internet_checksum/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! RFC 1071 "internet checksum" computation.
//!
//! This crate implements the "internet checksum" defined in [RFC 1071] and
//! updated in [RFC 1141] and [RFC 1624], which is used by many different
//! protocols' packet formats. The checksum operates by computing the 1s
//! complement of the 1s complement sum of successive 16-bit words of the input.
//!
//! # Benchmarks
//!
//! ## [`Checksum::add_bytes`]
//!
//! The following microbenchmarks were performed on a 2018 Google Pixelbook. Each benchmark
//! constructs a [`Checksum`] object, calls [`Checksum::add_bytes`] with an input of the given
//! number of bytes, and then calls [`Checksum::checksum`] to finalize. Average values were
//! calculated over 3 trials.
//!
//! Bytes | Time | Rate
//! ----- | ---------- | ----------
//! 20 | 2,649 ns | 7.55 MB/s
//! 31 | 3,826 ns | 8.10 MB/s
//! 32 | 3,871 ns | 8.27 MB/s
//! 64 | 1,433 ns | 44.7 MB/s
//! 128 | 2,225 ns | 57.5 MB/s
//! 256 | 3,829 ns | 66.9 MB/s
//! 1023 | 13,802 ns | 74.1 MB/s
//! 1024 | 13,535 ns | 75.7 MB/s
//!
//! ## [`Checksum::add_bytes_small`]
//!
//! The following microbenchmarks were performed on a 2018 Google Pixelbook. Each benchmark
//! constructs a [`Checksum`] object, calls [`Checksum::add_bytes_small`] with an input of the
//! given number of bytes, and then calls [`Checksum::checksum`] to finalize. Average values
//! were calculated over 3 trials.
//!
//! Bytes | Time | Rate
//! ----- | ---------- | ----------
//! 20 | 2,639 ns | 7.57 MB/s
//! 31 | 3,806 ns | 8.15 MB/s
//!
//! ## [`update`]
//!
//! The following microbenchmarks were performed on a 2018 Google Pixelbook. Each benchmark
//! calls [`update`] with an original 2 byte checksum, and byteslices of specified lengths
//! to be updated. Average values were calculated over 3 trials.
//!
//! Bytes | Time | Rate
//! ----- | ---------- | ----------
//! 2 | 1,550 ns | 1.29 MB/s
//! 4 | 1,972 ns | 2.03 MB/s
//! 8 | 2,892 ns | 2.77 MB/s
//!
//! [RFC 1071]: https://tools.ietf.org/html/rfc1071
//! [RFC 1141]: https://tools.ietf.org/html/rfc1141
//! [RFC 1624]: https://tools.ietf.org/html/rfc1624
// Optimizations applied:
//
// 0. Byteorder independence: as described in RFC 1071 section 2.(B)
// The sum of 16-bit integers can be computed in either byte order,
// so this actually saves us from the unnecessary byte swapping on
// an LE machine. As perfed on a gLinux workstation, that swapping
// can account for ~20% of the runtime.
//
// 1. Widen the accumulator: doing so enables us to process a bigger
// chunk of data once at a time, achieving some kind of poor man's
// SIMD. Currently a u128 counter is used on x86-64 and a u64 is
// used conservatively on other architectures.
//
// 2. Process more at a time: the old implementation uses a u32 accumulator
// but it only adds one u16 each time to implement deferred carry. In
// the current implementation we are processing a u128 once at a time
// on x86-64, which is 8 u16's. On other platforms, we are processing
// a u64 at a time, which is 4 u16's.
//
// 3. Induce the compiler to produce `adc` instruction: this is a very
// useful instruction to implement 1's complement addition and available
// on both x86 and ARM. The functions `adc_uXX` are for this use.
//
// 4. Eliminate branching as much as possible: the old implementation has
// if statements for detecting overflow of the u32 accumulator which
// is not needed when we can access the carry flag with `adc`. The old
// `normalize` function used to have a while loop to fold the u32,
// however, we can unroll that loop because we know ahead of time how
// much additions we need.
