heapdump_vmo/resources_table_v1.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use std::alloc::Layout;
use std::mem::{align_of, size_of, size_of_val};
use crate::memory_mapped_vmo::{MemoryMappable, MemoryMappedVmo};
/// An offset within the VMO.
type Offset = u32;
const OFFSET_INVALID: Offset = Offset::MAX;
// Stack traces are stored in compressed form as an array of u8 prefixed by a u16 stating its
// length. The u16 is guaranteed to be aligned.
type StackTraceLength = u16;
// Known stack traces are indexed by a hash table, whose linked list heads (one for each bucket) are
// stored at the beginning of the VMO.
//
// Note that the presence and the format of the hash table is meant to be an internal detail of the
// current ResourcesTableWriter implementation: ResourcesTableReader does not depend on it.
const NUM_STACK_BUCKETS: usize = 1 << 13;
type StackBucketHeads = [Offset; NUM_STACK_BUCKETS];
/// A resource key is just an offset into the VMO.
#[derive(Clone, Copy, Eq, Debug, Hash, Ord, PartialEq, PartialOrd)]
#[repr(transparent)]
pub struct ResourceKey(Offset);
impl ResourceKey {
/// Used by tests in this crate to construct placeholder values.
#[cfg(test)]
pub(crate) const fn from_raw(offset: Offset) -> ResourceKey {
ResourceKey(offset)
}
pub const fn into_raw(self) -> Offset {
self.0
}
}
#[repr(C)]
#[derive(Debug)]
pub struct ThreadInfo {
pub koid: zx::sys::zx_koid_t,
pub name: zx::Name,
}
// SAFETY: ThreadInfo only contains memory-mappable types and we never parse the name in it.
unsafe impl MemoryMappable for ThreadInfo {}
/// Mediates write access to a VMO containing compressed stack traces and thread info structs.
///
/// Compressed stack traces are stored as a hash table for efficient deduplication. Thread
/// information structures are not deduplicated (it is expected that deduplication happens at a
/// higher level in the stack). Apart from the hash table's bucket heads, all data is immutable:
/// neither stack traces nor thread info structs can be modified or deleted after having been
/// inserted.
///
/// Hash collisions are handled by maintaining per-bucket linked lists. Specifically, an array of
/// list heads, one for each bucket, is stored at the beginning of the VMO. The remaining part of
/// the VMO contains the linked list nodes. Since nodes are immutable, insertion always happen at
/// the head of the list.
///
/// Thanks to the fact that inserted data is immutable, other readers are allowed to read data from
/// this VMO while ResourcesTableWriter is still alive. In particular, all insertion functions
/// return a ResourceKey, which is simply the offset of the just-inserted now-immutable data, and
/// that can be used by ResourcesTableReader to read data back without even having to know about the
/// hash table.
pub struct ResourcesTableWriter {
storage: MemoryMappedVmo,
watermark: usize, // Offset of the first unallocated byte.
}
impl ResourcesTableWriter {
/// Initializes a VMO as an empty table and creates an AllocationsTableWriter to write into it.
///
/// The caller must guarantee that the `vmo` is not accessed by others (unless they use
/// ResourcesTableReader instances) while the returned instance is alive.
pub fn new(vmo: &zx::Vmo) -> Result<ResourcesTableWriter, crate::Error> {
let storage = MemoryMappedVmo::new_readwrite(vmo)?;
if storage.vmo_size() < size_of::<StackBucketHeads>() {
return Err(crate::Error::BufferTooSmall);
} else if storage.vmo_size() - 1 > Offset::MAX as usize {
return Err(crate::Error::BufferTooBig);
}
let mut result = ResourcesTableWriter { storage, watermark: size_of::<StackBucketHeads>() };
// Clear the hash table.
for bucket_index in 0..NUM_STACK_BUCKETS {
*result.stack_bucket_head_at(bucket_index) = OFFSET_INVALID;
}
Ok(result)
}
/// Allocates space in the VMO and returns the base offset of the allocated range.
