1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! RFC 1071 "internet checksum" computation.
//!
//! This crate implements the "internet checksum" defined in [RFC 1071] and
//! updated in [RFC 1141] and [RFC 1624], which is used by many different
//! protocols' packet formats. The checksum operates by computing the 1s
//! complement of the 1s complement sum of successive 16-bit words of the input.
//!
//! # Benchmarks
//!
//! ## [`Checksum::add_bytes`]
//!
//! The following microbenchmarks were performed on a 2018 Google Pixelbook. Each benchmark
//! constructs a [`Checksum`] object, calls [`Checksum::add_bytes`] with an input of the given
//! number of bytes, and then calls [`Checksum::checksum`] to finalize. Average values were
//! calculated over 3 trials.
//!
//! Bytes |    Time    |    Rate
//! ----- | ---------- | ----------
//!    20 |   2,649 ns |  7.55 MB/s
//!    31 |   3,826 ns |  8.10 MB/s
//!    32 |   3,871 ns |  8.27 MB/s
//!    64 |   1,433 ns |  44.7 MB/s
//!   128 |   2,225 ns |  57.5 MB/s
//!   256 |   3,829 ns |  66.9 MB/s
//!  1023 |  13,802 ns |  74.1 MB/s
//!  1024 |  13,535 ns |  75.7 MB/s
//!
//! ## [`Checksum::add_bytes_small`]
//!
//! The following microbenchmarks were performed on a 2018 Google Pixelbook. Each benchmark
//! constructs a [`Checksum`] object, calls [`Checksum::add_bytes_small`] with an input of the
//! given number of bytes, and then calls [`Checksum::checksum`] to finalize. Average values
//! were calculated over 3 trials.
//!
//! Bytes |    Time    |    Rate
//! ----- | ---------- | ----------
//!    20 |   2,639 ns |  7.57 MB/s
//!    31 |   3,806 ns |  8.15 MB/s
//!
//! ## [`update`]
//!
//! The following microbenchmarks were performed on a 2018 Google Pixelbook. Each benchmark
//! calls [`update`] with an original 2 byte checksum, and byteslices of specified lengths
//! to be updated. Average values were calculated over 3 trials.
//!
//! Bytes |    Time    |    Rate
//! ----- | ---------- | ----------
//!     2 |   1,550 ns |  1.29 MB/s
//!     4 |   1,972 ns |  2.03 MB/s
//!     8 |   2,892 ns |  2.77 MB/s
//!
//! [RFC 1071]: https://tools.ietf.org/html/rfc1071
//! [RFC 1141]: https://tools.ietf.org/html/rfc1141
//! [RFC 1624]: https://tools.ietf.org/html/rfc1624

