lock_order/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Tools for describing and enforcing lock acquisition order.
//!
//! Using code defines lock levels with types and then implements traits from
//! this crate, like [`relation::LockAfter`] to describe how those locks can
//! be acquired. A separate set of traits in [`lock`] implement locked access
//! for your type. A complete example:
//!
//! ```
//! use std::sync::Mutex;
//! use lock_order::{impl_lock_after, lock::LockFor, relation::LockAfter, Locked, Unlocked};
//!
//! #[derive(Default)]
//! struct HoldsLocks {
//! a: Mutex<u8>,
//! b: Mutex<u32>,
//! }
//!
//! enum LockA {}
//! enum LockB {}
//!
//! impl LockFor<LockA> for HoldsLocks {
//! type Data = u8;
//! type Guard<'l> = std::sync::MutexGuard<'l, u8>
//! where Self: 'l;
//! fn lock(&self) -> Self::Guard<'_> {
//! self.a.lock().unwrap()
//! }
//! }
//!
//! impl LockFor<LockB> for HoldsLocks {
//! type Data = u32;
//! type Guard<'l> = std::sync::MutexGuard<'l, u32>
//! where Self: 'l;
//! fn lock(&self) -> Self::Guard<'_> {
//! self.b.lock().unwrap()
//! }
//! }
//!
//! // LockA is the top of the lock hierarchy.
//! impl LockAfter<Unlocked> for LockA {}
//! // LockA can be acquired before LockB.
//! impl_lock_after!(LockA => LockB);
//!
//! // Accessing locked state looks like this:
//!
//! let state = HoldsLocks::default();
//! // Create a new lock session with the "root" lock level (empty tuple).
//! let mut locked = Locked::new(&state);
//! // Access locked state.
//! let (a, mut locked_a) = locked.lock_and::<LockA>();
//! let b = locked_a.lock::<LockB>();
//! ```
//!
//! The methods on [`Locked`] prevent out-of-order locking according to the
//! specified lock relationships.
//!
//! This won't compile because `LockB` does not implement `LockBefore<LockA>`:
//! ```compile_fail
//! # use std::sync::Mutex;
//! # use lock_order::{impl_lock_after, lock::LockFor, relation::LockAfter, Locked, Unlocked};
//! #
//! # #[derive(Default)]
//! # struct HoldsLocks {
//! # a: Mutex<u8>,
//! # b: Mutex<u32>,
//! # }
//! #
//! # enum LockA {}
//! # enum LockB {}
//! #
//! # impl LockFor<LockA> for HoldsLocks {
//! # type Data = u8;
//! # type Guard<'l> = std::sync::MutexGuard<'l, u8>
//! # where Self: 'l;
//! # fn lock(&self) -> Self::Guard<'_> {
//! # self.a.lock().unwrap()
//! # }
//! # }
//! #
//! # impl LockFor<LockB> for HoldsLocks {
//! # type Data = u32;
//! # type Guard<'l> = std::sync::MutexGuard<'l, u32>
//! # where Self: 'l;
//! # fn lock(&self) -> Self::Guard<'_> {
//! # self.b.lock().unwrap()
//! # }
//! # }
//! #
//! # // LockA is the top of the lock hierarchy.
//! # impl LockAfter<Unlocked> for LockA {}
//! # // LockA can be acquired before LockB.
//! # impl_lock_after!(LockA => LockB);
//! #
//! #
//! let state = HoldsLocks::default();
//! let mut locked = Locked::new(&state);
//!
//! // Locking B without A is fine, but locking A after B is not.
//! let (b, mut locked_b) = locked.lock_and::<LockB>();
//! // compile error: LockB does not implement LockBefore<LockA>
//! let a = locked_b.lock::<LockA>();
//! ```
//!
