rotated around the image's center counter-clockwise by 270 degrees.
    ///
    /// The image produced by this transformation has different dimensions from
    /// the input image.
    ///
    /// This is equivalent to applying the `ROTATE_CCW_90` transform, followed
    /// by `REFLECT_X` and `REFLECT_Y`. `REFLECT_X` and `REFLECT_Y` are
    /// commutative, so their ordering doesn't matter.
    ///
    /// Example:
    /// |a b c d|      |i e a|
    /// |e f g h|  ->  |j f b|
    /// |i j k l|      |k g c|
    ///                |l h d|
    RotateCcw270 = 7,
}

impl CoordinateTransformation {
    #[inline]
    pub fn from_primitive(prim: u8) -> Option<Self> {
        match prim {
            0 => Some(Self::Identity),
            1 => Some(Self::ReflectX),
            2 => Some(Self::ReflectY),
            3 => Some(Self::RotateCcw180),
            4 => Some(Self::RotateCcw90),
            5 => Some(Self::RotateCcw90ReflectX),
            6 => Some(Self::RotateCcw90ReflectY),
            7 => Some(Self::RotateCcw270),
            _ => None,
        }
    }

    #[inline]
    pub const fn into_primitive(self) -> u8 {
        self as u8
    }

    #[deprecated = "Strict enums should not use `is_unknown`"]
    #[inline]
    pub fn is_unknown(&self) -> bool {
        false
    }
}

/// A color constant.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Color {
    /// The format of pixel data stored in `bytes`.
    ///
    /// The format must use a single plane. The encoding of one pixel
    /// must fit within the `bytes` array.
    pub format: fidl_fuchsia_images2::PixelFormat,
    /// The constant color, expressed as one pixel encoded using `format`.
    ///
    /// The pixel is encoded using little-endian byte ordering and zero padding.
    /// In other words, the bytes obtained by encoding the pixel using `format`
    /// are stored starting at the first byte in the array. If the pixel
    /// requires fewer bytes per pixel than the array size, any unused bytes
    /// (towards the end of the array) must be set to 0 (zero).
    pub bytes: [u8; 8],
}

impl fidl::Persistable for Color {}

/// Identifies an accepted display config.
///
/// This is a type-safe wrapper for a
/// [`fuchsia.hardware.display.types/ConfigStampValue`], which is a raw numeric
/// value.
///
/// Each successful call to [`fuchsia.hardware.display/Coordinator.ApplyConfig`]
/// generates a valid value. Values are reported in
/// [`fuchsia.hardware.display/Coordinator.Vsync`] events.
///
/// Generated values are strictly increasing (unique, strictly monotonic) within
/// the lifetime of a [`fuchsia.display/Coordinator`] connection.
///
/// [`fuchsia.hardware.display.types/INVALID_CONFIG_STAMP_VALUE`] represents an
/// invalid value.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct ConfigStamp {
    pub value: u64,
}

impl fidl::Persistable for ConfigStamp {}

/// Unique identifier for a display device attached to the system.
///
/// [`fuchsia.hardware.display.types/INVALID_DISP_ID`] represents an invalid
/// value.
///
/// Values are unique within a [`fuchsia.hardware.display/Controller`]
/// connection. An external display will be associated with different display ID
/// values if it is disconnected and reconnected.
///
/// A display device may be identified by different values across boot cycles or
/// across different Controller connections. Software that needs to identify
/// displays (for example, to honor display-specific preferences) should use
/// [`fuchsia.hardware.display/Info`] identifiers, not display IDs.
///
/// This type is not related to the VESA DisplayID standard.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct DisplayId {
    pub value: u64,
}

impl fidl::Persistable for DisplayId {}

/// The intended usage for a sysmem BufferCollection holding image buffers.
///
/// Each buffer in the collection will store a single image, which is intended
/// to be used as described below.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct ImageBufferUsage {
    /// Specifies how individual pixels are arranged in an image buffer.
    ///
    /// See [`fuchsia.hardware.display.types/ImageTilingTypeIdValue`].
    pub tiling_type: u32,
}

impl fidl::Persistable for ImageBufferUsage {}

/// Describes how an image is stored in a buffer of a sysmem BufferCollection.
///
/// The buffer is dedicated to storing a single image. The properties below are
/// needed for decoding the image from the buffer.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct ImageMetadata {
    /// The width and height of the image in pixels.
    pub width: u32,
    pub height: u32,
    /// Specifies how individual pixels are arranged in an image buffer.
    ///
    /// See [`fuchsia.hardware.display.types/ImageTilingTypeIdValue`].
    pub tiling_type: u32,
}

impl fidl::Persistable for ImageMetadata {}

mod internal {
    use super::*;
    unsafe impl fidl::encoding::TypeMarker for AlphaMode {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            std::mem::align_of::<u8>()
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            std::mem::size_of::<u8>()
        }

