settings/job/source.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Job Source Support
//!
//! # Summary
//!
//! The source mod contains components for providing [Jobs](Job) to Job manager (most likely
//! [manager](job::manager::Manager)). In a typical workflow, client code will create a [Seeder],
//! which is used to send [Job](Job) streams to a manager via the
//! [MessageHub](crate::message::message_hub::MessageHub). The [Seeder] can send any stream where
//! the data implements [Into<Job>]. Once the source is received, the manager can assign a unique
//! [Id] to the source, using [IdGenerator]. The manager can then use a [Handler] to handle the
//! produced [Jobs](Job) and their results.
use crate::clock::now;
use crate::job::execution::GroupError;
use crate::job::{self, execution, Job, Payload, StoreHandleMapping};
use crate::message::base::{Audience, MessengerType};
use crate::service::message::{Delegate, Messenger, Signature};
use crate::trace_guard;
use core::pin::Pin;
use futures::lock::Mutex;
use futures::{Stream, StreamExt};
use std::collections::{HashMap, VecDeque};
use std::convert::Infallible;
use std::rc::Rc;
use thiserror::Error as ThisError;
use {fuchsia_async as fasync, fuchsia_trace as ftrace};
#[derive(Clone)]
/// [Seeder] properly packages and sends [Job] source streams to a [Job] manager.
pub struct Seeder {
/// A [Messenger](crate::message::messenger::MessengerClient) to send Payloads to the manager.
messenger: Messenger,
/// The [Signature](crate::message::base::Signature) of the manager to receive the source
/// Payloads.
manager_signature: Signature,
}
impl Seeder {
pub(crate) async fn new(delegate: &Delegate, manager_signature: Signature) -> Self {
Self {
messenger: delegate
.create(MessengerType::Unbound)
.await
.expect("should create messenger")
.0,
manager_signature,
}
}
pub(crate) fn seed<J, E, E2, T>(&self, source: T)
where
Job: TryFrom<J, Error = E2>,
Error: From<E> + From<E2>,
T: Stream<Item = Result<J, E>> + 'static,
{
// Convert the incoming stream into the expected types for a Job source.
let mapped_stream: Pin<Box<dyn Stream<Item = Result<Job, Error>>>> = source
.map(|result| {
result
// First convert the error type from the result so we can be compatible
// with conversions done with try_from below.
.map_err(Error::from)
// Then map the job. Ideally try_from will return `Error` directly, but we
// also need to handle the `Infallible` type. It should compile to a no-op,
// but the types still need to align.
.and_then(|j| Job::try_from(j).map_err(Error::from))
})
.boxed_local();
// Send the source stream to the manager.
let _ = self.messenger.message(
Payload::Source(Rc::new(Mutex::new(Some(mapped_stream)))).into(),
Audience::Messenger(self.manager_signature),
);
}
}
/// The types of errors for [Jobs](Job). This is a single, unified set over all Job source
/// related-errors. This enumeration should be expanded to capture any future error variant.
#[derive(ThisError)]
pub enum Error {
#[error("Unexpected error")]
Unexpected(fidl::Error),
#[error("Invalid input")]
InvalidInput(Box<dyn ErrorResponder>),
#[error("Invalid policy input")]
InvalidPolicyInput(Box<dyn PolicyErrorResponder>),
#[error("Unsupported API call")]
Unsupported,
}
impl std::fmt::Debug for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Error::Unexpected(_) => f.write_str("Unexpected"),
Error::InvalidInput(_) => f.write_str("InvalidInput(..)"),
Error::InvalidPolicyInput(_) => f.write_str("InvalidPolicyInput(..)"),
Error::Unsupported => f.write_str("Unsupported"),
}
}
}
/// Abstract over how to respond with a settings fidl error.
pub trait ErrorResponder {
/// Unique identifier for the API this responder is responsible for.
fn id(&self) -> &'static str;
/// Respond with the supplied error. Returns any fidl errors that occur when
/// trying to send the response.
fn respond(self: Box<Self>, error: fidl_fuchsia_settings::Error) -> Result<(), fidl::Error>;
}
/// Abstract over how to respond with a settings policy fidl error.
pub trait PolicyErrorResponder {
/// Unique identifier for the API this responder is responsible for.
fn id(&self) -> &'static str;
/// Respond with the supplied error. Returns any fidl errors that occur when
/// trying to send the response.
fn respond(
self: Box<Self>,
error: fidl_fuchsia_settings_policy::Error,
) -> Result<(), fidl::Error>;
}
// This implementation is necessary when converting into a Job is infallible. This can happen if an
// input to a job has no possible way to fail, or in tests when the streams a populated with Jobs
// directly. This is used by the Seeder::seed fn above.
impl From<Infallible> for Error {
fn from(_: Infallible) -> Self {
unreachable!()
}
}
impl From<fidl::Error> for Error {
fn from(error: fidl::Error) -> Self {
Error::Unexpected(error)
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
/// The current state of the source. This is used by the managing entity to understand how to handle
/// pending and completed [Jobs](Job) from a source.
pub(super) enum State {
/// The source is still available to produce new [Jobs](Job).