//! Even if the lock guard goes out of scope, the new `Locked` instance returned
//! by [Locked::lock_and] will prevent the original one from being used to
//! access state. This doesn't work:
//! ```compile_fail
//! # use std::sync::Mutex;
//! # use lock_order::{impl_lock_after, lock::LockFor, relation::LockAfter, Locked, Unlocked};
//! #
//! # #[derive(Default)]
//! # struct HoldsLocks {
//! # a: Mutex<u8>,
//! # b: Mutex<u32>,
//! # }
//! #
//! # enum LockA {}
//! # enum LockB {}
//! #
//! # impl LockFor<LockA> for HoldsLocks {
//! # type Data = u8;
//! # type Guard<'l> = std::sync::MutexGuard<'l, u8>
//! # where Self: 'l;
//! # fn lock(&self) -> Self::Guard<'_> {
//! # self.a.lock().unwrap()
//! # }
//! # }
//! #
//! # impl LockFor<LockB> for HoldsLocks {
//! # type Data = u32;
//! # type Guard<'l> = std::sync::MutexGuard<'l, u32>
//! # where Self: 'l;
//! # fn lock(&self) -> Self::Guard<'_> {
//! # self.b.lock().unwrap()
//! # }
//! # }
//! #
//! # // LockA is the top of the lock hierarchy.
//! # impl LockAfter<Unlocked> for LockA {}
//! # // LockA can be acquired before LockB.
//! # impl_lock_after!(LockA => LockB);
//! #
//! #
//! let state = HoldsLocks::default();
//! let mut locked = Locked::new(&state);
//!
//! let (b, mut locked_b) = locked.lock_and::<LockB>();
//! drop(b);
//! let b = locked_b.lock::<LockB>();
//! // Won't work; `locked` is mutably borrowed by `locked_b`.
//! let a = locked.lock::<LockA>();
//! ```
//!
//! The [`impl_lock_after`] macro provides implementations of `LockAfter` for
//! a pair of locks. The complete lock ordering tree can be spelled out by
//! calling `impl_lock_after` for each parent and child in the hierarchy. One
//! of the upsides to using `impl_lock_after` is that it also prevents
//! accidental lock ordering inversion. This won't compile:
//! ```compile_fail
//! enum LockA {}
//! enum LockB {}
//!
//! impl_lock_after(LockA => LockB);
//! impl_lock_after(LockB => LockA);
//! ```
#![cfg_attr(not(test), no_std)]
pub mod lock;
pub mod relation;
pub mod wrap;
use core::marker::PhantomData;
use core::ops::Deref;
use crate::lock::{LockFor, RwLockFor, UnlockedAccess};
use crate::relation::LockBefore;
/// Enforcement mechanism for lock ordering.
///
/// `Locked` won't allow locking that violates the described lock order. It
/// enforces this by allowing access to state so long as either
/// 1. the state does not require a lock to access, or
/// 2. the state does require a lock and that lock comes after the current
/// lock level in the global lock order.
///
/// In the locking case, acquiring a lock produces the new state and a new
/// `Locked` instance that mutably borrows from the original instance. This
/// means the original instance can't be used to acquire new locks until the
/// new instance leaves scope.
pub struct Locked<T, L>(T, PhantomData<L>);
/// "Highest" lock level
///
/// The lock level for the thing returned by `Locked::new`. Users of this crate
/// should implement `LockAfter<Unlocked>` for the root of any lock ordering
/// trees.
pub struct Unlocked;
impl<'a, T> Locked<&'a T, Unlocked> {
/// Entry point for locked access.
///
/// `Unlocked` is the "root" lock level and can be acquired before any lock.
///
/// This function is equivalent to [`Locked::new_with_deref`] but coerces
/// the argument to a simple borrow, which is the expected common use case.
pub fn new(t: &'a T) -> Self {
Self::new_with_deref(t)
}
}
impl<T> Locked<T, Unlocked>
where
T: Deref,
T::Target: Sized,
{
/// Entry point for locked access.
///
/// `Unlocked` is the "root" lock level and can be acquired before any lock.
