net_types/ethernet.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Ethernet protocol types.
use core::fmt::{self, Debug, Display, Formatter};
use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Unaligned};
use crate::ip::{AddrSubnet, IpAddr, IpAddress, Ipv6, Ipv6Addr};
use crate::{
BroadcastAddr, BroadcastAddress, LinkLocalUnicastAddr, MulticastAddr, MulticastAddress,
UnicastAddr, UnicastAddress, Witness,
};
/// A media access control (MAC) address.
///
/// MAC addresses are used to identify devices in the Ethernet protocol.
///
/// MAC addresses can be derived from multicast IP addresses; see the `From`
/// implementation for more details.
///
/// # Layout
///
/// `Mac` has the same layout as `[u8; 6]`, which is the layout that most
/// protocols use to represent a MAC address in their packet formats. This can
/// be useful when parsing a MAC address from a packet. For example:
///
/// ```rust
/// # use net_types::ethernet::Mac;
/// /// The header of an Ethernet frame.
/// ///
/// /// `EthernetHeader` has the same layout as the header of an Ethernet frame.
/// #[repr(C)]
/// struct EthernetHeader {
/// dst: Mac,
/// src: Mac,
/// ethertype: [u8; 2],
/// }
/// ```
#[derive(
Copy, Clone, Eq, PartialEq, Hash, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned,
)]
#[repr(transparent)]
pub struct Mac([u8; Mac::BYTES]);
impl Mac {
/// The number of bytes in a Mac address.
pub const BYTES: usize = 6;
/// The broadcast MAC address.
///
/// The broadcast MAC address, FF:FF:FF:FF:FF:FF, indicates that a frame
/// should be received by all receivers regardless of their local MAC
/// address.
// TODO(https://github.com/rust-lang/rust/issues/73255): Make this
// `BroadcastAddr<Mac>` once the `const_precise_live_drops` feature has
// stabilized, and thus it's possible to write a `const fn` which converts
// from `BroadcastAddr<A>` to `A`.
pub const BROADCAST: Mac = Mac([0xFF; Self::BYTES]);
/// The default [RFC 4291] EUI-64 magic value used by the [`to_eui64`]
/// method.
///
/// [RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`to_eui64`]: crate::ethernet::Mac::to_eui64
pub const DEFAULT_EUI_MAGIC: [u8; 2] = [0xff, 0xfe];
/// The all-zeroes MAC address.
pub const UNSPECIFIED: Mac = Mac([0x00; Self::BYTES]);
/// Constructs a new MAC address.
#[inline]
pub const fn new(bytes: [u8; Self::BYTES]) -> Mac {
Mac(bytes)
}
/// Gets the bytes of the MAC address.
#[inline]
pub const fn bytes(self) -> [u8; Self::BYTES] {
self.0
}
/// Returns the [RFC 4291] EUI-64 interface identifier for this MAC address
/// with the default EUI magic value.
///
/// `mac.to_eui64()` is equivalent to
/// `mac.to_eui64_with_magic(Mac::DEFAULT_EUI_MAGIC)`.
///
/// [RFC 4291]: https://tools.ietf.org/html/rfc4291
#[inline]
pub fn to_eui64(self) -> [u8; 8] {
self.to_eui64_with_magic(Mac::DEFAULT_EUI_MAGIC)
}
/// Returns the [RFC 4291] EUI-64 interface identifier for this MAC address
/// with a custom EUI magic value.
///
/// `eui_magic` is the two bytes that are inserted between the bytes of the
/// MAC address to form the identifier. Also see the [`to_eui64`] method,
/// which uses the default magic value of 0xFFFE.
///
/// [RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`to_eui64`]: crate::ethernet::Mac::to_eui64
#[inline]
pub fn to_eui64_with_magic(self, eui_magic: [u8; 2]) -> [u8; 8] {
let mut eui = [0; 8];
eui[0..3].copy_from_slice(&self.0[0..3]);
eui[3..5].copy_from_slice(&eui_magic);
eui[5..8].copy_from_slice(&self.0[3..6]);
eui[0] ^= 0b0000_0010;
eui
}
/// Returns the link-local unicast IPv6 address and subnet for this MAC
/// address, as per [RFC 4862], with the default EUI magic value.
///
/// `mac.to_ipv6_link_local()` is equivalent to
/// `mac.to_ipv6_link_local_with_magic(Mac::DEFAULT_EUI_MAGIC)`.
///
/// [RFC 4291]: https://tools.ietf.org/html/rfc4291
#[inline]
pub fn to_ipv6_link_local(self) -> AddrSubnet<Ipv6Addr, LinkLocalUnicastAddr<Ipv6Addr>> {
self.to_ipv6_link_local_with_magic(Mac::DEFAULT_EUI_MAGIC)
}
/// Returns the link-local unicast IPv6 address and subnet for this MAC
/// address, as per [RFC 4862].
