tokio/sync/rwlock/owned_write_guard.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
use crate::sync::rwlock::owned_read_guard::OwnedRwLockReadGuard;
use crate::sync::rwlock::owned_write_guard_mapped::OwnedRwLockMappedWriteGuard;
use crate::sync::rwlock::RwLock;
use std::marker::PhantomData;
use std::sync::Arc;
use std::{fmt, mem, ops, ptr};
/// Owned RAII structure used to release the exclusive write access of a lock when
/// dropped.
///
/// This structure is created by the [`write_owned`] method
/// on [`RwLock`].
///
/// [`write_owned`]: method@crate::sync::RwLock::write_owned
/// [`RwLock`]: struct@crate::sync::RwLock
#[clippy::has_significant_drop]
pub struct OwnedRwLockWriteGuard<T: ?Sized> {
// When changing the fields in this struct, make sure to update the
// `skip_drop` method.
#[cfg(all(tokio_unstable, feature = "tracing"))]
pub(super) resource_span: tracing::Span,
pub(super) permits_acquired: u32,
pub(super) lock: Arc<RwLock<T>>,
pub(super) data: *mut T,
pub(super) _p: PhantomData<T>,
}
#[allow(dead_code)] // Unused fields are still used in Drop.
struct Inner<T: ?Sized> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span,
permits_acquired: u32,
lock: Arc<RwLock<T>>,
data: *const T,
}
impl<T: ?Sized> OwnedRwLockWriteGuard<T> {
fn skip_drop(self) -> Inner<T> {
let me = mem::ManuallyDrop::new(self);
// SAFETY: This duplicates the values in every field of the guard, then
// forgets the originals, so in the end no value is duplicated.
unsafe {
Inner {
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: ptr::read(&me.resource_span),
permits_acquired: me.permits_acquired,
lock: ptr::read(&me.lock),
data: me.data,
}
}
}
/// Makes a new [`OwnedRwLockMappedWriteGuard`] for a component of the locked
/// data.
///
/// This operation cannot fail as the `OwnedRwLockWriteGuard` passed in
/// already locked the data.
///
/// This is an associated function that needs to be used as
/// `OwnedRwLockWriteGuard::map(..)`. A method would interfere with methods
/// of the same name on the contents of the locked data.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::{RwLock, OwnedRwLockWriteGuard};
///
/// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// struct Foo(u32);
///
/// # #[tokio::main]
/// # async fn main() {
/// let lock = Arc::new(RwLock::new(Foo(1)));
///
/// {
/// let lock = Arc::clone(&lock);
/// let mut mapped = OwnedRwLockWriteGuard::map(lock.write_owned().await, |f| &mut f.0);
/// *mapped = 2;
/// }
///
/// assert_eq!(Foo(2), *lock.read().await);
/// # }
/// ```
#[inline]
pub fn map<F, U: ?Sized>(mut this: Self, f: F) -> OwnedRwLockMappedWriteGuard<T, U>
where
F: FnOnce(&mut T) -> &mut U,
{
let data = f(&mut *this) as *mut U;
let this = this.skip_drop();
OwnedRwLockMappedWriteGuard {
permits_acquired: this.permits_acquired,
lock: this.lock,
data,
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: this.resource_span,
}
}
/// Makes a new [`OwnedRwLockReadGuard`] for a component of the locked data.
///
/// This operation cannot fail as the `OwnedRwLockWriteGuard` passed in already
/// locked the data.
///
/// This is an associated function that needs to be used as
/// `OwnedRwLockWriteGuard::downgrade_map(..)`. A method would interfere with methods of
/// the same name on the contents of the locked data.