///
/// Unlike [`Locked::new`], this function just requires that `T` be
/// [`Deref`] and doesn't coerce the type. Use this function when creating a
/// new `Locked` from cell-like types.
///
/// Prefer [`Locked::new`] in most situations given the coercion to a simple
/// borrow is generally less surprising. For example, `&mut T` also `Deref`s
/// to `T` and makes for sometimes hard to pin down compilation errors when
/// implementing traits for `Locked<&State, L>` as opposed to `&mut State`.
pub fn new_with_deref(t: T) -> Self {
Self::new_locked_with_deref(t)
}
}
impl<'a, T, L> Locked<&'a T, L> {
/// Entry point for locked access.
///
/// Creates a new `Locked` that restricts locking to levels after `L`. This
/// is safe because any acquirable locks must have a total ordering, and
/// restricting the set of locks doesn't violate that ordering.
///
/// See discussion on [`Locked::new_with_deref`] for when to use this
/// function versus [`Locked::new_locked_with_deref`].
pub fn new_locked(t: &'a T) -> Locked<&'a T, L> {
Self::new_locked_with_deref(t)
}
/// Access some state that doesn't require locking.
///
/// This allows access to state that doesn't require locking (and depends on
/// [`UnlockedAccess`] to be implemented only in cases where that is true).
pub fn unlocked_access<M>(&self) -> T::Guard<'a>
where
T: UnlockedAccess<M>,
{
let Self(t, PhantomData) = self;
T::access(t)
}
/// Access some state that doesn't require locking from an internal impl of
/// [`UnlockedAccess`].
///
/// This allows access to state that doesn't require locking (and depends on
/// [`UnlockedAccess`] to be implemented only in cases where that is true).
pub fn unlocked_access_with<M, X>(&self, f: impl FnOnce(&'a T) -> &'a X) -> X::Guard<'a>
where
X: UnlockedAccess<M>,
{
let Self(t, PhantomData) = self;
X::access(f(t))
}
}
// It's important that the lifetime on `Locked` here be anonymous. That means
// that the lifetimes in the returned `Locked` objects below are inferred to
// be the lifetimes of the references to self (mutable or immutable).
impl<T, L> Locked<T, L>
where
T: Deref,
T::Target: Sized,
{
/// Entry point for locked access.
///
/// Creates a new `Locked` that restricts locking to levels after `L`. This
/// is safe because any acquirable locks must have a total ordering, and
/// restricting the set of locks doesn't violate that ordering.
///
/// See discussion on [`Locked::new_with_deref`] for when to use this
/// function versus [`Locked::new_locked`].
pub fn new_locked_with_deref(t: T) -> Locked<T, L> {
Self(t, PhantomData)
}
/// Acquire the given lock.
///
/// This requires that `M` can be locked after `L`.
pub fn lock<M>(&mut self) -> <T::Target as LockFor<M>>::Guard<'_>
where
T::Target: LockFor<M>,
L: LockBefore<M>,
{
self.lock_with::<M, _>(|t| t)
}
/// Acquire the given lock and a new locked context.
///
/// This requires that `M` can be locked after `L`.
pub fn lock_and<M>(&mut self) -> (<T::Target as LockFor<M>>::Guard<'_>, Locked<&T::Target, M>)
where
T::Target: LockFor<M>,
L: LockBefore<M>,
{
self.lock_with_and::<M, _>(|t| t)
}
/// Acquire the given lock from an internal impl of [`LockFor`].
///
/// This requires that `M` can be locked after `L`.
pub fn lock_with<M, X>(&mut self, f: impl FnOnce(&T::Target) -> &X) -> X::Guard<'_>
where
X: LockFor<M>,
L: LockBefore<M>,
{
let (data, _): (_, Locked<&T::Target, M>) = self.lock_with_and::<M, _>(f);
data
}
/// Acquire the given lock and a new locked context from an internal impl of
/// [`LockFor`].