//
// 5. In the loop of `add_bytes`, the `adc_u64` is not used, instead,
// the `overflowing_add` is directly used. `adc_u64`'s carry flag
// comes from the current number being added while the slightly
// convoluted version in `add_bytes`, adding each number depends on
// the carry flag of the previous computation. I checked under release
// mode this issues 3 instructions instead of 4 for x86 and it should
// theoretically be beneficial, however, measurement showed me that it
// helps only a little. So this trick is not used for `update`.
//
// 6. When the input is small, fallback to deferred carry method. Deferred
// carry turns out to be very efficient when dealing with small buffers:
// If the input is small, the cost to deal with the tail may already
// outweigh the benefit of the unrolling itself. Some measurement
// confirms this theory.
//
// Results:
//
// Micro-benchmarks are run on an x86-64 gLinux workstation. In summary,
// compared the baseline 0 which is prior to the byteorder independence
// patch, there is a ~4x speedup.
//
// TODO: run this optimization on other platforms. I would expect
// the situation on ARM a bit different because I am not sure
// how much penalty there will be for misaligned read on ARM, or
// whether it is even supported (On x86 there is generally no
// penalty for misaligned read). If there will be penalties, we
// should consider alignment as an optimization opportunity on ARM.
// TODO(joshlf): Right-justify the columns above
#![cfg_attr(feature = "benchmark", feature(test))]
#[cfg(all(test, feature = "benchmark"))]
extern crate test;
// TODO(joshlf):
// - Investigate optimizations proposed in RFC 1071 Section 2. The most
// promising on modern hardware is probably (C) Parallel Summation, although
// that needs to be balanced against (1) Deferred Carries. Benchmarks will
// need to be performed to determine which is faster in practice, and under
// what scenarios.
/// Compute the checksum of "bytes".
///
/// `checksum(bytes)` is shorthand for:
///
/// ```rust
/// # use internet_checksum::Checksum;
/// # let bytes = &[];
/// # let _ = {
/// let mut c = Checksum::new();
/// c.add_bytes(bytes);
/// c.checksum()
/// # };
/// ```
#[inline]
pub fn checksum(bytes: &[u8]) -> [u8; 2] {
let mut c = Checksum::new();
c.add_bytes(bytes);
c.checksum()
}
#[cfg(target_arch = "x86_64")]
type Accumulator = u128;
#[cfg(not(target_arch = "x86_64"))]
type Accumulator = u64;
/// The threshold for small buffers, if the buffer is too small,
/// fall back to the normal deferred carry method where a wide
/// accumulator is used but one `u16` is added once at a time.
// TODO: `64` works fine on x86_64, but this value may be different
// on other platforms.
const SMALL_BUF_THRESHOLD: usize = 64;
/// The following macro unrolls operations on u16's to wider integers.
///
/// # Arguments
///
/// * `$arr` - The byte slice being processed.
/// * `$body` - The operation to operate on the wider integer. It should
/// be a macro because functions are not options here.
///
///
/// This macro will choose the "wide integer" for you, on x86-64,
/// it will choose u128 as the "wide integer" and u64 anywhere else.
macro_rules! loop_unroll {
(@inner $arr: ident, 16, $body:ident) => {
while $arr.len() >= 16 {
$body!(16, u128);
}
unroll_tail!($arr, 16, $body);
};
(@inner $arr: ident, 8, $body:ident) => {
while $arr.len() >= 8 {
$body!(8, u64);
}
unroll_tail!($arr, 8, $body);
};
($arr: ident, $body: ident) => {
#[cfg(target_arch = "x86_64")]
loop_unroll!(@inner $arr, 16, $body);
#[cfg(not(target_arch = "x86_64"))]
loop_unroll!(@inner $arr, 8, $body);
};
}
/// At the the end of loop unrolling, we have to take care of bytes
/// that are left over. For example, `unroll_tail!(bytes, 4, body)`
/// expands to
/// ```
/// if bytes.len & 2 != 0 {
/// body!(2, u16);
/// }
/// ```
macro_rules! unroll_tail {
($arr: ident, $n: literal, $read: ident, $body: ident) => {
if $arr.len() & $n != 0 {
$body!($n, $read);
}
};
($arr: ident, 4, $body: ident) => {
unroll_tail!($arr, 2, u16, $body);
};
($arr: ident, 8, $body: ident) => {
unroll_tail!($arr, 4, u32, $body);
unroll_tail!($arr, 4, $body);
};
($arr: ident, 16, $body: ident) => {
unroll_tail!($arr, 8, u64, $body);
unroll_tail!($arr, 8, $body);
};
}
/// Updates bytes in an existing checksum.