///
/// Inside of `f`, you retain exclusive access to the data, despite only being given a `&T`. Handing out a
/// `&mut T` would result in unsoundness, as you could use interior mutability.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::{RwLock, OwnedRwLockWriteGuard};
///
/// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// struct Foo(u32);
///
/// # #[tokio::main]
/// # async fn main() {
/// let lock = Arc::new(RwLock::new(Foo(1)));
///
/// let guard = Arc::clone(&lock).write_owned().await;
/// let mapped = OwnedRwLockWriteGuard::downgrade_map(guard, |f| &f.0);
/// let foo = lock.read_owned().await;
/// assert_eq!(foo.0, *mapped);
/// # }
/// ```
#[inline]
pub fn downgrade_map<F, U: ?Sized>(this: Self, f: F) -> OwnedRwLockReadGuard<T, U>
where
F: FnOnce(&T) -> &U,
{
let data = f(&*this) as *const U;
let this = this.skip_drop();
let guard = OwnedRwLockReadGuard {
lock: this.lock,
data,
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: this.resource_span,
};
// Release all but one of the permits held by the write guard
let to_release = (this.permits_acquired - 1) as usize;
guard.lock.s.release(to_release);
#[cfg(all(tokio_unstable, feature = "tracing"))]
guard.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = false,
write_locked.op = "override",
)
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
guard.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 1,
current_readers.op = "add",
)
});
guard
}
/// Attempts to make a new [`OwnedRwLockMappedWriteGuard`] for a component
/// of the locked data. The original guard is returned if the closure
/// returns `None`.
///
/// This operation cannot fail as the `OwnedRwLockWriteGuard` passed in
/// already locked the data.
///
/// This is an associated function that needs to be
/// used as `OwnedRwLockWriteGuard::try_map(...)`. A method would interfere
/// with methods of the same name on the contents of the locked data.
///
/// [`RwLockMappedWriteGuard`]: struct@crate::sync::RwLockMappedWriteGuard
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::{RwLock, OwnedRwLockWriteGuard};
///
/// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// struct Foo(u32);
///
/// # #[tokio::main]
/// # async fn main() {
/// let lock = Arc::new(RwLock::new(Foo(1)));
///
/// {
/// let guard = Arc::clone(&lock).write_owned().await;
/// let mut guard = OwnedRwLockWriteGuard::try_map(guard, |f| Some(&mut f.0)).expect("should not fail");
/// *guard = 2;
/// }
///
/// assert_eq!(Foo(2), *lock.read().await);
/// # }
/// ```
#[inline]
pub fn try_map<F, U: ?Sized>(
mut this: Self,
f: F,
) -> Result<OwnedRwLockMappedWriteGuard<T, U>, Self>
where
F: FnOnce(&mut T) -> Option<&mut U>,
{
let data = match f(&mut *this) {
Some(data) => data as *mut U,
None => return Err(this),
};
let this = this.skip_drop();
Ok(OwnedRwLockMappedWriteGuard {
permits_acquired: this.permits_acquired,
lock: this.lock,
data,
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: this.resource_span,
})
}
/// Attempts to make a new [`OwnedRwLockReadGuard`] for a component of
/// the locked data. The original guard is returned if the closure returns
/// `None`.
///
/// This operation cannot fail as the `OwnedRwLockWriteGuard` passed in already
/// locked the data.
///
/// This is an associated function that needs to be
/// used as `OwnedRwLockWriteGuard::try_downgrade_map(...)`. A method would interfere with
/// methods of the same name on the contents of the locked data.
///
/// Inside of `f`, you retain exclusive access to the data, despite only being given a `&T`. Handing out a
/// `&mut T` would result in unsoundness, as you could use interior mutability.