// Optimizations applied:
//
// 0. Byteorder independence: as described in RFC 1071 section 2.(B)
//    The sum of 16-bit integers can be computed in either byte order,
//    so this actually saves us from the unnecessary byte swapping on
//    an LE machine. As perfed on a gLinux workstation, that swapping
//    can account for ~20% of the runtime.
//
// 1. Widen the accumulator: doing so enables us to process a bigger
//    chunk of data once at a time, achieving some kind of poor man's
//    SIMD. Currently a u128 counter is used on x86-64 and a u64 is
//    used conservatively on other architectures.
//
// 2. Process more at a time: the old implementation uses a u32 accumulator
//    but it only adds one u16 each time to implement deferred carry. In
//    the current implementation we are processing a u128 once at a time
//    on x86-64, which is 8 u16's. On other platforms, we are processing
//    a u64 at a time, which is 4 u16's.
//
// 3. Induce the compiler to produce `adc` instruction: this is a very
//    useful instruction to implement 1's complement addition and available
//    on both x86 and ARM. The functions `adc_uXX` are for this use.
//
// 4. Eliminate branching as much as possible: the old implementation has
//    if statements for detecting overflow of the u32 accumulator which
//    is not needed when we can access the carry flag with `adc`. The old
//    `normalize` function used to have a while loop to fold the u32,
//    however, we can unroll that loop because we know ahead of time how
//    much additions we need.
//
// 5. In the loop of `add_bytes`, the `adc_u64` is not used, instead,
//    the `overflowing_add` is directly used. `adc_u64`'s carry flag
//    comes from the current number being added while the slightly
//    convoluted version in `add_bytes`, adding each number depends on
//    the carry flag of the previous computation. I checked under release
//    mode this issues 3 instructions instead of 4 for x86 and it should
//    theoretically be beneficial, however, measurement showed me that it
//    helps only a little. So this trick is not used for `update`.
//
// 6. When the input is small, fallback to deferred carry method. Deferred
//    carry turns out to be very efficient when dealing with small buffers:
//    If the input is small, the cost to deal with the tail may already
//    outweigh the benefit of the unrolling itself. Some measurement
//    confirms this theory.
//
// Results:
//
// Micro-benchmarks are run on an x86-64 gLinux workstation. In summary,
// compared the baseline 0 which is prior to the byteorder independence
// patch, there is a ~4x speedup.
//
// TODO: run this optimization on other platforms. I would expect
// the situation on ARM a bit different because I am not sure
// how much penalty there will be for misaligned read on ARM, or
// whether it is even supported (On x86 there is generally no
// penalty for misaligned read). If there will be penalties, we
// should consider alignment as an optimization opportunity on ARM.

// TODO(joshlf): Right-justify the columns above

#![cfg_attr(feature = "benchmark", feature(test))]

#[cfg(all(test, feature = "benchmark"))]
extern crate test;

// TODO(joshlf):
// - Investigate optimizations proposed in RFC 1071 Section 2. The most
//   promising on modern hardware is probably (C) Parallel Summation, although
//   that needs to be balanced against (1) Deferred Carries. Benchmarks will
//   need to be performed to determine which is faster in practice, and under
//   what scenarios.

/// Compute the checksum of "bytes".
///
/// `checksum(bytes)` is shorthand for:
///
/// ```rust
/// # use internet_checksum::Checksum;
/// # let bytes = &[];
/// # let _ = {
/// let mut c = Checksum::new();
/// c.add_bytes(bytes);
/// c.checksum()
/// # };
/// ```
#[inline]
pub fn checksum(bytes: &[u8]) -> [u8; 2] {
    let mut c = Checksum::new();
    c.add_bytes(bytes);
    c.checksum()
}

#[cfg(target_arch = "x86_64")]
type Accumulator = u128;
#[cfg(not(target_arch = "x86_64"))]
type Accumulator = u64;

/// The threshold for small buffers, if the buffer is too small,
/// fall back to the normal deferred carry method where a wide
/// accumulator is used but one `u16` is added once at a time.
// TODO: `64` works fine on x86_64, but this value may be different
// on other platforms.
const SMALL_BUF_THRESHOLD: usize = 64;

/// The following macro unrolls operations on u16's to wider integers.
///
/// # Arguments
///
/// * `$arr`  - The byte slice being processed.
/// * `$body` - The operation to operate on the wider integer. It should
///             be a macro because functions are not options here.
///
///
/// This macro will choose the "wide integer" for you, on x86-64,
/// it will choose u128 as the "wide integer" and u64 anywhere else.
macro_rules! loop_unroll {
    (@inner $arr: ident, 16, $body:ident) => {
        while $arr.len() >= 16 {
            $body!(16, u128);
        }
        unroll_tail!($arr, 16, $body);
    };

    (@inner $arr: ident, 8, $body:ident) => {
        while $arr.len() >= 8 {
            $body!(8, u64);
        }
        unroll_tail!($arr, 8, $body);
    };

    ($arr: ident, $body: ident) => {
        #[cfg(target_arch = "x86_64")]
        loop_unroll!(@inner $arr, 16, $body);
        #[cfg(not(target_arch = "x86_64"))]
        loop_unroll!(@inner $arr, 8, $body);
    };
}