///
/// `update` updates a checksum to reflect that the already-checksummed bytes
/// `old` have been updated to contain the values in `new`. It implements the
/// algorithm described in Equation 3 in [RFC 1624]. The first byte must be at
/// an even number offset in the original input. If an odd number offset byte
/// needs to be updated, the caller should simply include the preceding byte as
/// well. If an odd number of bytes is given, it is assumed that these are the
/// last bytes of the input. If an odd number of bytes in the middle of the
/// input needs to be updated, the preceding or following byte of the input
/// should be added to make an even number of bytes.
///
/// # Panics
///
/// `update` panics if `old.len() != new.len()`.
///
/// [RFC 1624]: https://tools.ietf.org/html/rfc1624
#[inline]
pub fn update(checksum: [u8; 2], old: &[u8], new: &[u8]) -> [u8; 2] {
assert_eq!(old.len(), new.len());
// We compute on the sum, not the one's complement of the sum. checksum
// is the one's complement of the sum, so we need to get back to the
// sum. Thus, we negate checksum.
// HC' = ~HC
let mut sum = !u16::from_ne_bytes(checksum) as Accumulator;
// Let's reuse `Checksum::add_bytes` to update our checksum
// so that we can get the speedup for free. Using
// [RFC 1071 Eqn. 3], we can efficiently update our new checksum.
let mut c1 = Checksum::new();
let mut c2 = Checksum::new();
c1.add_bytes(old);
c2.add_bytes(new);
// Note, `c1.checksum_inner()` is actually ~m in [Eqn. 3]
// `c2.checksum_inner()` is actually ~m' in [Eqn. 3]
// so we have to negate `c2.checksum_inner()` first to get m'.
// HC' += ~m, c1.checksum_inner() == ~m.
sum = adc_accumulator(sum, c1.checksum_inner() as Accumulator);
// HC' += m', c2.checksum_inner() == ~m'.
sum = adc_accumulator(sum, !c2.checksum_inner() as Accumulator);
// HC' = ~HC.
(!normalize(sum)).to_ne_bytes()
}
/// RFC 1071 "internet checksum" computation.
///
/// `Checksum` implements the "internet checksum" defined in [RFC 1071] and
/// updated in [RFC 1141] and [RFC 1624], which is used by many different
/// protocols' packet formats. The checksum operates by computing the 1s
/// complement of the 1s complement sum of successive 16-bit words of the input.
///
/// [RFC 1071]: https://tools.ietf.org/html/rfc1071
/// [RFC 1141]: https://tools.ietf.org/html/rfc1141
/// [RFC 1624]: https://tools.ietf.org/html/rfc1624
#[derive(Default)]
pub struct Checksum {
sum: Accumulator,
// Since odd-length inputs are treated specially, we store the trailing byte
// for use in future calls to add_bytes(), and only treat it as a true
// trailing byte in checksum().
trailing_byte: Option<u8>,
}
impl Checksum {
/// Initialize a new checksum.
#[inline]
pub const fn new() -> Self {
Checksum { sum: 0, trailing_byte: None }
}
/// Add bytes to the checksum.
///
/// If `bytes` does not contain an even number of bytes, a single zero byte
/// will be added to the end before updating the checksum.