///
/// This requires that `M` can be locked after `L`.
pub fn lock_with_and<M, X>(
&mut self,
f: impl FnOnce(&T::Target) -> &X,
) -> (X::Guard<'_>, Locked<&T::Target, M>)
where
X: LockFor<M>,
L: LockBefore<M>,
{
let Self(t, PhantomData) = self;
let t = Deref::deref(t);
let data = X::lock(f(t));
(data, Locked(t, PhantomData))
}
/// Attempt to acquire the given read lock.
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
pub fn read_lock<M>(&mut self) -> <T::Target as RwLockFor<M>>::ReadGuard<'_>
where
T::Target: RwLockFor<M>,
L: LockBefore<M>,
{
self.read_lock_with::<M, _>(|t| t)
}
/// Attempt to acquire the given read lock and a new locked context.
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
pub fn read_lock_and<M>(
&mut self,
) -> (<T::Target as RwLockFor<M>>::ReadGuard<'_>, Locked<&T::Target, M>)
where
T::Target: RwLockFor<M>,
L: LockBefore<M>,
{
self.read_lock_with_and::<M, _>(|t| t)
}
/// Attempt to acquire the given read lock from an internal impl of
/// [`RwLockFor`].
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
pub fn read_lock_with<M, X>(&mut self, f: impl FnOnce(&T::Target) -> &X) -> X::ReadGuard<'_>
where
X: RwLockFor<M>,
L: LockBefore<M>,
{
let (data, _): (_, Locked<&T::Target, M>) = self.read_lock_with_and::<M, _>(f);
data
}
/// Attempt to acquire the given read lock and a new locked context from an
/// internal impl of [`RwLockFor`].
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
pub fn read_lock_with_and<M, X>(
&mut self,
f: impl FnOnce(&T::Target) -> &X,
) -> (X::ReadGuard<'_>, Locked<&T::Target, M>)
where
X: RwLockFor<M>,
L: LockBefore<M>,
{
let Self(t, PhantomData) = self;
let t = Deref::deref(t);
let data = X::read_lock(f(t));
(data, Locked(t, PhantomData))
}
/// Attempt to acquire the given write lock.
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
pub fn write_lock<M>(&mut self) -> <T::Target as RwLockFor<M>>::WriteGuard<'_>
where
T::Target: RwLockFor<M>,
L: LockBefore<M>,
{
self.write_lock_with::<M, _>(|t| t)
}
/// Attempt to acquire the given write lock.
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
pub fn write_lock_and<M>(
&mut self,
) -> (<T::Target as RwLockFor<M>>::WriteGuard<'_>, Locked<&T::Target, M>)
where
T::Target: RwLockFor<M>,
L: LockBefore<M>,
{
self.write_lock_with_and::<M, _>(|t| t)
}
/// Attempt to acquire the given write lock from an internal impl of
/// [`RwLockFor`].
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
pub fn write_lock_with<M, X>(&mut self, f: impl FnOnce(&T::Target) -> &X) -> X::WriteGuard<'_>
where
X: RwLockFor<M>,
L: LockBefore<M>,
{
let (data, _): (_, Locked<&T::Target, M>) = self.write_lock_with_and::<M, _>(f);
data
}
/// Attempt to acquire the given write lock from an internal impl of
/// [`RwLockFor`].
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
pub fn write_lock_with_and<M, X>(
&mut self,
f: impl FnOnce(&T::Target) -> &X,
) -> (X::WriteGuard<'_>, Locked<&T::Target, M>)
where
X: RwLockFor<M>,
L: LockBefore<M>,
{
let Self(t, PhantomData) = self;
let t = Deref::deref(t);
let data = X::write_lock(f(t));
(data, Locked(t, PhantomData))
}
/// Returns an owned `Locked` from a current `Locked`.
///
/// Useful when callers need to have access to an owned `Locked` but only
/// have access to a reference.