Active,
/// Completion has been requested, but [Jobs](Job) must complete before the source is considered
/// done.
PendingCompletion,
/// The source is no longer producing new [Jobs](Job).
Completed,
}
/// [Id] provides a unique identifier for a source within its parent space, most often a manager.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Id {
_identifier: usize,
}
impl Id {
fn new(identifier: usize) -> Self {
Self { _identifier: identifier }
}
}
/// [IdGenerator] creates unique [Ids] to be associated with a source. This uniqueness is
/// guaranteed for [Ids] generated by the same [IdGenerator].
///
/// [Ids]: Id
pub(super) struct IdGenerator {
next_identifier: usize,
}
impl IdGenerator {
pub(super) fn new() -> Self {
Self { next_identifier: 0 }
}
pub(super) fn generate(&mut self) -> Id {
let return_id = Id::new(self.next_identifier);
self.next_identifier += 1;
return_id
}
}
/// [Handler] handles [Jobs](Job) within the scope of a single scope. It determines what [Job](Job)
/// should be executed (if any). This responsibility includes managing any queueing that might be
/// necessary based on the [Job] type.
pub(super) struct Handler {
/// A [IdGenerator](job::IdGenerator) to assign unique ids to incoming jobs.
job_id_generator: job::IdGenerator,
/// A mapping from [execution types](execution::Type) to [groups](execution::Group). Each entry
/// enables tracking across [Jobs](Job) in the same group, such as storing persistent values.
/// The mapping is also consulted finding the next [Jobs](Job) to execute.
jobs: HashMap<execution::Type, execution::Group>,
/// A list of states. The element represents the most current [State]. We keep track of seen
/// states to allow post analysis, such as source duration.
states: VecDeque<(State, zx::MonotonicInstant)>,
/// This [HashMap] associates a given [Job] [Signature] with a [Data](job::data::Data) mapping.
/// [Signature] is used over [execution::Type] to allow storage to be shared across groups of
/// different [types](execution::Type) that share the same [Signature].
stores: StoreHandleMapping,
}
impl Handler {
pub(crate) fn new() -> Self {
let mut handler = Self {
job_id_generator: job::IdGenerator::new(),
jobs: HashMap::new(),
states: VecDeque::new(),
stores: HashMap::new(),
};
handler.set_state(State::Active);
handler
}
/// Marks the source as completed.
pub(crate) fn complete(&mut self) {
self.set_state(if self.is_active() { State::PendingCompletion } else { State::Completed });
}
/// Drops any job that has not yet been started and any watch jobs.
pub(crate) fn cancel(&mut self) {
for execution_group in self.jobs.values_mut() {
execution_group.cancel();
}
self.complete();
}
/// Returns whether the source has completed.
pub(crate) fn is_completed(&mut self) -> bool {
matches!(self.states.back(), Some(&(State::Completed, _)))
}
fn set_state(&mut self, state: State) {
// State should not be set after the source has been completed.
assert!(!self.is_completed());
// Do not try to set the state if it matches the last updated state.
if matches!(self.states.back(), Some(&(x,_)) if x == state) {
return;
}
self.states.push_back((state, now()));
}
/// Returns true if any job is executed, false otherwise.
pub(crate) async fn execute_next<F: FnOnce(job::Info) + 'static>(
&mut self,
delegate: &mut Delegate,
callback: F,
id: ftrace::Id,
) -> bool {
for execution_group in self.jobs.values_mut() {
// If there are no jobs ready to become active, move to next group.
if let Some(job_info) = execution_group.promote_next_to_active() {
let guard = trace_guard!(id, c"prepare_execution");
let execution =
job_info.prepare_execution(delegate, &mut self.stores, callback).await;
drop(guard);
fasync::Task::local(execution).detach();
return true;
}
}
false
}
/// Returns whether the source is active, defined as having at least one [Job] which is
/// currently active (running, not pending).
pub(crate) fn is_active(&self) -> bool {
self.jobs.iter().any(|(_, group)| group.is_active())
}
/// Adds a [Job] to be handled by this [Handler].
pub(crate) fn add_pending_job(&mut self, incoming_job: Job) -> Result<(), GroupError> {
let job_info = job::Info::new(self.job_id_generator.generate(), incoming_job);
let execution_type = *job_info.get_execution_type();
// Execution groups are based on matching execution::Type.
let execution_group = self
.jobs
.entry(execution_type)
.or_insert_with(move || execution::Group::new(execution_type));
execution_group.add(job_info)
}
/// Informs the [Handler] that a [Job] by the given [Id](job::Id) has completed.