///
/// Note that `add_bytes` has some fixed overhead regardless of the size of
/// `bytes`. Where performance is a concern, prefer fewer calls to
/// `add_bytes` with larger input over more calls with smaller input.
#[inline]
pub fn add_bytes(&mut self, mut bytes: &[u8]) {
if bytes.len() < SMALL_BUF_THRESHOLD {
self.add_bytes_small(bytes);
return;
}
let mut sum = self.sum;
let mut carry = false;
// We are not using `adc_uXX` functions here, instead, we manually track
// the carry flag. This is because in `adc_uXX` functions, the carry
// flag depends on addition itself. So the assembly for that function
// reads as follows:
//
// mov %rdi, %rcx
// mov %rsi, %rax
// add %rcx, %rsi -- waste! only used to generate CF.
// adc %rdi, $rax -- the real useful instruction.
//
// So we had better to make us depend on the CF generated by the
// addition of the previous 16-bit word. The ideal assembly should look
// like:
//
// add 0(%rdi), %rax
// adc 8(%rdi), %rax
// adc 16(%rdi), %rax
// .... and so on ...
//
// Sadly, there are too many instructions that can affect the carry
// flag, and LLVM is not that optimized to find out the pattern and let
// all these adc instructions not interleaved. However, doing so results
// in 3 instructions instead of the original 4 instructions (the two
// mov's are still there) and it makes a difference on input size like
// 1023.
// The following macro is used as a `body` when invoking a `loop_unroll`
// macro. `$step` means how many bytes to handle at once; `$read` is
// supposed to be `u16`, `u32` and so on, it is used to get an unsigned
// integer of `$step` width from a byte slice; `$bytes` is the byte
// slice mentioned before, if omitted, it defaults to be `bytes`, which
// is the argument of the surrounding function.
macro_rules! update_sum_carry {
($step: literal, $ty: ident, $bytes: expr) => {
let (s, c) = sum
.overflowing_add($ty::from_ne_bytes($bytes.try_into().unwrap()) as Accumulator);
sum = s.wrapping_add(carry as Accumulator);
carry = c;
bytes = &bytes[$step..];
};
($step: literal, $ty: ident) => {
update_sum_carry!($step, $ty, bytes[..$step]);
};
}
// if there's a trailing byte, consume it first
if let Some(byte) = self.trailing_byte {
update_sum_carry!(1, u16, [byte, bytes[0]]);
self.trailing_byte = None;
}
loop_unroll!(bytes, update_sum_carry);
if bytes.len() == 1 {
self.trailing_byte = Some(bytes[0]);
}
self.sum = sum + (carry as Accumulator);
}
/// The efficient fallback when the buffer is small.
///
/// In this implementation, one `u16` is added once a
/// time, so we don't waste time on dealing with the
/// tail of the buffer. Besides, given that the accumulator
/// is large enough, when inputs are small, there should
/// hardly be overflows, so for any modern architecture,
/// there is little chance in misprediction.
// The inline attribute is needed here, micro benchmarks showed
// that it speeds up things.
#[inline(always)]
fn add_bytes_small(&mut self, mut bytes: &[u8]) {
if bytes.is_empty() {
return;
}
let mut sum = self.sum;
fn update_sum(acc: Accumulator, rhs: u16) -> Accumulator {
if let Some(updated) = acc.checked_add(rhs as Accumulator) {
updated
} else {
(normalize(acc) + rhs) as Accumulator
}
}
if let Some(byte) = self.trailing_byte {
sum = update_sum(sum, u16::from_ne_bytes([byte, bytes[0]]));
bytes = &bytes[1..];
self.trailing_byte = None;
}
bytes.chunks(2).for_each(|chunk| match chunk {
[byte] => self.trailing_byte = Some(*byte),
[first, second] => {
sum = update_sum(sum, u16::from_ne_bytes([*first, *second]));
}
bytes => unreachable!("{:?}", bytes),
});
self.sum = sum;
}
/// Computes the checksum, but in big endian byte order.
fn checksum_inner(&self) -> u16 {
let mut sum = self.sum;
if let Some(byte) = self.trailing_byte {
sum = adc_accumulator(sum, u16::from_ne_bytes([byte, 0]) as Accumulator);
}
!normalize(sum)
}
/// Computes the checksum, and returns the array representation.