///
/// This method is a shorthand for `self.cast_with(|s| s)`. This is safe
/// because the returned `Locked` instance borrows `self` mutably so it
/// can't be used until the new instance is dropped.
pub fn as_owned(&mut self) -> Locked<&T::Target, L> {
self.cast_with(|s| s)
}
/// Narrow the type on which locks can be acquired.
///
/// Like `cast_with`, but with `AsRef` instead of using a callable function.
/// The same safety arguments apply.
pub fn cast<R>(&mut self) -> Locked<&R, L>
where
T::Target: AsRef<R>,
{
self.cast_with(AsRef::as_ref)
}
/// Narrow the type on which locks can be acquired.
///
/// This allows scoping down the state on which locks are acquired. This is
/// safe because
/// 1. the locked wrapper does not take the type `T` being locked into
/// account, so there's no danger of lock ordering being different for
/// `T` and some other type `R`,
/// 2. because the new `&R` references a part of the original `&T`, any
/// state that was lockable from `&T` was lockable from `&R`, and
/// 3. the returned `Locked` instance borrows `self` mutably so it can't
/// be used until the new instance is dropped.
///
/// This method provides a flexible way to access some state held within the
/// protected instance of `T` by scoping down to an individual field, or
/// infallibly indexing into a `Vec`, slice, or map.
pub fn cast_with<R>(&mut self, f: impl FnOnce(&T::Target) -> &R) -> Locked<&R, L> {
let Self(t, PhantomData) = self;
Locked(f(Deref::deref(t)), PhantomData)
}
/// Restrict locking as if a lock was acquired.
///
/// Like `lock_and` but doesn't actually acquire the lock `M`. This is
/// safe because any locks that could be acquired with the lock `M` held can
/// also be acquired without `M` being held.
pub fn cast_locked<M>(&mut self) -> Locked<&T::Target, M>
where
L: LockBefore<M>,
{
let Self(t, _marker) = self;
Locked(Deref::deref(t), PhantomData)
}
/// Convenience function for accessing copyable state.
///
/// This, combined with `cast` or `cast_with`, makes it easy to access
/// non-locked state.
pub fn copied(&self) -> T::Target
where
T::Target: Copy,
{
let Self(t, PhantomData) = self;
*t.deref()
}
/// Adopts reference `n` to the locked context.
///
/// This allows access on disjoint structures to adopt the same lock level.
///
/// # Examples
///
/// ```no_run
/// use lock_order::{Locked, relation::LockBefore};
/// struct StateA;
/// struct StateB;
/// # impl lock_order::lock::LockFor<LockX> for StateB {
/// # type Data = u8;
/// # type Guard<'l> = std::sync::MutexGuard<'l, u8>
/// # where Self: 'l;
/// # fn lock(&self) -> Self::Guard<'_> {
/// # unimplemented!()
/// # }
/// # }
/// enum LockX {}
///
/// fn adopt_example<L: LockBefore<LockX>>(mut locked: Locked<&StateA, L>, state_b: &StateB) {
/// let mut locked = locked.adopt(state_b);
/// // Lock something from `StateB` advancing the lock level to `LockX`.
/// let (guard, mut locked) = locked.lock_with_and::<LockX, _>(|c| c.right());
/// // We can get back a `Locked` for `StateA` at the new lock level.
/// let locked: Locked<&StateA, LockX> = locked.cast_with(|c| c.left());
/// }
/// ```
pub fn adopt<'a, N>(
&'a mut self,
n: &'a N,
) -> Locked<OwnedTupleWrapper<&'a T::Target, &'a N>, L> {
let Self(t, PhantomData) = self;
Locked(OwnedWrapper(TupleWrapper(Deref::deref(t), n)), PhantomData)
}
/// Casts the left reference of the [`TupleWrapper`] deref'ed by `T`.