        #[inline(always)]
        fn encode_is_copy() -> bool {
            true
        }

        #[inline(always)]
        fn decode_is_copy() -> bool {
            false
        }
    }

    impl fidl::encoding::ValueTypeMarker for AlphaMode {
        type Borrowed<'a> = Self;
        #[inline(always)]
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            *value
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Self, D> for AlphaMode {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<Self>(offset);
            encoder.write_num(self.into_primitive(), offset);
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for AlphaMode {
        #[inline(always)]
        fn new_empty() -> Self {
            Self::Disable
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            let prim = decoder.read_num::<u8>(offset);

            *self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
            Ok(())
        }
    }
    unsafe impl fidl::encoding::TypeMarker for ClientCompositionOpcode {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            std::mem::align_of::<u8>()
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            std::mem::size_of::<u8>()
        }

        #[inline(always)]
        fn encode_is_copy() -> bool {
            true
        }

        #[inline(always)]
        fn decode_is_copy() -> bool {
            false
        }
    }

    impl fidl::encoding::ValueTypeMarker for ClientCompositionOpcode {
        type Borrowed<'a> = Self;
        #[inline(always)]
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            *value
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Self, D>
        for ClientCompositionOpcode
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<Self>(offset);
            encoder.write_num(self.into_primitive(), offset);
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D>
        for ClientCompositionOpcode
    {
        #[inline(always)]
        fn new_empty() -> Self {
            Self::ClientUseImage
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            let prim = decoder.read_num::<u8>(offset);

            *self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
            Ok(())
        }
    }
    unsafe impl fidl::encoding::TypeMarker for ConfigResult {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            std::mem::align_of::<u32>()
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            std::mem::size_of::<u32>()
        }

        #[inline(always)]
        fn encode_is_copy() -> bool {
            true
        }

        #[inline(always)]
        fn decode_is_copy() -> bool {
            false
        }
    }

    impl fidl::encoding::ValueTypeMarker for ConfigResult {
        type Borrowed<'a> = Self;
        #[inline(always)]
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            *value
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Self, D> for ConfigResult {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<Self>(offset);
            encoder.write_num(self.into_primitive(), offset);
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for ConfigResult {
        #[inline(always)]
        fn new_empty() -> Self {
            Self::Ok
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            let prim = decoder.read_num::<u32>(offset);

            *self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
            Ok(())
        }
    }
    unsafe impl fidl::encoding::TypeMarker for CoordinateTransformation {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            std::mem::align_of::<u8>()
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            std::mem::size_of::<u8>()
        }

        #[inline(always)]
        fn encode_is_copy() -> bool {
            true
        }

        #[inline(always)]
        fn decode_is_copy() -> bool {
            false
        }
    }

    impl fidl::encoding::ValueTypeMarker for CoordinateTransformation {
        type Borrowed<'a> = Self;
        #[inline(always)]
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            *value
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Self, D>
        for CoordinateTransformation
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<Self>(offset);
            encoder.write_num(self.into_primitive(), offset);
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D>
        for CoordinateTransformation
    {
        #[inline(always)]
        fn new_empty() -> Self {
            Self::Identity
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            let prim = decoder.read_num::<u8>(offset);

            *self = Self::from_primitive(prim).ok_or(fidl::Error::InvalidEnumValue)?;
            Ok(())
        }
    }

    impl fidl::encoding::ValueTypeMarker for Color {
        type Borrowed<'a> = &'a Self;
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            value
        }
    }