/// At the the end of loop unrolling, we have to take care of bytes
/// that are left over. For example, `unroll_tail!(bytes, 4, body)`
/// expands to
/// ```
/// if bytes.len & 2 != 0 {
///   body!(2, u16);
/// }
/// ```
macro_rules! unroll_tail {
    ($arr: ident, $n: literal, $read: ident, $body: ident) => {
        if $arr.len() & $n != 0 {
            $body!($n, $read);
        }
    };

    ($arr: ident, 4, $body: ident) => {
        unroll_tail!($arr, 2, u16, $body);
    };

    ($arr: ident, 8, $body: ident) => {
        unroll_tail!($arr, 4, u32, $body);
        unroll_tail!($arr, 4, $body);
    };

    ($arr: ident, 16, $body: ident) => {
        unroll_tail!($arr, 8, u64, $body);
        unroll_tail!($arr, 8, $body);
    };
}

/// Updates bytes in an existing checksum.
///
/// `update` updates a checksum to reflect that the already-checksummed bytes
/// `old` have been updated to contain the values in `new`. It implements the
/// algorithm described in Equation 3 in [RFC 1624]. The first byte must be at
/// an even number offset in the original input. If an odd number offset byte
/// needs to be updated, the caller should simply include the preceding byte as
/// well. If an odd number of bytes is given, it is assumed that these are the
/// last bytes of the input. If an odd number of bytes in the middle of the
/// input needs to be updated, the preceding or following byte of the input
/// should be added to make an even number of bytes.
///
/// # Panics
///
/// `update` panics if `old.len() != new.len()`.
///
/// [RFC 1624]: https://tools.ietf.org/html/rfc1624
#[inline]
pub fn update(checksum: [u8; 2], old: &[u8], new: &[u8]) -> [u8; 2] {
    assert_eq!(old.len(), new.len());
    // We compute on the sum, not the one's complement of the sum. checksum
    // is the one's complement of the sum, so we need to get back to the
    // sum. Thus, we negate checksum.
    // HC' = ~HC
    let mut sum = !u16::from_ne_bytes(checksum) as Accumulator;

    // Let's reuse `Checksum::add_bytes` to update our checksum
    // so that we can get the speedup for free. Using
    // [RFC 1071 Eqn. 3], we can efficiently update our new checksum.
    let mut c1 = Checksum::new();
    let mut c2 = Checksum::new();
    c1.add_bytes(old);
    c2.add_bytes(new);

    // Note, `c1.checksum_inner()` is actually ~m in [Eqn. 3]
    // `c2.checksum_inner()` is actually ~m' in [Eqn. 3]
    // so we have to negate `c2.checksum_inner()` first to get m'.
    // HC' += ~m, c1.checksum_inner() == ~m.
    sum = adc_accumulator(sum, c1.checksum_inner() as Accumulator);
    // HC' += m', c2.checksum_inner() == ~m'.
    sum = adc_accumulator(sum, !c2.checksum_inner() as Accumulator);
    // HC' = ~HC.
    (!normalize(sum)).to_ne_bytes()
}

/// RFC 1071 "internet checksum" computation.
///
/// `Checksum` implements the "internet checksum" defined in [RFC 1071] and
/// updated in [RFC 1141] and [RFC 1624], which is used by many different
/// protocols' packet formats. The checksum operates by computing the 1s
/// complement of the 1s complement sum of successive 16-bit words of the input.
///
/// [RFC 1071]: https://tools.ietf.org/html/rfc1071
/// [RFC 1141]: https://tools.ietf.org/html/rfc1141
/// [RFC 1624]: https://tools.ietf.org/html/rfc1624
#[derive(Default)]
pub struct Checksum {
    sum: Accumulator,
    // Since odd-length inputs are treated specially, we store the trailing byte
    // for use in future calls to add_bytes(), and only treat it as a true
    // trailing byte in checksum().
    trailing_byte: Option<u8>,
}

impl Checksum {
    /// Initialize a new checksum.
    #[inline]
    pub const fn new() -> Self {
        Checksum { sum: 0, trailing_byte: None }
    }