///
/// `checksum` returns the checksum of all data added using `add_bytes` so
/// far. Calling `checksum` does *not* reset the checksum. More bytes may be
/// added after calling `checksum`, and they will be added to the checksum
/// as expected.
///
/// If an odd number of bytes have been added so far, the checksum will be
/// computed as though a single 0 byte had been added at the end in order to
/// even out the length of the input.
#[inline]
pub fn checksum(&self) -> [u8; 2] {
self.checksum_inner().to_ne_bytes()
}
}
macro_rules! impl_adc {
($name: ident, $t: ty) => {
/// implements 1's complement addition for $t,
/// exploiting the carry flag on a 2's complement machine.
/// In practice, the adc instruction will be generated.
fn $name(a: $t, b: $t) -> $t {
let (s, c) = a.overflowing_add(b);
s + (c as $t)
}
};
}
impl_adc!(adc_u16, u16);
impl_adc!(adc_u32, u32);
#[cfg(target_arch = "x86_64")]
impl_adc!(adc_u64, u64);
impl_adc!(adc_accumulator, Accumulator);
/// Normalizes the accumulator by mopping up the
/// overflow until it fits in a `u16`.
fn normalize(a: Accumulator) -> u16 {
#[cfg(target_arch = "x86_64")]
return normalize_64(adc_u64(a as u64, (a >> 64) as u64));
#[cfg(not(target_arch = "x86_64"))]
return normalize_64(a);
}
fn normalize_64(a: u64) -> u16 {
let t = adc_u32(a as u32, (a >> 32) as u32);
adc_u16(t as u16, (t >> 16) as u16)
}
#[cfg(all(test, feature = "benchmark"))]
mod benchmarks {
extern crate test;
use super::*;
/// Benchmark time to calculate checksum with a single call to `add_bytes`
/// with 31 bytes.
#[bench]
fn bench_checksum_31(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 31]);
let mut c = Checksum::new();
c.add_bytes(&buf);
test::black_box(c.checksum());
});
}
/// Benchmark time to calculate checksum with a single call to `add_bytes`
/// with 32 bytes.
#[bench]
fn bench_checksum_32(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 32]);
let mut c = Checksum::new();
c.add_bytes(&buf);
test::black_box(c.checksum());
});
}
/// Benchmark time to calculate checksum with a single call to `add_bytes`
/// with 64 bytes.
#[bench]
fn bench_checksum_64(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 64]);
let mut c = Checksum::new();
c.add_bytes(&buf);
test::black_box(c.checksum());
});
}
/// Benchmark time to calculate checksum with a single call to `add_bytes`
/// with 128 bytes.
#[bench]
fn bench_checksum_128(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 128]);
let mut c = Checksum::new();
c.add_bytes(&buf);
test::black_box(c.checksum());
});
}
/// Benchmark time to calculate checksum with a single call to `add_bytes`
/// with 256 bytes.
#[bench]
fn bench_checksum_256(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 256]);
let mut c = Checksum::new();
c.add_bytes(&buf);
test::black_box(c.checksum());
});
}
/// Benchmark time to calculate checksum with a single call to `add_bytes`
/// with 1024 bytes.
#[bench]
fn bench_checksum_1024(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 1024]);
let mut c = Checksum::new();
c.add_bytes(&buf);
test::black_box(c.checksum());
});
}
/// Benchmark time to calculate checksum with a single call to `add_bytes`
/// with 1023 bytes.
