zx/vmar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Type-safe bindings for Zircon vmar objects.
use crate::{
object_get_info_single, object_get_info_vec, ok, sys, AsHandleRef, Handle, HandleBased,
HandleRef, Koid, Name, ObjectQuery, Status, Topic, Vmo,
};
use bitflags::bitflags;
/// An object representing a Zircon
/// [virtual memory address region](https://fuchsia.dev/fuchsia-src/concepts/objects/vm_address_region.md).
///
/// As essentially a subtype of `Handle`, it can be freely interconverted.
#[derive(Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(transparent)]
pub struct Vmar(Handle);
impl_handle_based!(Vmar);
sys::zx_info_vmar_t!(VmarInfo);
impl From<sys::zx_info_vmar_t> for VmarInfo {
fn from(sys::zx_info_vmar_t { base, len }: sys::zx_info_vmar_t) -> VmarInfo {
VmarInfo { base, len }
}
}
// VmarInfo is able to be safely replaced with a byte representation and is a PoD type.
unsafe impl ObjectQuery for VmarInfo {
const TOPIC: Topic = Topic::VMAR;
type InfoTy = VmarInfo;
}
struct VmarMapsInfo;
unsafe impl ObjectQuery for VmarMapsInfo {
const TOPIC: Topic = Topic::VMAR_MAPS;
type InfoTy = crate::sys::zx_info_maps_t;
}
/// Ergonomic wrapper around `zx_info_maps_t`.
#[derive(Copy, Clone)]
pub struct MapInfo {
pub name: Name,
pub base: usize,
pub size: usize,
pub depth: usize,
pub details: MapDetails,
}
impl MapInfo {
/// # Safety
///
/// Must be passed a value written by the kernel.
pub(crate) unsafe fn from_raw(
sys::zx_info_maps_t { name, base, size, depth, r#type, u }: sys::zx_info_maps_t,
) -> Result<Self, Status> {
let details = match r#type {
sys::ZX_INFO_MAPS_TYPE_NONE => MapDetails::None,
sys::ZX_INFO_MAPS_TYPE_ASPACE => MapDetails::AddressSpace,
sys::ZX_INFO_MAPS_TYPE_VMAR => MapDetails::Vmar,
sys::ZX_INFO_MAPS_TYPE_MAPPING => {
// SAFETY: as long as this value was written by the kernel we can trust that the
// type corresponds to this layout.
let &sys::zx_info_maps_mapping_t {
mmu_flags,
padding1: _,
vmo_koid,
vmo_offset,
committed_bytes,
populated_bytes,
committed_private_bytes,
populated_private_bytes,
committed_scaled_bytes,
populated_scaled_bytes,
committed_fractional_scaled_bytes,
populated_fractional_scaled_bytes,
} = unsafe { &u.mapping };
MapDetails::Mapping(MappingDetails {
mmu_flags: VmarFlagsExtended::from_bits_retain(mmu_flags),
vmo_koid: Koid::from_raw(vmo_koid),
vmo_offset,
committed_bytes,
populated_bytes,
committed_private_bytes,
populated_private_bytes,
committed_scaled_bytes,
populated_scaled_bytes,
committed_fractional_scaled_bytes,
populated_fractional_scaled_bytes,
})
}
_ => return Err(Status::INTERNAL),
};
Ok(Self { name: Name::from_raw(name), base, size, depth, details })
}
}
impl std::fmt::Debug for MapInfo {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("MapInfo")
.field("name", &self.name)
.field("base", &format_args!("{:#x}", self.base))
.field("size", &self.size)
.field("depth", &self.depth)
.field("details", &self.details)
.finish()
}
}
#[derive(Copy, Clone, Debug)]
pub enum MapDetails {
None,
AddressSpace,
Vmar,
Mapping(MappingDetails),
}
impl MapDetails {
pub fn as_mapping(&self) -> Option<MappingDetails> {
match self {
Self::Mapping(d) => Some(*d),
_ => None,
}
}
}
#[derive(Copy, Clone, Debug)]
pub struct MappingDetails {
pub mmu_flags: VmarFlagsExtended,
pub vmo_koid: Koid,
pub vmo_offset: u64,
pub committed_bytes: usize,
pub populated_bytes: usize,
pub committed_private_bytes: usize,
pub populated_private_bytes: usize,
pub committed_scaled_bytes: usize,
pub populated_scaled_bytes: usize,
pub committed_fractional_scaled_bytes: u64,
pub populated_fractional_scaled_bytes: u64,
}
impl Vmar {
pub fn allocate(
&self,
offset: usize,
size: usize,
flags: VmarFlags,
) -> Result<(Vmar, usize), Status> {
let mut mapped = 0;
let mut handle = 0;
let status = unsafe {
sys::zx_vmar_allocate(
self.raw_handle(),
flags.bits(),
offset,
size,
&mut handle,
&mut mapped,
)
};
ok(status)?;
unsafe { Ok((Vmar::from(Handle::from_raw(handle)), mapped)) }
}
pub fn map(
&self,
vmar_offset: usize,
vmo: &Vmo,
vmo_offset: u64,
len: usize,
flags: VmarFlags,
) -> Result<usize, Status> {
let flags = VmarFlagsExtended::from_bits_truncate(flags.bits());
unsafe { self.map_unsafe(vmar_offset, vmo, vmo_offset, len, flags) }
}
/// Directly call `zx_vmar_map`.