pub fn cast_left<'a, X, A: Deref + 'a, B: Deref + 'a, F: FnOnce(&A::Target) -> &X>(
&'a mut self,
f: F,
) -> Locked<OwnedTupleWrapper<&'a X, &'a B::Target>, L>
where
T: Deref<Target = TupleWrapper<A, B>>,
{
let Self(t, PhantomData) = self;
Locked(Deref::deref(t).cast_left(f), PhantomData)
}
/// Casts the right reference of the [`TupleWrapper`] deref'ed by `T`.
pub fn cast_right<'a, X, A: Deref + 'a, B: Deref + 'a, F: FnOnce(&B::Target) -> &X>(
&'a mut self,
f: F,
) -> Locked<OwnedTupleWrapper<&'a A::Target, &'a X>, L>
where
T: Deref<Target = TupleWrapper<A, B>>,
{
let Self(t, PhantomData) = self;
Locked(Deref::deref(t).cast_right(f), PhantomData)
}
/// Replaces the internal type entirely but keeps the lock level.
///
/// This does not break ordering because the new `Locked` takes a
/// mutable borrow on the current one.
pub fn replace<'a, N>(&'a mut self, n: &'a N) -> Locked<&'a N, L> {
Locked::new_locked(n)
}
}
/// An owned wrapper for `T` that implements [`Deref`].
pub struct OwnedWrapper<T>(T);
impl<T> Deref for OwnedWrapper<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
let Self(t) = self;
t
}
}
/// A convenient alias for a [`TupleWrapper`] inside an [`OwnedWrapper`].
pub type OwnedTupleWrapper<A, B> = OwnedWrapper<TupleWrapper<A, B>>;
/// A wrapper for tuples to support implementing [`Locked::adopt`].
pub struct TupleWrapper<A, B>(A, B);
impl<A, B> TupleWrapper<A, B>
where
A: Deref,
B: Deref,
{
pub fn left(&self) -> &A::Target {
let Self(a, _) = self;
a.deref()
}
pub fn right(&self) -> &B::Target {
let Self(_, b) = self;
b.deref()
}
pub fn both(&self) -> (&A::Target, &B::Target) {
let Self(a, b) = self;
(a.deref(), b.deref())
}
pub fn cast_left<X, F: FnOnce(&A::Target) -> &X>(
&self,
f: F,
) -> OwnedTupleWrapper<&X, &B::Target> {
let Self(a, b) = self;
OwnedWrapper(TupleWrapper(f(Deref::deref(a)), Deref::deref(b)))
}
pub fn cast_right<X, F: FnOnce(&B::Target) -> &X>(
&self,
f: F,
) -> OwnedTupleWrapper<&A::Target, &X> {
let Self(a, b) = self;
OwnedWrapper(TupleWrapper(Deref::deref(a), f(Deref::deref(b))))
}
}
#[cfg(test)]
mod test {
use std::ops::Deref;
use std::sync::{Mutex, MutexGuard};
mod lock_levels {
//! Lock ordering tree:
//! A -> B -> {C, D}
extern crate self as lock_order;
use crate::relation::LockAfter;
use crate::{impl_lock_after, Unlocked};
pub enum A {}
pub enum B {}
pub enum C {}
pub enum D {}
pub enum E {}
impl LockAfter<Unlocked> for A {}
impl_lock_after!(A => B);
impl_lock_after!(B => C);
impl_lock_after!(B => D);
impl_lock_after!(D => E);
}
use crate::lock::{LockFor, UnlockedAccess};
use crate::Locked;
use lock_levels::{A, B, C, D, E};
/// Data type with multiple locked fields.