    /// Add bytes to the checksum.
    ///
    /// If `bytes` does not contain an even number of bytes, a single zero byte
    /// will be added to the end before updating the checksum.
    ///
    /// Note that `add_bytes` has some fixed overhead regardless of the size of
    /// `bytes`. Where performance is a concern, prefer fewer calls to
    /// `add_bytes` with larger input over more calls with smaller input.
    #[inline]
    pub fn add_bytes(&mut self, mut bytes: &[u8]) {
        if bytes.len() < SMALL_BUF_THRESHOLD {
            self.add_bytes_small(bytes);
            return;
        }

        let mut sum = self.sum;
        let mut carry = false;

        // We are not using `adc_uXX` functions here, instead, we manually track
        // the carry flag. This is because in `adc_uXX` functions, the carry
        // flag depends on addition itself. So the assembly for that function
        // reads as follows:
        //
        // mov %rdi, %rcx
        // mov %rsi, %rax
        // add %rcx, %rsi -- waste! only used to generate CF.
        // adc %rdi, $rax -- the real useful instruction.
        //
        // So we had better to make us depend on the CF generated by the
        // addition of the previous 16-bit word. The ideal assembly should look
        // like:
        //
        // add 0(%rdi), %rax
        // adc 8(%rdi), %rax
        // adc 16(%rdi), %rax
        // .... and so on ...
        //
        // Sadly, there are too many instructions that can affect the carry
        // flag, and LLVM is not that optimized to find out the pattern and let
        // all these adc instructions not interleaved. However, doing so results
        // in 3 instructions instead of the original 4 instructions (the two
        // mov's are still there) and it makes a difference on input size like
        // 1023.

        // The following macro is used as a `body` when invoking a `loop_unroll`
        // macro. `$step` means how many bytes to handle at once; `$read` is
        // supposed to be `u16`, `u32` and so on, it is used to get an unsigned
        // integer of `$step` width from a byte slice; `$bytes` is the byte
        // slice mentioned before, if omitted, it defaults to be `bytes`, which
        // is the argument of the surrounding function.
        macro_rules! update_sum_carry {
            ($step: literal, $ty: ident, $bytes: expr) => {
                let (s, c) = sum
                    .overflowing_add($ty::from_ne_bytes($bytes.try_into().unwrap()) as Accumulator);
                sum = s.wrapping_add(carry as Accumulator);
                carry = c;
                bytes = &bytes[$step..];
            };
            ($step: literal, $ty: ident) => {
                update_sum_carry!($step, $ty, bytes[..$step]);
            };
        }

        // if there's a trailing byte, consume it first
        if let Some(byte) = self.trailing_byte {
            update_sum_carry!(1, u16, [byte, bytes[0]]);
            self.trailing_byte = None;
        }

        loop_unroll!(bytes, update_sum_carry);

        if bytes.len() == 1 {
            self.trailing_byte = Some(bytes[0]);
        }

        self.sum = sum + (carry as Accumulator);
    }

    /// The efficient fallback when the buffer is small.
    ///
    /// In this implementation, one `u16` is added once a
    /// time, so we don't waste time on dealing with the
    /// tail of the buffer. Besides, given that the accumulator
    /// is large enough, when inputs are small, there should
    /// hardly be overflows, so for any modern architecture,
    /// there is little chance in misprediction.
    // The inline attribute is needed here, micro benchmarks showed
    // that it speeds up things.
    #[inline(always)]
    fn add_bytes_small(&mut self, mut bytes: &[u8]) {
        if bytes.is_empty() {
            return;
        }

        let mut sum = self.sum;
        fn update_sum(acc: Accumulator, rhs: u16) -> Accumulator {
            if let Some(updated) = acc.checked_add(rhs as Accumulator) {
                updated
            } else {
                (normalize(acc) + rhs) as Accumulator
            }
        }