#[bench]
fn bench_checksum_1023(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 1023]);
let mut c = Checksum::new();
c.add_bytes(&buf);
test::black_box(c.checksum());
});
}
#[bench]
fn bench_checksum_20(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 20]);
let mut c = Checksum::new();
c.add_bytes(&buf);
test::black_box(c.checksum());
});
}
#[bench]
fn bench_checksum_small_20(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 20]);
let mut c = Checksum::new();
c.add_bytes_small(&buf);
test::black_box(c.checksum());
});
}
#[bench]
fn bench_checksum_small_31(b: &mut test::Bencher) {
b.iter(|| {
let buf = test::black_box([0xFF; 31]);
let mut c = Checksum::new();
c.add_bytes_small(&buf);
test::black_box(c.checksum());
});
}
#[bench]
fn bench_update_2(b: &mut test::Bencher) {
b.iter(|| {
let old = test::black_box([0x42; 2]);
let new = test::black_box([0xa0; 2]);
test::black_box(update([42; 2], &old[..], &new[..]));
});
}
#[bench]
fn bench_update_4(b: &mut test::Bencher) {
b.iter(|| {
let old = test::black_box([0x42; 4]);
let new = test::black_box([0xa0; 4]);
test::black_box(update([42; 2], &old[..], &new[..]));
});
}
#[bench]
fn bench_update_8(b: &mut test::Bencher) {
b.iter(|| {
let old = test::black_box([0x42; 8]);
let new = test::black_box([0xa0; 8]);
test::black_box(update([42; 2], &old[..], &new[..]));
});
}
}
#[cfg(test)]
mod tests {
use rand::{Rng, SeedableRng};
use rand_xorshift::XorShiftRng;
use super::*;
/// Create a new deterministic RNG from a seed.
fn new_rng(mut seed: u128) -> XorShiftRng {
if seed == 0 {
// XorShiftRng can't take 0 seeds
seed = 1;
}
XorShiftRng::from_seed(seed.to_ne_bytes())
}
#[test]
fn test_checksum() {
for buf in IPV4_HEADERS {
// compute the checksum as normal
let mut c = Checksum::new();
c.add_bytes(&buf);
assert_eq!(c.checksum(), [0u8; 2]);
// compute the checksum one byte at a time to make sure our
// trailing_byte logic works
let mut c = Checksum::new();
for byte in *buf {
c.add_bytes(&[*byte]);
}
assert_eq!(c.checksum(), [0u8; 2]);
// Make sure that it works even if we overflow u32. Performing this
// loop 2 * 2^16 times is guaranteed to cause such an overflow
// because 0xFFFF + 0xFFFF > 2^16, and we're effectively adding
// (0xFFFF + 0xFFFF) 2^16 times. We verify the overflow as well by
// making sure that, at least once, the sum gets smaller from one
// loop iteration to the next.
let mut c = Checksum::new();
c.add_bytes(&[0xFF, 0xFF]);
for _ in 0..((2 * (1 << 16)) - 1) {
c.add_bytes(&[0xFF, 0xFF]);
}
assert_eq!(c.checksum(), [0u8; 2]);
}
}
#[test]
fn test_update() {
for b in IPV4_HEADERS {
let mut buf = Vec::new();
buf.extend_from_slice(b);
let mut c = Checksum::new();
c.add_bytes(&buf);
assert_eq!(c.checksum(), [0u8; 2]);
// replace the destination IP with the loopback address
let old = [buf[16], buf[17], buf[18], buf[19]];
(&mut buf[16..20]).copy_from_slice(&[127, 0, 0, 1]);
let updated = update(c.checksum(), &old, &[127, 0, 0, 1]);
let from_scratch = {
let mut c = Checksum::new();
c.add_bytes(&buf);
c.checksum()
};
assert_eq!(updated, from_scratch);
}
}
#[test]
fn test_update_noop() {
for b in IPV4_HEADERS {
let mut buf = Vec::new();
buf.extend_from_slice(b);
let mut c = Checksum::new();
c.add_bytes(&buf);
assert_eq!(c.checksum(), [0u8; 2]);
// Replace the destination IP with the same address. I.e. this
// update should be a no-op.