///
/// If this function returns `Err(...)`, the lock is never unlocked nor downgraded.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::{RwLock, OwnedRwLockWriteGuard};
///
/// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// struct Foo(u32);
///
/// # #[tokio::main]
/// # async fn main() {
/// let lock = Arc::new(RwLock::new(Foo(1)));
///
/// let guard = Arc::clone(&lock).write_owned().await;
/// let guard = OwnedRwLockWriteGuard::try_downgrade_map(guard, |f| Some(&f.0)).expect("should not fail");
/// let foo = lock.read_owned().await;
/// assert_eq!(foo.0, *guard);
/// # }
/// ```
#[inline]
pub fn try_downgrade_map<F, U: ?Sized>(
this: Self,
f: F,
) -> Result<OwnedRwLockReadGuard<T, U>, Self>
where
F: FnOnce(&T) -> Option<&U>,
{
let data = match f(&*this) {
Some(data) => data as *const U,
None => return Err(this),
};
let this = this.skip_drop();
let guard = OwnedRwLockReadGuard {
lock: this.lock,
data,
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: this.resource_span,
};
// Release all but one of the permits held by the write guard
let to_release = (this.permits_acquired - 1) as usize;
guard.lock.s.release(to_release);
#[cfg(all(tokio_unstable, feature = "tracing"))]
guard.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = false,
write_locked.op = "override",
)
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
guard.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 1,
current_readers.op = "add",
)
});
Ok(guard)
}
/// Converts this `OwnedRwLockWriteGuard` into an
/// `OwnedRwLockMappedWriteGuard`. This method can be used to store a
/// non-mapped guard in a struct field that expects a mapped guard.
///
/// This is equivalent to calling `OwnedRwLockWriteGuard::map(guard, |me| me)`.
#[inline]
pub fn into_mapped(this: Self) -> OwnedRwLockMappedWriteGuard<T> {
Self::map(this, |me| me)
}
/// Atomically downgrades a write lock into a read lock without allowing
/// any writers to take exclusive access of the lock in the meantime.
///
/// **Note:** This won't *necessarily* allow any additional readers to acquire
/// locks, since [`RwLock`] is fair and it is possible that a writer is next
/// in line.
///
/// Returns an RAII guard which will drop this read access of the `RwLock`
/// when dropped.
///
/// # Examples
///
/// ```
/// # use tokio::sync::RwLock;
/// # use std::sync::Arc;
/// #
/// # #[tokio::main]
/// # async fn main() {
/// let lock = Arc::new(RwLock::new(1));
///
/// let n = lock.clone().write_owned().await;
///
/// let cloned_lock = lock.clone();
/// let handle = tokio::spawn(async move {
/// *cloned_lock.write_owned().await = 2;
/// });
///
/// let n = n.downgrade();
/// assert_eq!(*n, 1, "downgrade is atomic");
///
/// drop(n);
/// handle.await.unwrap();
/// assert_eq!(*lock.read().await, 2, "second writer obtained write lock");
/// # }
/// ```
pub fn downgrade(self) -> OwnedRwLockReadGuard<T> {
let this = self.skip_drop();
let guard = OwnedRwLockReadGuard {
lock: this.lock,
data: this.data,
_p: PhantomData,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: this.resource_span,
};
// Release all but one of the permits held by the write guard
let to_release = (this.permits_acquired - 1) as usize;
guard.lock.s.release(to_release);
#[cfg(all(tokio_unstable, feature = "tracing"))]
guard.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = false,
write_locked.op = "override",
)
});
#[cfg(all(tokio_unstable, feature = "tracing"))]
guard.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
current_readers = 1,
current_readers.op = "add",
)
});
guard
}
}
impl<T: ?Sized> ops::Deref for OwnedRwLockWriteGuard<T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.data }
}
}
impl<T: ?Sized> ops::DerefMut for OwnedRwLockWriteGuard<T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.data }
}
}
impl<T: ?Sized> fmt::Debug for OwnedRwLockWriteGuard<T>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: ?Sized> fmt::Display for OwnedRwLockWriteGuard<T>
where
T: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<T: ?Sized> Drop for OwnedRwLockWriteGuard<T> {
fn drop(&mut self) {
self.lock.s.release(self.permits_acquired as usize);
#[cfg(all(tokio_unstable, feature = "tracing"))]
self.resource_span.in_scope(|| {
tracing::trace!(
target: "runtime::resource::state_update",
write_locked = false,
write_locked.op = "override",
)
});
}
}