        if let Some(byte) = self.trailing_byte {
            sum = update_sum(sum, u16::from_ne_bytes([byte, bytes[0]]));
            bytes = &bytes[1..];
            self.trailing_byte = None;
        }

        bytes.chunks(2).for_each(|chunk| match chunk {
            [byte] => self.trailing_byte = Some(*byte),
            [first, second] => {
                sum = update_sum(sum, u16::from_ne_bytes([*first, *second]));
            }
            bytes => unreachable!("{:?}", bytes),
        });

        self.sum = sum;
    }

    /// Computes the checksum, but in big endian byte order.
    fn checksum_inner(&self) -> u16 {
        let mut sum = self.sum;
        if let Some(byte) = self.trailing_byte {
            sum = adc_accumulator(sum, u16::from_ne_bytes([byte, 0]) as Accumulator);
        }
        !normalize(sum)
    }

    /// Computes the checksum, and returns the array representation.
    ///
    /// `checksum` returns the checksum of all data added using `add_bytes` so
    /// far. Calling `checksum` does *not* reset the checksum. More bytes may be
    /// added after calling `checksum`, and they will be added to the checksum
    /// as expected.
    ///
    /// If an odd number of bytes have been added so far, the checksum will be
    /// computed as though a single 0 byte had been added at the end in order to
    /// even out the length of the input.
    #[inline]
    pub fn checksum(&self) -> [u8; 2] {
        self.checksum_inner().to_ne_bytes()
    }
}

macro_rules! impl_adc {
    ($name: ident, $t: ty) => {
        /// implements 1's complement addition for $t,
        /// exploiting the carry flag on a 2's complement machine.
        /// In practice, the adc instruction will be generated.
        fn $name(a: $t, b: $t) -> $t {
            let (s, c) = a.overflowing_add(b);
            s + (c as $t)
        }
    };
}

impl_adc!(adc_u16, u16);
impl_adc!(adc_u32, u32);
#[cfg(target_arch = "x86_64")]
impl_adc!(adc_u64, u64);
impl_adc!(adc_accumulator, Accumulator);

/// Normalizes the accumulator by mopping up the
/// overflow until it fits in a `u16`.
fn normalize(a: Accumulator) -> u16 {
    #[cfg(target_arch = "x86_64")]
    return normalize_64(adc_u64(a as u64, (a >> 64) as u64));
    #[cfg(not(target_arch = "x86_64"))]
    return normalize_64(a);
}

fn normalize_64(a: u64) -> u16 {
    let t = adc_u32(a as u32, (a >> 32) as u32);
    adc_u16(t as u16, (t >> 16) as u16)
}

#[cfg(all(test, feature = "benchmark"))]
mod benchmarks {
    extern crate test;
    use super::*;

    /// Benchmark time to calculate checksum with a single call to `add_bytes`
    /// with 31 bytes.
    #[bench]
    fn bench_checksum_31(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 31]);
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            test::black_box(c.checksum());
        });
    }

    /// Benchmark time to calculate checksum with a single call to `add_bytes`
    /// with 32 bytes.
    #[bench]
    fn bench_checksum_32(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 32]);
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            test::black_box(c.checksum());
        });
    }

    /// Benchmark time to calculate checksum with a single call to `add_bytes`
    /// with 64 bytes.
    #[bench]
    fn bench_checksum_64(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 64]);
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            test::black_box(c.checksum());
        });
    }

    /// Benchmark time to calculate checksum with a single call to `add_bytes`
    /// with 128 bytes.
    #[bench]
    fn bench_checksum_128(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 128]);
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            test::black_box(c.checksum());
        });
    }

    /// Benchmark time to calculate checksum with a single call to `add_bytes`
    /// with 256 bytes.
    #[bench]
    fn bench_checksum_256(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 256]);
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            test::black_box(c.checksum());
        });
    }

    /// Benchmark time to calculate checksum with a single call to `add_bytes`
    /// with 1024 bytes.
    #[bench]
    fn bench_checksum_1024(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 1024]);
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            test::black_box(c.checksum());
        });
    }