let old = [buf[16], buf[17], buf[18], buf[19]];
let updated = update(c.checksum(), &old, &old);
let from_scratch = {
let mut c = Checksum::new();
c.add_bytes(&buf);
c.checksum()
};
assert_eq!(updated, from_scratch);
}
}
#[test]
fn test_smoke_update() {
let mut rng = new_rng(70_812_476_915_813);
for _ in 0..2048 {
// use an odd length so we test the odd length logic
const BUF_LEN: usize = 31;
let buf: [u8; BUF_LEN] = rng.gen();
let mut c = Checksum::new();
c.add_bytes(&buf);
let (begin, end) = loop {
let begin = rng.gen::<usize>() % BUF_LEN;
let end = begin + (rng.gen::<usize>() % (BUF_LEN + 1 - begin));
// update requires that begin is even and end is either even or
// the end of the input
if begin % 2 == 0 && (end % 2 == 0 || end == BUF_LEN) {
break (begin, end);
}
};
let mut new_buf = buf;
for i in begin..end {
new_buf[i] = rng.gen();
}
let updated = update(c.checksum(), &buf[begin..end], &new_buf[begin..end]);
let from_scratch = {
let mut c = Checksum::new();
c.add_bytes(&new_buf);
c.checksum()
};
assert_eq!(updated, from_scratch);
}
}
#[test]
fn test_add_bytes_small_prop_test() {
// Since we have two independent implementations
// Now it is time for us to write a property test
// to ensure the checksum algorithm(s) are indeed correct.
let mut rng = new_rng(123478012483);
let mut c1 = Checksum::new();
let mut c2 = Checksum::new();
for len in 64..1_025 {
for _ in 0..4 {
let mut buf = vec![];
for _ in 0..len {
buf.push(rng.gen());
}
c1.add_bytes(&buf[..]);
c2.add_bytes_small(&buf[..]);
assert_eq!(c1.checksum(), c2.checksum());
let n1 = c1.checksum_inner();
let n2 = c2.checksum_inner();
assert_eq!(n1, n2);
let mut t1 = Checksum::new();
let mut t2 = Checksum::new();
let mut t3 = Checksum::new();
t3.add_bytes(&buf[..]);
if buf.len() % 2 == 1 {
buf.push(0);
}
assert_eq!(buf.len() % 2, 0);
buf.extend_from_slice(&t3.checksum());
t1.add_bytes(&buf[..]);
t2.add_bytes_small(&buf[..]);
assert_eq!(t1.checksum(), [0, 0]);
assert_eq!(t2.checksum(), [0, 0]);
}
}
}
/// IPv4 headers.
///
/// This data was obtained by capturing live network traffic.
const IPV4_HEADERS: &[&[u8]] = &[
&[
0x45, 0x00, 0x00, 0x34, 0x00, 0x00, 0x40, 0x00, 0x40, 0x06, 0xae, 0xea, 0xc0, 0xa8,
0x01, 0x0f, 0xc0, 0xb8, 0x09, 0x6a,
],
&[
0x45, 0x20, 0x00, 0x74, 0x5b, 0x6e, 0x40, 0x00, 0x37, 0x06, 0x5c, 0x1c, 0xc0, 0xb8,
0x09, 0x6a, 0xc0, 0xa8, 0x01, 0x0f,
],
&[
0x45, 0x20, 0x02, 0x8f, 0x00, 0x00, 0x40, 0x00, 0x3b, 0x11, 0xc9, 0x3f, 0xac, 0xd9,
0x05, 0x6e, 0xc0, 0xa8, 0x01, 0x0f,
],
];
// This test checks that an input, found by a fuzzer, no longer causes a crash due to addition
// overflow.
#[test]
fn test_large_buffer_addition_overflow() {
let mut sum = Checksum { sum: 0, trailing_byte: None };
let bytes = [
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
];
sum.add_bytes(&bytes[..]);
}
}