pub(crate) fn handle_job_completion(&mut self, job: job::Info) {
self.jobs.get_mut(job.get_execution_type()).expect("group should be present").complete(job);
// When a source end is detected, the managing entity will try to complete the source. If
// there is active work, the source completion will be deferred. It is the source's
// responsibility after each subsequent completion to check whether completion can now
// proceed.
if matches!(self.states.back(), Some(&(State::PendingCompletion, _))) {
self.complete();
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::service::{test, MessageHub};
use crate::tests::scaffold::workload::{Sequential, StubWorkload, Workload};
use rand::Rng;
use assert_matches::assert_matches;
use futures::FutureExt;
#[fuchsia::test]
fn test_id_generation() {
let mut generator = IdGenerator::new();
// Ensure generator is creating unique ids
assert!(generator.generate() != generator.generate());
}
#[fuchsia::test(allow_stalls = false)]
async fn test_seeding() {
// Create delegate for communication between components.
let message_hub_delegate = MessageHub::create_hub();
// Create a top-level receptor to receive sources.
let mut receptor = message_hub_delegate
.create(MessengerType::Unbound)
.await
.expect("should create receptor")
.1;
// Create seeder.
let seeder = Seeder::new(&message_hub_delegate, receptor.get_signature()).await;
let job_stream = async {
Ok(Job::new(job::work::Load::Independent(StubWorkload::new()))) as Result<Job, Error>
}
.into_stream();
seeder.seed(job_stream);
assert_matches!(receptor.next_of::<Payload>().await, Ok((Payload::Source(_), _)));
}
#[fuchsia::test(allow_stalls = false)]
async fn test_handling() {
// Create delegate for communication between components.
let mut message_hub_delegate = MessageHub::create_hub();
let results: Vec<i64> = (0..10).collect();
// Create a top-level receptor to receive job results from.
let mut receptor = message_hub_delegate
.create(MessengerType::Unbound)
.await
.expect("should create receptor")
.1;
let mut handler = Handler::new();
assert!(!handler.execute_next(&mut message_hub_delegate, |_| {}, 0.into()).await);
for result in &results {
let _ = handler.add_pending_job(Job::new(job::work::Load::Independent(Workload::new(
test::Payload::Integer(*result),
receptor.get_signature(),
))));
}
for result in results {
let (execution_tx, mut execution_rx) = futures::channel::mpsc::unbounded::<job::Info>();
// Execute job.
assert!(
handler
.execute_next(
&mut message_hub_delegate,
move |job| {
execution_tx.unbounded_send(job).expect("send should succeed");
},
0.into()
)
.await
);
// Confirm received value matches the value sent from workload.
if let test::Payload::Integer(value) =
receptor.next_of::<test::Payload>().await.expect("should have payload").0
{
assert_eq!(value, result);
}
handler
.handle_job_completion(execution_rx.next().await.expect("should have gotten job"));
}
}
#[fuchsia::test(allow_stalls = false)]
async fn test_drop_pending() {
// Create delegate for communication between components.
let mut message_hub_delegate = MessageHub::create_hub();
let mut results: Vec<i64> = (0..10).collect();
// Create a top-level receptor to receive job results from.
let mut receptor = message_hub_delegate
.create(MessengerType::Unbound)
.await
.expect("should create receptor")
.1;
let mut handler = Handler::new();
assert!(!handler.execute_next(&mut message_hub_delegate, |_| {}, 0.into()).await);
for result in &results {
let _ = handler.add_pending_job(Job::new(job::work::Load::Independent(Workload::new(
test::Payload::Integer(*result),
receptor.get_signature(),
))));
}
let result = results.remove(0);
let (execution_tx, mut execution_rx) = futures::channel::mpsc::unbounded::<job::Info>();
// Execute job concurrently.
assert!(
handler
.execute_next(
&mut message_hub_delegate,
move |job| {
execution_tx.unbounded_send(job).expect("send should succeed");
},
0.into(),
)
.await
);
handler.cancel();
// Confirm received value matches the value sent from workload.
if let test::Payload::Integer(value) =
receptor.next_of::<test::Payload>().await.expect("should have payload").0
{
assert_eq!(value, result);
}
handler.handle_job_completion(execution_rx.next().await.expect("should have gotten job"));
// Validate there are no more jobs to execute.
let (execution_tx, _execution_rx) = futures::channel::mpsc::unbounded::<job::Info>();
assert!(
!handler
.execute_next(
&mut message_hub_delegate,
move |job| {
execution_tx.unbounded_send(job).expect("send should succeed");
},
0.into(),
)
.await
);
}
// Ensures that proper queueing happens amongst Jobs within Execution Groups.