fn allocate(&mut self, layout: Layout) -> Result<Offset, crate::Error> {
// Forbid alignment requirements greater than the page size, as they would have implications
// on how the VMO can be mapped for reading.
if layout.align() > zx::system_get_page_size() as usize {
return Err(crate::Error::InvalidInput);
}
let result_start = (self.watermark + layout.align() - 1) & !(layout.align() - 1);
let result_end = result_start + layout.size();
if result_end <= self.storage.vmo_size() {
self.watermark = result_end;
Ok(result_start as Offset)
} else {
Err(crate::Error::OutOfSpace)
}
}
/// This is the hash function for stack traces.
fn compute_bucket_index(compressed_stack_trace: &[u8]) -> usize {
let tmp = crc::crc32::checksum_ieee(compressed_stack_trace);
tmp as usize % NUM_STACK_BUCKETS
}
/// Returns a mutable reference to the head of a given bucket's linked list.
fn stack_bucket_head_at(&mut self, bucket_index: usize) -> &mut Offset {
// The bucket heads are always stored at the beginning of the VMO.
let bucket_heads = self.storage.get_object_mut::<StackBucketHeads>(0).unwrap();
&mut bucket_heads[bucket_index]
}
/// Tries to find an already-inserted stack trace in the given bucket by scanning its linked
/// list.
fn find_in_bucket(
&mut self,
bucket_index: usize,
compressed_stack_trace: &[u8],
) -> Option<Offset> {
let mut curr = *self.stack_bucket_head_at(bucket_index);
while curr != OFFSET_INVALID {
// Read the "next" field in the current node and its compressed stack trace, which is
// stored immediately afterwards.
let curr_next: Offset = *self.storage.get_object(curr as usize).unwrap();
let payload_offset = curr as usize + size_of_val(&curr_next);
let curr_payload = get_compressed_stack_trace(&self.storage, payload_offset).unwrap();
// Is this stack trace the one we were looking for?
if *curr_payload == *compressed_stack_trace {
return Some(curr);
}
curr = curr_next;
}
// Not found.
None
}
fn insert_in_bucket(
&mut self,
bucket_index: usize,
compressed_stack_trace: &[u8],
) -> Result<Offset, crate::Error> {
// Allocate space for:
// - The "next" field
// - The stack trace length
// - The actual stack trace
let alloc_bytes =
size_of::<Offset>() + size_of::<StackTraceLength>() + compressed_stack_trace.len();
let alloc_align = align_of::<Offset>();
let new = self.allocate(Layout::from_size_align(alloc_bytes, alloc_align).unwrap())?;
let old_head = *self.stack_bucket_head_at(bucket_index);
// Write them.
*self.storage.get_object_mut(new as usize).unwrap() = old_head;
set_compressed_stack_trace(
&mut self.storage,
new as usize + size_of::<Offset>(),
compressed_stack_trace,
)
.unwrap();
// Update the bucket's head pointer.
*self.stack_bucket_head_at(bucket_index) = new;
Ok(new)
}
/// Appends a compressed stack trace and returns its offset into the VMO.
///
/// This function also applies deduplication: if a copy of the given stack trace is already
/// present, the offset of the existing copy is returned without modifying the VMO contents.
pub fn intern_compressed_stack_trace(
&mut self,
compressed_stack_trace: &[u8],
) -> Result<(ResourceKey, bool), crate::Error> {
// Verify that the length fits in StackTraceLength and return error if it does not.
if compressed_stack_trace.len() > StackTraceLength::MAX as usize {
return Err(crate::Error::BufferTooBig);
}
// Find/insert a StackNode and get its offset within the memory region.
let bucket_index = Self::compute_bucket_index(compressed_stack_trace);
let (offset, inserted) = match self.find_in_bucket(bucket_index, compressed_stack_trace) {
Some(offset) => (offset, false),
None => (self.insert_in_bucket(bucket_index, compressed_stack_trace)?, true),
};
// Adjust the returned offset to skip the "next" field (which is an internal
// ResourcesTableWriter implementation detail) and point directly to the StackTraceLength
// field (which is what ResourcesTableReader expects to receive).