    /// Benchmark time to calculate checksum with a single call to `add_bytes`
    /// with 1023 bytes.
    #[bench]
    fn bench_checksum_1023(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 1023]);
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            test::black_box(c.checksum());
        });
    }

    #[bench]
    fn bench_checksum_20(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 20]);
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            test::black_box(c.checksum());
        });
    }

    #[bench]
    fn bench_checksum_small_20(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 20]);
            let mut c = Checksum::new();
            c.add_bytes_small(&buf);
            test::black_box(c.checksum());
        });
    }

    #[bench]
    fn bench_checksum_small_31(b: &mut test::Bencher) {
        b.iter(|| {
            let buf = test::black_box([0xFF; 31]);
            let mut c = Checksum::new();
            c.add_bytes_small(&buf);
            test::black_box(c.checksum());
        });
    }

    #[bench]
    fn bench_update_2(b: &mut test::Bencher) {
        b.iter(|| {
            let old = test::black_box([0x42; 2]);
            let new = test::black_box([0xa0; 2]);
            test::black_box(update([42; 2], &old[..], &new[..]));
        });
    }

    #[bench]
    fn bench_update_4(b: &mut test::Bencher) {
        b.iter(|| {
            let old = test::black_box([0x42; 4]);
            let new = test::black_box([0xa0; 4]);
            test::black_box(update([42; 2], &old[..], &new[..]));
        });
    }

    #[bench]
    fn bench_update_8(b: &mut test::Bencher) {
        b.iter(|| {
            let old = test::black_box([0x42; 8]);
            let new = test::black_box([0xa0; 8]);
            test::black_box(update([42; 2], &old[..], &new[..]));
        });
    }
}

#[cfg(test)]
mod tests {
    use rand::{Rng, SeedableRng};

    use rand_xorshift::XorShiftRng;

    use super::*;

    /// Create a new deterministic RNG from a seed.
    fn new_rng(mut seed: u128) -> XorShiftRng {
        if seed == 0 {
            // XorShiftRng can't take 0 seeds
            seed = 1;
        }
        XorShiftRng::from_seed(seed.to_ne_bytes())
    }

    #[test]
    fn test_checksum() {
        for buf in IPV4_HEADERS {
            // compute the checksum as normal
            let mut c = Checksum::new();
            c.add_bytes(&buf);
            assert_eq!(c.checksum(), [0u8; 2]);
            // compute the checksum one byte at a time to make sure our
            // trailing_byte logic works
            let mut c = Checksum::new();
            for byte in *buf {
                c.add_bytes(&[*byte]);
            }
            assert_eq!(c.checksum(), [0u8; 2]);

            // Make sure that it works even if we overflow u32. Performing this
            // loop 2 * 2^16 times is guaranteed to cause such an overflow
            // because 0xFFFF + 0xFFFF > 2^16, and we're effectively adding
            // (0xFFFF + 0xFFFF) 2^16 times. We verify the overflow as well by
            // making sure that, at least once, the sum gets smaller from one
            // loop iteration to the next.
            let mut c = Checksum::new();
            c.add_bytes(&[0xFF, 0xFF]);
            for _ in 0..((2 * (1 << 16)) - 1) {
                c.add_bytes(&[0xFF, 0xFF]);
            }
            assert_eq!(c.checksum(), [0u8; 2]);
        }
    }

    #[test]
    fn test_update() {
        for b in IPV4_HEADERS {
            let mut buf = Vec::new();
            buf.extend_from_slice(b);

            let mut c = Checksum::new();
            c.add_bytes(&buf);
            assert_eq!(c.checksum(), [0u8; 2]);

            // replace the destination IP with the loopback address
            let old = [buf[16], buf[17], buf[18], buf[19]];
            (&mut buf[16..20]).copy_from_slice(&[127, 0, 0, 1]);
            let updated = update(c.checksum(), &old, &[127, 0, 0, 1]);
            let from_scratch = {
                let mut c = Checksum::new();
                c.add_bytes(&buf);
                c.checksum()
            };
            assert_eq!(updated, from_scratch);
        }
    }