    unsafe impl fidl::encoding::TypeMarker for Color {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            4
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            12
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<Color, D> for &Color {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<Color>(offset);
            // Delegate to tuple encoding.
            fidl::encoding::Encode::<Color, D>::encode(
                (
                    <fidl_fuchsia_images2::PixelFormat as fidl::encoding::ValueTypeMarker>::borrow(
                        &self.format,
                    ),
                    <fidl::encoding::Array<u8, 8> as fidl::encoding::ValueTypeMarker>::borrow(
                        &self.bytes,
                    ),
                ),
                encoder,
                offset,
                _depth,
            )
        }
    }
    unsafe impl<
            D: fidl::encoding::ResourceDialect,
            T0: fidl::encoding::Encode<fidl_fuchsia_images2::PixelFormat, D>,
            T1: fidl::encoding::Encode<fidl::encoding::Array<u8, 8>, D>,
        > fidl::encoding::Encode<Color, D> for (T0, T1)
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<Color>(offset);
            // Zero out padding regions. There's no need to apply masks
            // because the unmasked parts will be overwritten by fields.
            // Write the fields.
            self.0.encode(encoder, offset + 0, depth)?;
            self.1.encode(encoder, offset + 4, depth)?;
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for Color {
        #[inline(always)]
        fn new_empty() -> Self {
            Self {
                format: fidl::new_empty!(fidl_fuchsia_images2::PixelFormat, D),
                bytes: fidl::new_empty!(fidl::encoding::Array<u8, 8>, D),
            }
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            // Verify that padding bytes are zero.
            fidl::decode!(
                fidl_fuchsia_images2::PixelFormat,
                D,
                &mut self.format,
                decoder,
                offset + 0,
                _depth
            )?;
            fidl::decode!(fidl::encoding::Array<u8, 8>, D, &mut self.bytes, decoder, offset + 4, _depth)?;
            Ok(())
        }
    }

    impl fidl::encoding::ValueTypeMarker for ConfigStamp {
        type Borrowed<'a> = &'a Self;
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            value
        }
    }

    unsafe impl fidl::encoding::TypeMarker for ConfigStamp {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            8
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            8
        }
        #[inline(always)]
        fn encode_is_copy() -> bool {
            true
        }

        #[inline(always)]
        fn decode_is_copy() -> bool {
            true
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<ConfigStamp, D>
        for &ConfigStamp
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<ConfigStamp>(offset);
            unsafe {
                // Copy the object into the buffer.
                let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
                (buf_ptr as *mut ConfigStamp).write_unaligned((self as *const ConfigStamp).read());
                // Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
                // done second because the memcpy will write garbage to these bytes.
            }
            Ok(())
        }
    }
    unsafe impl<D: fidl::encoding::ResourceDialect, T0: fidl::encoding::Encode<u64, D>>
        fidl::encoding::Encode<ConfigStamp, D> for (T0,)
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<ConfigStamp>(offset);
            // Zero out padding regions. There's no need to apply masks
            // because the unmasked parts will be overwritten by fields.
            // Write the fields.
            self.0.encode(encoder, offset + 0, depth)?;
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for ConfigStamp {
        #[inline(always)]
        fn new_empty() -> Self {
            Self { value: fidl::new_empty!(u64, D) }
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
            // Verify that padding bytes are zero.
            // Copy from the buffer into the object.
            unsafe {
                std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 8);
            }
            Ok(())
        }
    }

    impl fidl::encoding::ValueTypeMarker for DisplayId {
        type Borrowed<'a> = &'a Self;
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            value
        }
    }

    unsafe impl fidl::encoding::TypeMarker for DisplayId {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            8
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            8
        }
        #[inline(always)]
        fn encode_is_copy() -> bool {
            true
        }

        #[inline(always)]
        fn decode_is_copy() -> bool {
            true
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<DisplayId, D>
        for &DisplayId
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<DisplayId>(offset);
            unsafe {
                // Copy the object into the buffer.
                let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
                (buf_ptr as *mut DisplayId).write_unaligned((self as *const DisplayId).read());
                // Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
                // done second because the memcpy will write garbage to these bytes.
            }
            Ok(())
        }
    }
    unsafe impl<D: fidl::encoding::ResourceDialect, T0: fidl::encoding::Encode<u64, D>>
        fidl::encoding::Encode<DisplayId, D> for (T0,)
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<DisplayId>(offset);
            // Zero out padding regions. There's no need to apply masks
            // because the unmasked parts will be overwritten by fields.
            // Write the fields.
            self.0.encode(encoder, offset + 0, depth)?;
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for DisplayId {
        #[inline(always)]
        fn new_empty() -> Self {
            Self { value: fidl::new_empty!(u64, D) }
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
            // Verify that padding bytes are zero.
            // Copy from the buffer into the object.
            unsafe {
                std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 8);
            }
            Ok(())
        }
    }

    impl fidl::encoding::ValueTypeMarker for ImageBufferUsage {
        type Borrowed<'a> = &'a Self;
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            value
        }
    }

    unsafe impl fidl::encoding::TypeMarker for ImageBufferUsage {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            4
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            4
        }
        #[inline(always)]
        fn encode_is_copy() -> bool {
            true
        }