let resource_key = ResourceKey(offset + size_of::<Offset>() as Offset);
Ok((resource_key, inserted))
}
/// Appends a thread information entry and returns its offset into the VMO.
pub fn insert_thread_info(
&mut self,
koid: zx::sys::zx_koid_t,
name: &zx::Name,
) -> Result<ResourceKey, crate::Error> {
let offset = self.allocate(Layout::new::<ThreadInfo>())?;
*self.storage.get_object_mut(offset as usize).unwrap() = ThreadInfo { koid, name: *name };
Ok(ResourceKey(offset))
}
}
/// Mediates read access to a VMO written by ResourcesTableWriter.
pub struct ResourcesTableReader {
storage: MemoryMappedVmo,
}
impl ResourcesTableReader {
pub fn new(vmo: &zx::Vmo) -> Result<ResourcesTableReader, crate::Error> {
let storage = MemoryMappedVmo::new_readonly(vmo)?;
Ok(ResourcesTableReader { storage })
}
/// Gets the compressed stack trace identified by `resource_key`.
pub fn get_compressed_stack_trace(
&self,
resource_key: ResourceKey,
) -> Result<&[u8], crate::Error> {
let ResourceKey(offset) = resource_key;
get_compressed_stack_trace(&self.storage, offset as usize)
}
/// Gets the thread info entry identified by `resource_key`.
pub fn get_thread_info(&self, resource_key: ResourceKey) -> Result<&ThreadInfo, crate::Error> {
let ResourceKey(offset) = resource_key;
Ok(self.storage.get_object(offset as usize)?)
}
}
fn get_compressed_stack_trace(
storage: &MemoryMappedVmo,
byte_offset: usize,
) -> Result<&[u8], crate::Error> {
// Read the length.
let header: StackTraceLength = *storage.get_object(byte_offset)?;
// Get actual data, which is stored immediately after the length, as a slice.
Ok(storage.get_slice(byte_offset + size_of_val(&header), header as usize)?)
}
fn set_compressed_stack_trace(
storage: &mut MemoryMappedVmo,
byte_offset: usize,
compressed_stack_trace: &[u8],
) -> Result<(), crate::Error> {
let header: StackTraceLength =
compressed_stack_trace.len().try_into().map_err(|_| crate::Error::BufferTooBig)?;
// Write the length.
*storage.get_object_mut(byte_offset)? = header;
// Write actual data immediately after the length.
storage
.get_slice_mut(byte_offset + size_of_val(&header), compressed_stack_trace.len())?
.copy_from_slice(compressed_stack_trace);
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use assert_matches::assert_matches;
// Some tests below use this constant to create a VMO with a known size.
const VMO_SIZE: usize = 4 * 1024 * 1024; // 4 MiB
struct TestStorage {
vmo: zx::Vmo,
}
impl TestStorage {
pub fn new(vmo_size: usize) -> TestStorage {
let vmo = zx::Vmo::create(vmo_size as u64).unwrap();
TestStorage { vmo }
}
fn create_writer(&self) -> ResourcesTableWriter {
ResourcesTableWriter::new(&self.vmo).unwrap()
}
fn create_reader(&self) -> ResourcesTableReader {
ResourcesTableReader::new(&self.vmo).unwrap()
}
}
#[test]
fn test_stack_trace_deduplication() {
let storage = TestStorage::new(VMO_SIZE);
let mut writer = storage.create_writer();
// Insert different distinct stack traces and store the corresponding resource keys.