///
/// `eui_magic` is the two bytes that are inserted between the bytes of the
/// MAC address to form the identifier. Also see the [`to_ipv6_link_local`]
/// method, which uses the default magic value of 0xFFFE.
///
/// The subnet prefix length is 128 -
/// [`Ipv6::UNICAST_INTERFACE_IDENTIFIER_BITS`].
///
/// [RFC 4862]: https://tools.ietf.org/html/rfc4862
/// [`to_ipv6_link_local`]: crate::ethernet::Mac::to_ipv6_link_local
/// [RFC 4291]: https://tools.ietf.org/html/rfc4291
#[inline]
pub fn to_ipv6_link_local_with_magic(
self,
eui_magic: [u8; 2],
) -> AddrSubnet<Ipv6Addr, LinkLocalUnicastAddr<Ipv6Addr>> {
let mut ipv6_addr = [0; 16];
ipv6_addr[0..2].copy_from_slice(&[0xfe, 0x80]);
ipv6_addr[8..16].copy_from_slice(&self.to_eui64_with_magic(eui_magic));
// We know the call to `unwrap` will not panic because we know we are
// passing `AddrSubnet::new` a valid link local address as per RFC 4291.
// Specifically, the first 10 bits of the generated address is
// `0b1111111010`. `AddrSubnet::new` also validates the prefix length,
// and we know that 64 is a valid IPv6 subnet prefix length.
//
// TODO(ghanan): Investigate whether this unwrap is optimized out in
// practice as this code will be on the hot path.
AddrSubnet::new(
Ipv6Addr::from(ipv6_addr),
Ipv6Addr::BYTES * 8 - Ipv6::UNICAST_INTERFACE_IDENTIFIER_BITS,
)
.unwrap()
}
}
impl AsRef<[u8]> for Mac {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl AsMut<[u8]> for Mac {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
impl UnicastAddress for Mac {
/// Is this a unicast MAC address?
///
/// Returns true if the least significant bit of the first byte of the
/// address is 0.
#[inline]
fn is_unicast(&self) -> bool {
// https://en.wikipedia.org/wiki/MAC_address#Unicast_vs._multicast
self.0[0] & 1 == 0
}
}
impl MulticastAddress for Mac {
/// Is this a multicast MAC address?
///
/// Returns true if the least significant bit of the first byte of the
/// address is 1.
#[inline]
fn is_multicast(&self) -> bool {
// https://en.wikipedia.org/wiki/MAC_address#Unicast_vs._multicast
self.0[0] & 1 == 1
}
}
impl BroadcastAddress for Mac {
/// Is this the broadcast MAC address?
///
/// Returns true if this is the broadcast MAC address, FF:FF:FF:FF:FF:FF.
/// Note that the broadcast address is also considered a multicast address,
/// so `addr.is_broadcast()` implies `addr.is_multicast()`.
#[inline]
fn is_broadcast(&self) -> bool {
// https://en.wikipedia.org/wiki/MAC_address#Unicast_vs._multicast
*self == Mac::BROADCAST
}
}
impl<'a, A: IpAddress> From<&'a MulticastAddr<A>> for Mac {
/// Converts a multicast IP address to a MAC address.
///
/// This method is equivalent to `MulticastAddr::<Mac>::from(addr).get()`.
#[inline]
fn from(addr: &'a MulticastAddr<A>) -> Mac {
MulticastAddr::<Mac>::from(addr).get()
}
}
impl<A: IpAddress> From<MulticastAddr<A>> for Mac {
/// Converts a multicast IP address to a MAC address.
///
/// This method is equivalent to `(&addr).into()`.
#[inline]
fn from(addr: MulticastAddr<A>) -> Mac {
(&addr).into()
}
}
impl<'a, A: IpAddress> From<&'a MulticastAddr<A>> for MulticastAddr<Mac> {
/// Converts a multicast IP address to a multicast MAC address.
///
/// When a multicast IP packet is sent over an Ethernet link, the frame's
/// destination MAC address is a multicast MAC address that is derived from
/// the destination IP address. This function performs that conversion.
///
/// See [RFC 7042 Section 2.1.1] and [Section 2.3.1] for details on how IPv4
/// and IPv6 addresses are mapped, respectively.
///
/// [RFC 7042 Section 2.1.1]: https://tools.ietf.org/html/rfc7042#section-2.1.1
/// [Section 2.3.1]: https://tools.ietf.org/html/rfc7042#section-2.3.1
#[inline]
fn from(addr: &'a MulticastAddr<A>) -> MulticastAddr<Mac> {
// We know the call to `unwrap` will not panic because we are generating
// a multicast MAC as defined in RFC 7042 section 2.1.1 and section
// 2.3.1 for IPv4 and IPv6 addresses, respectively.