        #[inline(always)]
        fn decode_is_copy() -> bool {
            true
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<ImageBufferUsage, D>
        for &ImageBufferUsage
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<ImageBufferUsage>(offset);
            unsafe {
                // Copy the object into the buffer.
                let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
                (buf_ptr as *mut ImageBufferUsage)
                    .write_unaligned((self as *const ImageBufferUsage).read());
                // Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
                // done second because the memcpy will write garbage to these bytes.
            }
            Ok(())
        }
    }
    unsafe impl<D: fidl::encoding::ResourceDialect, T0: fidl::encoding::Encode<u32, D>>
        fidl::encoding::Encode<ImageBufferUsage, D> for (T0,)
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<ImageBufferUsage>(offset);
            // Zero out padding regions. There's no need to apply masks
            // because the unmasked parts will be overwritten by fields.
            // Write the fields.
            self.0.encode(encoder, offset + 0, depth)?;
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for ImageBufferUsage {
        #[inline(always)]
        fn new_empty() -> Self {
            Self { tiling_type: fidl::new_empty!(u32, D) }
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
            // Verify that padding bytes are zero.
            // Copy from the buffer into the object.
            unsafe {
                std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 4);
            }
            Ok(())
        }
    }

    impl fidl::encoding::ValueTypeMarker for ImageMetadata {
        type Borrowed<'a> = &'a Self;
        fn borrow(value: &<Self as fidl::encoding::TypeMarker>::Owned) -> Self::Borrowed<'_> {
            value
        }
    }

    unsafe impl fidl::encoding::TypeMarker for ImageMetadata {
        type Owned = Self;

        #[inline(always)]
        fn inline_align(_context: fidl::encoding::Context) -> usize {
            4
        }

        #[inline(always)]
        fn inline_size(_context: fidl::encoding::Context) -> usize {
            12
        }
        #[inline(always)]
        fn encode_is_copy() -> bool {
            true
        }

        #[inline(always)]
        fn decode_is_copy() -> bool {
            true
        }
    }

    unsafe impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Encode<ImageMetadata, D>
        for &ImageMetadata
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<ImageMetadata>(offset);
            unsafe {
                // Copy the object into the buffer.
                let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
                (buf_ptr as *mut ImageMetadata)
                    .write_unaligned((self as *const ImageMetadata).read());
                // Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
                // done second because the memcpy will write garbage to these bytes.
            }
            Ok(())
        }
    }
    unsafe impl<
            D: fidl::encoding::ResourceDialect,
            T0: fidl::encoding::Encode<u32, D>,
            T1: fidl::encoding::Encode<u32, D>,
            T2: fidl::encoding::Encode<u32, D>,
        > fidl::encoding::Encode<ImageMetadata, D> for (T0, T1, T2)
    {
        #[inline]
        unsafe fn encode(
            self,
            encoder: &mut fidl::encoding::Encoder<'_, D>,
            offset: usize,
            depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            encoder.debug_check_bounds::<ImageMetadata>(offset);
            // Zero out padding regions. There's no need to apply masks
            // because the unmasked parts will be overwritten by fields.
            // Write the fields.
            self.0.encode(encoder, offset + 0, depth)?;
            self.1.encode(encoder, offset + 4, depth)?;
            self.2.encode(encoder, offset + 8, depth)?;
            Ok(())
        }
    }

    impl<D: fidl::encoding::ResourceDialect> fidl::encoding::Decode<Self, D> for ImageMetadata {
        #[inline(always)]
        fn new_empty() -> Self {
            Self {
                width: fidl::new_empty!(u32, D),
                height: fidl::new_empty!(u32, D),
                tiling_type: fidl::new_empty!(u32, D),
            }
        }

        #[inline]
        unsafe fn decode(
            &mut self,
            decoder: &mut fidl::encoding::Decoder<'_, D>,
            offset: usize,
            _depth: fidl::encoding::Depth,
        ) -> fidl::Result<()> {
            decoder.debug_check_bounds::<Self>(offset);
            let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
            // Verify that padding bytes are zero.
            // Copy from the buffer into the object.
            unsafe {
                std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 12);
            }
            Ok(())
        }
    }
}