// The number of stack traces is chosen so that at least one bucket contains at least three
// stack traces.
const COUNT: usize = 2 * NUM_STACK_BUCKETS + 1;
let mut pairs = Vec::new();
for i in 0..COUNT {
// Generate a unique array of bytes and pretend it is a compressed stack trace.
let stack_trace = i.to_ne_bytes();
let (resource_key, inserted) =
writer.intern_compressed_stack_trace(&stack_trace).unwrap();
assert!(inserted, "expected true because the stack trace was not present");
pairs.push((stack_trace, resource_key));
}
// Verify that trying to insert them again returns the same resource keys.
for (stack_trace, expected_resource_key) in &pairs {
let (actual_resource_key, inserted) =
writer.intern_compressed_stack_trace(stack_trace).unwrap();
assert!(!inserted, "expected false because the stack trace is already present");
assert_eq!(actual_resource_key, *expected_resource_key);
}
// Verify that they can be read back.
let reader = storage.create_reader();
for (expected_stack_trace, resource_key) in &pairs {
let actual_stack_trace = reader.get_compressed_stack_trace(*resource_key).unwrap();
assert_eq!(actual_stack_trace, *expected_stack_trace);
}
}
#[test]
fn test_empty_stack_trace() {
let storage = TestStorage::new(VMO_SIZE);
let mut writer = storage.create_writer();
// It must be possible to insert the empty stack trace.
let (resource_key, inserted) = writer.intern_compressed_stack_trace(&[]).unwrap();
assert!(inserted);
// Verify that is can be read back correctly.
let reader = storage.create_reader();
let read_result = reader.get_compressed_stack_trace(resource_key).unwrap();
assert_eq!(read_result, []);
}
#[test]
fn test_long_stack_traces() {
let storage = TestStorage::new(VMO_SIZE);
let mut writer = storage.create_writer();
// Inserting a stack trace whose length cannot be represented in the length field (u16).
// should fail.
let stack_trace_too_long = vec![0xAA; u16::MAX as usize + 1];
let result = writer.intern_compressed_stack_trace(&stack_trace_too_long);
assert_matches!(result, Err(crate::Error::BufferTooBig));
// Inserting a stack trace with the maximum representable length should succeed.
let stack_trace_max_len = vec![0x55; u16::MAX as usize];
let (resource_key, _) = writer.intern_compressed_stack_trace(&stack_trace_max_len).unwrap();
// And it must be possible to read it back.
let reader = storage.create_reader();
let read_result = reader.get_compressed_stack_trace(resource_key).unwrap();
assert_eq!(read_result, stack_trace_max_len);
}
#[test]
fn test_write_until_out_of_space() {
let storage = TestStorage::new(VMO_SIZE);
let mut writer = storage.create_writer();
// Insert many distinct stack traces and verify that, at some point, we get an OutOfSpace
// error. Instead of estimating exactly how many stack traces can fit, we just use VMO_SIZE
// as an upper bound before declaring failure (each distinct stack trace obviously requires
// at least one byte of storage).
for i in 0..=VMO_SIZE {
// Generate a unique array of bytes and pretend it is a compressed stack trace.
let stack_trace = i.to_ne_bytes();
if let Err(crate::Error::OutOfSpace) =
writer.intern_compressed_stack_trace(&stack_trace)
{
return; // Test passed
}
}
unreachable!("Inserted more than {} distinct stack traces", VMO_SIZE);
}
#[test]
fn test_thread_info() {
let storage = TestStorage::new(VMO_SIZE);
let mut writer = storage.create_writer();
// Insert a thread info struct with placeholder values (the name must be padded to the
// expected length).
const FAKE_KOID: zx::sys::zx_koid_t = 1234;
const FAKE_NAME: zx::Name = zx::Name::new_lossy("fake-name");
let resource_key = writer.insert_thread_info(FAKE_KOID, &FAKE_NAME).unwrap();
// Verify that it can be read back correctly.
let reader = storage.create_reader();
let thread_info = reader.get_thread_info(resource_key).unwrap();
assert_eq!(thread_info.koid, FAKE_KOID);
assert_eq!(thread_info.name, FAKE_NAME);
}
}