#[fuchsia::test(allow_stalls = false)]
async fn test_execution_order() {
let (execution_tx, mut execution_rx) = futures::channel::mpsc::unbounded::<job::Info>();
// Create delegate for communication between components.
let mut message_hub_delegate = MessageHub::create_hub();
let mut handler = Handler::new();
// Create a top-level receptor to receive job results from.
let mut receptor = message_hub_delegate
.create(MessengerType::Unbound)
.await
.expect("should create receptor")
.1;
// Create 2 jobs of the same sequential type.
let results: Vec<i64> = (0..=1).collect();
assert!(!handler.execute_next(&mut message_hub_delegate, |_| {}, 0.into()).await);
for result in &results {
let _ = handler.add_pending_job(Job::new(job::work::Load::Sequential(
Workload::new(test::Payload::Integer(*result), receptor.get_signature()),
job::Signature::new::<usize>(),
)));
}
// Execute first job, ensuring handler has a job to execute.
{
let execution_tx = execution_tx.clone();
assert!(
handler
.execute_next(
&mut message_hub_delegate,
move |job| {
execution_tx.unbounded_send(job).expect("send should succeed");
},
0.into()
)
.await
);
}
// Verify we receive result back for the first job.
assert_eq!(
test::Payload::Integer(0),
receptor.next_of::<test::Payload>().await.expect("should have payload").0
);
// Capture first completed job, do not handle yet.
let first_job_info = execution_rx.next().await.expect("should have gotten job");
// Ensure no job is ready to execute.
assert!(!handler.execute_next(&mut message_hub_delegate, move |_| {}, 0.into()).await);
// Add an independent job.
let _ =
handler.add_pending_job(Job::new(job::work::Load::Independent(StubWorkload::new())));
// Execute independent job.
{
let execution_tx = execution_tx.clone();
// Execute next job and ensure that the response max
assert!(
handler
.execute_next(
&mut message_hub_delegate,
move |job| {
execution_tx.unbounded_send(job).expect("send should succeed");
},
0.into()
)
.await
);
}
let independent_job_info = execution_rx.next().await.expect("should have gotten job");
assert_matches!(*independent_job_info.get_execution_type(), execution::Type::Independent);
// Handle independent job completion.
handler.handle_job_completion(independent_job_info);
// Handle first job completion.
handler.handle_job_completion(first_job_info);
{
let execution_tx = execution_tx.clone();
// Execute next job. Assert job is ready to execute
assert!(
handler
.execute_next(
&mut message_hub_delegate,
move |job| {
execution_tx.unbounded_send(job).expect("send should succeed");
},
0.into()
)
.await
);
}
// Verify we receive result from the second job back.
assert_eq!(
test::Payload::Integer(1),
receptor.next_of::<test::Payload>().await.expect("should have payload").0
);
}
// Ensures that proper queueing happens amongst Jobs within Execution Groups.
#[fuchsia::test(allow_stalls = false)]
async fn test_data() {
let mut rng = rand::thread_rng();
let (result_tx, mut result_rx) = futures::channel::mpsc::unbounded::<usize>();
// Create delegate for communication between components.
let mut message_hub_delegate = MessageHub::create_hub();
let mut handler = Handler::new();
let data_key = job::data::Key::TestInteger(rng.gen());
let initial_value = rng.gen_range(0..9);
let signature = job::Signature::new::<usize>();
// Each result is the square of the previous result,
let results: Vec<usize> = (0..5)
.map(move |val| {
let mut return_value: usize = initial_value;
for _ in 0..val {
return_value = return_value.pow(2);
}
return_value
})
.collect();
for _ in &results {
let data_key = data_key.clone();
let result_tx = result_tx.clone();
// Add a job that writes the initial value and reads it back.
let _ = handler.add_pending_job(Job::new(job::work::Load::Sequential(
Sequential::boxed(move |_, store| {
let result_tx = result_tx.clone();
let data_key = data_key.clone();
Box::pin(async move {
let mut storage_lock = store.lock().await;
let new_value = if let Some(job::data::Data::TestData(value)) =
storage_lock.get(&data_key)
{
value.pow(2)
} else {
initial_value
};
// Store value.
let _ = storage_lock.insert(data_key, job::data::Data::TestData(new_value));
// Relay value back.
result_tx.unbounded_send(new_value).expect("should send");
})
}),
signature,
)));
}
for value in results {
let (completion_tx, mut completion_rx) =
futures::channel::mpsc::unbounded::<job::Info>();
// Execute next job.
assert!(
handler
.execute_next(
&mut message_hub_delegate,
move |job| {
completion_tx.unbounded_send(job).expect("should send job");
},
0.into()
)
.await
);
// Ensure the returned value matches the calculation
assert_eq!(value, result_rx.next().await.expect("value should be returned"));
handler.handle_job_completion(completion_rx.next().await.expect("should receive job"));
}
}
}