    #[test]
    fn test_smoke_update() {
        let mut rng = new_rng(70_812_476_915_813);

        for _ in 0..2048 {
            // use an odd length so we test the odd length logic
            const BUF_LEN: usize = 31;
            let buf: [u8; BUF_LEN] = rng.gen();
            let mut c = Checksum::new();
            c.add_bytes(&buf);

            let (begin, end) = loop {
                let begin = rng.gen::<usize>() % BUF_LEN;
                let end = begin + (rng.gen::<usize>() % (BUF_LEN + 1 - begin));
                // update requires that begin is even and end is either even or
                // the end of the input
                if begin % 2 == 0 && (end % 2 == 0 || end == BUF_LEN) {
                    break (begin, end);
                }
            };

            let mut new_buf = buf;
            for i in begin..end {
                new_buf[i] = rng.gen();
            }
            let updated = update(c.checksum(), &buf[begin..end], &new_buf[begin..end]);
            let from_scratch = {
                let mut c = Checksum::new();
                c.add_bytes(&new_buf);
                c.checksum()
            };
            assert_eq!(updated, from_scratch);
        }
    }

    #[test]
    fn test_add_bytes_small_prop_test() {
        // Since we have two independent implementations
        // Now it is time for us to write a property test
        // to ensure the checksum algorithm(s) are indeed correct.

        let mut rng = new_rng(123478012483);
        let mut c1 = Checksum::new();
        let mut c2 = Checksum::new();
        for len in 64..1_025 {
            for _ in 0..4 {
                let mut buf = vec![];
                for _ in 0..len {
                    buf.push(rng.gen());
                }
                c1.add_bytes(&buf[..]);
                c2.add_bytes_small(&buf[..]);
                assert_eq!(c1.checksum(), c2.checksum());
                let n1 = c1.checksum_inner();
                let n2 = c2.checksum_inner();
                assert_eq!(n1, n2);
                let mut t1 = Checksum::new();
                let mut t2 = Checksum::new();
                let mut t3 = Checksum::new();
                t3.add_bytes(&buf[..]);
                if buf.len() % 2 == 1 {
                    buf.push(0);
                }
                assert_eq!(buf.len() % 2, 0);
                buf.extend_from_slice(&t3.checksum());
                t1.add_bytes(&buf[..]);
                t2.add_bytes_small(&buf[..]);
                assert_eq!(t1.checksum(), [0, 0]);
                assert_eq!(t2.checksum(), [0, 0]);
            }
        }
    }

    /// IPv4 headers.
    ///
    /// This data was obtained by capturing live network traffic.
    const IPV4_HEADERS: &[&[u8]] = &[
        &[
            0x45, 0x00, 0x00, 0x34, 0x00, 0x00, 0x40, 0x00, 0x40, 0x06, 0xae, 0xea, 0xc0, 0xa8,
            0x01, 0x0f, 0xc0, 0xb8, 0x09, 0x6a,
        ],
        &[
            0x45, 0x20, 0x00, 0x74, 0x5b, 0x6e, 0x40, 0x00, 0x37, 0x06, 0x5c, 0x1c, 0xc0, 0xb8,
            0x09, 0x6a, 0xc0, 0xa8, 0x01, 0x0f,
        ],
        &[
            0x45, 0x20, 0x02, 0x8f, 0x00, 0x00, 0x40, 0x00, 0x3b, 0x11, 0xc9, 0x3f, 0xac, 0xd9,
            0x05, 0x6e, 0xc0, 0xa8, 0x01, 0x0f,
        ],
    ];

    // This test checks that an input, found by a fuzzer, no longer causes a crash due to addition
    // overflow.
    #[test]
    fn test_large_buffer_addition_overflow() {
        let mut sum = Checksum { sum: 0, trailing_byte: None };
        let bytes = [
            0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
            255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
        ];
        sum.add_bytes(&bytes[..]);
    }
}