///
/// # Safety
///
/// This function is unsafe because certain flags to `zx_vmar_map` may
/// replace an existing mapping which is referenced elsewhere.
pub unsafe fn map_unsafe(
&self,
vmar_offset: usize,
vmo: &Vmo,
vmo_offset: u64,
len: usize,
flags: VmarFlagsExtended,
) -> Result<usize, Status> {
let mut mapped = 0;
let status = sys::zx_vmar_map(
self.0.raw_handle(),
flags.bits(),
vmar_offset,
vmo.raw_handle(),
vmo_offset,
len,
&mut mapped,
);
ok(status).map(|_| mapped)
}
/// Directly call `zx_vmar_unmap`.
///
/// # Safety
///
/// This function is unsafe because unmapping memory regions can arbitrarily
/// cause read, write, and execution errors. Among other things, the caller
/// must ensure that:
///
/// - The region being unmapped will not be accessed after unmapping.
/// - All references to memory in the region must be dropped or forgotten
/// prior to calling this method.
/// - If the region contained executable code, then code in the region must
/// not be currently executing and may not be executed in the future.
///
/// This is not an exhaustive list, as there are many ways to cause memory
/// unsafety with memory mappings.
pub unsafe fn unmap(&self, addr: usize, len: usize) -> Result<(), Status> {
// SAFETY: The caller has guaranteed that unmapping the given region
// will not cause undefined behavior.
ok(unsafe { sys::zx_vmar_unmap(self.0.raw_handle(), addr, len) })
}
/// Directly call `zx_vmar_protect`.
///
/// # Safety
///
/// This function is unsafe because changing the access protections for
/// memory regions can arbitrarily cause read, write, and execution errors.
/// Among other things, the caller must ensure that if a read, write, or
/// execute permission is removed from a memory region, it must not read,
/// write, or execute it respetively.
///
/// This is not an exhaustive list, as there are many ways to cause memory
/// unsafety with memory mappings.
pub unsafe fn protect(&self, addr: usize, len: usize, flags: VmarFlags) -> Result<(), Status> {
// SAFETY: The caller has guaranteed that protecting the given region
// will not cause undefined behavior.
ok(unsafe { sys::zx_vmar_protect(self.raw_handle(), flags.bits(), addr, len) })
}
/// Directly call `zx_vmar_destroy`.
///
/// # Safety
///
/// This function is unsafe because destroying a region unmaps all of the
/// mappings within it. See [`Vmar::unmap`] for more details on how
/// unmapping memory regions can cause memory unsafety.
pub unsafe fn destroy(&self) -> Result<(), Status> {
// SAFETY: The caller has guaranteed that destroying the given region
// will not cause undefined behavior.
ok(unsafe { sys::zx_vmar_destroy(self.raw_handle()) })
}
/// Wraps the
/// [zx_object_get_info](https://fuchsia.dev/fuchsia-src/reference/syscalls/object_get_info.md)
/// syscall for the ZX_INFO_VMAR topic.
pub fn info(&self) -> Result<VmarInfo, Status> {
Ok(object_get_info_single::<VmarInfo>(self.as_handle_ref())?)
}
/// Wraps the
/// [zx_object_get_info](https://fuchsia.dev/fuchsia-src/reference/syscalls/object_get_info.md)
/// syscall for the ZX_INFO_VMAR_MAPS topic.
pub fn info_maps_vec(&self) -> Result<Vec<MapInfo>, Status> {
object_get_info_vec::<VmarMapsInfo>(self.as_handle_ref())?
.into_iter()
.map(|i| {
// SAFETY: these values were written by the kernel which is the requirement for this
// function.
unsafe { MapInfo::from_raw(i) }
})
.collect::<Result<Vec<_>, _>>()
}
}
// TODO(smklein): Ideally we would have two separate sets of bitflags,
// and a union of both of them.
macro_rules! vmar_flags {
(
safe: [$($safe_name:ident : $safe_sys_name:ident,)*],
extended: [$($ex_name:ident : $ex_sys_name:ident,)*],
) => {
bitflags! {
/// Flags to VMAR routines which are considered safe.