#[derive(Default)]
struct Data {
a: Mutex<u8>,
b: Mutex<u16>,
c: Mutex<u64>,
d: Mutex<u128>,
e: Vec<Mutex<usize>>,
u: usize,
}
impl LockFor<A> for Data {
type Data = u8;
type Guard<'l> = MutexGuard<'l, u8>;
fn lock(&self) -> Self::Guard<'_> {
self.a.lock().unwrap()
}
}
impl LockFor<B> for Data {
type Data = u16;
type Guard<'l> = MutexGuard<'l, u16>;
fn lock(&self) -> Self::Guard<'_> {
self.b.lock().unwrap()
}
}
impl LockFor<C> for Data {
type Data = u64;
type Guard<'l> = MutexGuard<'l, u64>;
fn lock(&self) -> Self::Guard<'_> {
self.c.lock().unwrap()
}
}
impl LockFor<D> for Data {
type Data = u128;
type Guard<'l> = MutexGuard<'l, u128>;
fn lock(&self) -> Self::Guard<'_> {
self.d.lock().unwrap()
}
}
impl LockFor<E> for Mutex<usize> {
type Data = usize;
type Guard<'l> = MutexGuard<'l, usize>;
fn lock(&self) -> Self::Guard<'_> {
self.lock().unwrap()
}
}
enum UnlockedUsize {}
enum UnlockedELen {}
impl UnlockedAccess<UnlockedUsize> for Data {
type Data = usize;
type Guard<'l>
= &'l usize
where
Self: 'l;
fn access(&self) -> Self::Guard<'_> {
&self.u
}
}
struct DerefWrapper<T>(T);
impl<T> Deref for DerefWrapper<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl UnlockedAccess<UnlockedELen> for Data {
type Data = usize;
type Guard<'l> = DerefWrapper<usize>;
fn access(&self) -> Self::Guard<'_> {
DerefWrapper(self.e.len())
}
}
#[test]
fn lock_a_then_c() {
let data = Data::default();
let mut w = Locked::new(&data);
let (_a, mut wa) = w.lock_and::<A>();
let (_c, _wc) = wa.lock_and::<C>();
// This won't compile!
// let _b = _wc.lock::<B>();
}
#[test]
fn unlocked_access_does_not_prevent_locking() {
let data = Data { a: Mutex::new(15), u: 34, ..Data::default() };
let mut locked = Locked::new(&data);
let u = locked.unlocked_access::<UnlockedUsize>();
// Prove that `u` does not prevent locked state from being accessed.
let a = locked.lock::<A>();
assert_eq!(u, &34);
assert_eq!(&*a, &15);
}
#[test]
fn unlocked_access_with_does_not_prevent_locking() {
let data = Data { a: Mutex::new(15), u: 34, ..Data::default() };
let data = (data,);
let mut locked = Locked::new(&data);
let u = locked.unlocked_access_with::<UnlockedUsize, _>(|(data,)| data);
// Prove that `u` does not prevent locked state from being accessed.
let a = locked.lock_with::<A, _>(|(data,)| data);
assert_eq!(u, &34);
assert_eq!(&*a, &15);
}
/// Demonstrate how [`Locked::cast_with`] can be used to index into a `Vec`.
#[test]
fn cast_with_for_indexing_into_sub_field_state() {
let data = Data { e: (0..10).map(Mutex::new).collect(), ..Data::default() };
let mut locked = Locked::new(&data);
for i in 0..*locked.unlocked_access::<UnlockedELen>() {
// Use cast_with to select an individual lock from the list.
let mut locked_element = locked.cast_with(|data| &data.e[i]);
let mut item = locked_element.lock::<E>();
assert_eq!(*item, i);
*item = i + 1;
}
}
#[test]
fn adopt() {
let data_left = Data { a: Mutex::new(55), b: Mutex::new(11), ..Data::default() };
let mut locked = Locked::new(&data_left);
let data_right = Data { a: Mutex::new(66), b: Mutex::new(22), ..Data::default() };
let mut locked = locked.adopt(&data_right);
let (guard_left, mut locked) = locked.lock_with_and::<A, Data>(|t| t.left());
let guard_right = locked.lock_with::<B, Data>(|t| t.right());
assert_eq!(*guard_left, 55);
assert_eq!(*guard_right, 22);
}
}