MulticastAddr::new(Mac::new(match (*addr).get().into() {
IpAddr::V4(addr) => {
let ip_bytes = addr.ipv4_bytes();
let mut mac_bytes = [0; 6];
mac_bytes[0] = 0x01;
mac_bytes[1] = 0x00;
mac_bytes[2] = 0x5e;
mac_bytes[3] = ip_bytes[1] & 0x7f;
mac_bytes[4] = ip_bytes[2];
mac_bytes[5] = ip_bytes[3];
mac_bytes
}
IpAddr::V6(addr) => {
let ip_bytes = addr.ipv6_bytes();
let mut mac_bytes = [0; 6];
mac_bytes[0] = 0x33;
mac_bytes[1] = 0x33;
mac_bytes[2] = ip_bytes[12];
mac_bytes[3] = ip_bytes[13];
mac_bytes[4] = ip_bytes[14];
mac_bytes[5] = ip_bytes[15];
mac_bytes
}
}))
.unwrap()
}
}
impl<A: IpAddress> From<MulticastAddr<A>> for MulticastAddr<Mac> {
fn from(addr: MulticastAddr<A>) -> MulticastAddr<Mac> {
(&addr).into()
}
}
macro_rules! impl_from_witness {
($witness:ident) => {
impl From<$witness<Mac>> for Mac {
fn from(addr: $witness<Mac>) -> Mac {
addr.get()
}
}
};
}
impl_from_witness!(UnicastAddr);
impl_from_witness!(MulticastAddr);
impl_from_witness!(BroadcastAddr);
impl Display for Mac {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(
f,
"{:02X}:{:02X}:{:02X}:{:02X}:{:02X}:{:02X}",
self.0[0], self.0[1], self.0[2], self.0[3], self.0[4], self.0[5]
)
}
}
impl Debug for Mac {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(self, f)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ip::Ipv4Addr;
#[test]
fn test_mac_to_eui() {
assert_eq!(
Mac::new([0x00, 0x1a, 0xaa, 0x12, 0x34, 0x56]).to_eui64(),
[0x02, 0x1a, 0xaa, 0xff, 0xfe, 0x12, 0x34, 0x56]
);
assert_eq!(
Mac::new([0x00, 0x1a, 0xaa, 0x12, 0x34, 0x56]).to_eui64_with_magic([0xfe, 0xfe]),
[0x02, 0x1a, 0xaa, 0xfe, 0xfe, 0x12, 0x34, 0x56]
);
}
#[test]
fn test_to_ipv6_link_local() {
assert_eq!(
Mac::new([0x00, 0x1a, 0xaa, 0x12, 0x34, 0x56]).to_ipv6_link_local(),
AddrSubnet::new(
Ipv6Addr::new([
0xfe80, // IPv6 link-local prefix
0, 0, 0, // Padding zeroes
0x021a, 0xaaff, 0xfe12, 0x3456, // EUI-64
]),
64
)
.unwrap()
);
assert_eq!(
Mac::new([0x00, 0x1a, 0xaa, 0x12, 0x34, 0x56])
.to_ipv6_link_local_with_magic([0xfe, 0xfe]),
AddrSubnet::new(
Ipv6Addr::new([
0xfe80, // IPv6 link-local prefix
0, 0, 0, // Padding zeroes
0x021a, 0xaafe, 0xfe12, 0x3456, // EUI-64
]),
64
)
.unwrap()
);
}
#[test]
fn test_map_multicast_ip_to_ethernet_mac() {
let ipv4 = Ipv4Addr::new([224, 1, 1, 1]);
let mac = Mac::from(&MulticastAddr::new(ipv4).unwrap());
assert_eq!(mac, Mac::new([0x01, 0x00, 0x5e, 0x1, 0x1, 0x1]));
let ipv4 = Ipv4Addr::new([224, 129, 1, 1]);
let mac = Mac::from(&MulticastAddr::new(ipv4).unwrap());
assert_eq!(mac, Mac::new([0x01, 0x00, 0x5e, 0x1, 0x1, 0x1]));
let ipv4 = Ipv4Addr::new([225, 1, 1, 1]);
let mac = Mac::from(&MulticastAddr::new(ipv4).unwrap());
assert_eq!(mac, Mac::new([0x01, 0x00, 0x5e, 0x1, 0x1, 0x1]));
let ipv6 = Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0, 0, 3]);
let mac = Mac::from(&MulticastAddr::new(ipv6).unwrap());
assert_eq!(mac, Mac::new([0x33, 0x33, 0, 0, 0, 3]));
let ipv6 = Ipv6Addr::new([0xff02, 0, 0, 1, 0, 0, 0, 3]);
let mac = Mac::from(&MulticastAddr::new(ipv6).unwrap());
assert_eq!(mac, Mac::new([0x33, 0x33, 0, 0, 0, 3]));
let ipv6 = Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0, 0x100, 3]);
let mac = Mac::from(&MulticastAddr::new(ipv6).unwrap());
assert_eq!(mac, Mac::new([0x33, 0x33, 1, 0, 0, 3]));
}
#[test]
fn mac_display_leading_zeroes() {
assert_eq!(Mac::new([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]).to_string(), "00:00:00:00:00:00");
}
}