#[repr(transparent)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VmarFlags: sys::zx_vm_option_t {
$(
const $safe_name = sys::$safe_sys_name;
)*
}
}
bitflags! {
/// Flags to all VMAR routines.
#[repr(transparent)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VmarFlagsExtended: sys::zx_vm_option_t {
$(
const $safe_name = sys::$safe_sys_name;
)*
$(
const $ex_name = sys::$ex_sys_name;
)*
}
}
};
}
vmar_flags! {
safe: [
PERM_READ: ZX_VM_PERM_READ,
PERM_WRITE: ZX_VM_PERM_WRITE,
PERM_EXECUTE: ZX_VM_PERM_EXECUTE,
COMPACT: ZX_VM_COMPACT,
SPECIFIC: ZX_VM_SPECIFIC,
CAN_MAP_SPECIFIC: ZX_VM_CAN_MAP_SPECIFIC,
CAN_MAP_READ: ZX_VM_CAN_MAP_READ,
CAN_MAP_WRITE: ZX_VM_CAN_MAP_WRITE,
CAN_MAP_EXECUTE: ZX_VM_CAN_MAP_EXECUTE,
MAP_RANGE: ZX_VM_MAP_RANGE,
REQUIRE_NON_RESIZABLE: ZX_VM_REQUIRE_NON_RESIZABLE,
ALLOW_FAULTS: ZX_VM_ALLOW_FAULTS,
OFFSET_IS_UPPER_LIMIT: ZX_VM_OFFSET_IS_UPPER_LIMIT,
PERM_READ_IF_XOM_UNSUPPORTED: ZX_VM_PERM_READ_IF_XOM_UNSUPPORTED,
// Alignment options
ALIGN_1KB: ZX_VM_ALIGN_1KB,
ALIGN_2KB: ZX_VM_ALIGN_2KB,
ALIGN_4KB: ZX_VM_ALIGN_4KB,
ALIGN_8KB: ZX_VM_ALIGN_8KB,
ALIGN_16KB: ZX_VM_ALIGN_16KB,
ALIGN_32KB: ZX_VM_ALIGN_32KB,
ALIGN_64KB: ZX_VM_ALIGN_64KB,
ALIGN_128KB: ZX_VM_ALIGN_128KB,
ALIGN_256KB: ZX_VM_ALIGN_256KB,
ALIGN_512KB: ZX_VM_ALIGN_512KB,
ALIGN_1MB: ZX_VM_ALIGN_1MB,
ALIGN_2MB: ZX_VM_ALIGN_2MB,
ALIGN_4MB: ZX_VM_ALIGN_4MB,
ALIGN_8MB: ZX_VM_ALIGN_8MB,
ALIGN_16MB: ZX_VM_ALIGN_16MB,
ALIGN_32MB: ZX_VM_ALIGN_32MB,
ALIGN_64MB: ZX_VM_ALIGN_64MB,
ALIGN_128MB: ZX_VM_ALIGN_128MB,
ALIGN_256MB: ZX_VM_ALIGN_256MB,
ALIGN_512MB: ZX_VM_ALIGN_512MB,
ALIGN_1GB: ZX_VM_ALIGN_1GB,
ALIGN_2GB: ZX_VM_ALIGN_2GB,
ALIGN_4GB: ZX_VM_ALIGN_4GB,
],
extended: [
SPECIFIC_OVERWRITE: ZX_VM_SPECIFIC_OVERWRITE,
],
}
#[cfg(test)]
mod tests {
// The unit tests are built with a different crate name, but fuchsia_runtime returns a "real"
// zx::Vmar that we need to use.
use zx::{Status, VmarFlags};
#[test]
fn allocate_and_info() -> Result<(), Status> {
let size = usize::pow(2, 20); // 1MiB
let root_vmar = fuchsia_runtime::vmar_root_self();
let (vmar, base) = root_vmar.allocate(0, size, VmarFlags::empty())?;
let info = vmar.info()?;
assert!(info.base == base);
assert!(info.len == size);
Ok(())
}
#[test]
fn root_vmar_info() -> Result<(), Status> {
let root_vmar = fuchsia_runtime::vmar_root_self();
let info = root_vmar.info()?;
assert!(info.base > 0);
assert!(info.len > 0);
Ok(())
}
#[test]
fn root_vmar_maps() {
let root_vmar = fuchsia_runtime::vmar_root_self();
let info = root_vmar.info_maps_vec().unwrap();
assert!(!info.is_empty());
}
}