1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Tools for describing and enforcing lock acquisition order.
//!
//! Using code defines lock levels with types and then implements traits from
//! this crate, like [`relation::LockAfter`] to describe how those locks can
//! be acquired. A separate set of traits in [`lock`] implement locked access
//! for your type. A complete example:
//!
//! ```
//! use std::sync::Mutex;
//! use lock_order::{impl_lock_after, lock::LockFor, relation::LockAfter, Locked, Unlocked};
//!
//! #[derive(Default)]
//! struct HoldsLocks {
//!     a: Mutex<u8>,
//!     b: Mutex<u32>,
//! }
//!
//! enum LockA {}
//! enum LockB {}
//!
//! impl LockFor<LockA> for HoldsLocks {
//!     type Data = u8;
//!     type Guard<'l> = std::sync::MutexGuard<'l, u8>
//!         where Self: 'l;
//!     fn lock(&self) -> Self::Guard<'_> {
//!         self.a.lock().unwrap()
//!     }
//! }
//!
//! impl LockFor<LockB> for HoldsLocks {
//!     type Data = u32;
//!     type Guard<'l> = std::sync::MutexGuard<'l, u32>
//!         where Self: 'l;
//!     fn lock(&self) -> Self::Guard<'_> {
//!         self.b.lock().unwrap()
//!     }
//! }
//!
//! // LockA is the top of the lock hierarchy.
//! impl LockAfter<Unlocked> for LockA {}
//! // LockA can be acquired before LockB.
//! impl_lock_after!(LockA => LockB);
//!
//! // Accessing locked state looks like this:
//!
//! let state = HoldsLocks::default();
//! // Create a new lock session with the "root" lock level (empty tuple).
//! let mut locked = Locked::new(&state);
//! // Access locked state.
//! let (a, mut locked_a) = locked.lock_and::<LockA>();
//! let b = locked_a.lock::<LockB>();
//! ```
//!
//! The methods on [`Locked`] prevent out-of-order locking according to the
//! specified lock relationships.
//!
//! This won't compile because `LockB` does not implement `LockBefore<LockA>`:
//! ```compile_fail
//! # use std::sync::Mutex;
//! # use lock_order::{impl_lock_after, lock::LockFor, relation::LockAfter, Locked, Unlocked};
//! #
//! # #[derive(Default)]
//! # struct HoldsLocks {
//! #     a: Mutex<u8>,
//! #     b: Mutex<u32>,
//! # }
//! #
//! # enum LockA {}
//! # enum LockB {}
//! #
//! # impl LockFor<LockA> for HoldsLocks {
//! #     type Data = u8;
//! #     type Guard<'l> = std::sync::MutexGuard<'l, u8>
//! #         where Self: 'l;
//! #     fn lock(&self) -> Self::Guard<'_> {
//! #         self.a.lock().unwrap()
//! #     }
//! # }
//! #
//! # impl LockFor<LockB> for HoldsLocks {
//! #     type Data = u32;
//! #     type Guard<'l> = std::sync::MutexGuard<'l, u32>
//! #         where Self: 'l;
//! #     fn lock(&self) -> Self::Guard<'_> {
//! #         self.b.lock().unwrap()
//! #     }
//! # }
//! #
//! # // LockA is the top of the lock hierarchy.
//! # impl LockAfter<Unlocked> for LockA {}
//! # // LockA can be acquired before LockB.
//! # impl_lock_after!(LockA => LockB);
//! #
//! #
//! let state = HoldsLocks::default();
//! let mut locked = Locked::new(&state);
//!
//! // Locking B without A is fine, but locking A after B is not.
//! let (b, mut locked_b) = locked.lock_and::<LockB>();
//! // compile error: LockB does not implement LockBefore<LockA>
//! let a = locked_b.lock::<LockA>();
//! ```
//!
//! Even if the lock guard goes out of scope, the new `Locked` instance returned
//! by [Locked::lock_and] will prevent the original one from being used to
//! access state. This doesn't work:
//! ```compile_fail
//! # use std::sync::Mutex;
//! # use lock_order::{impl_lock_after, lock::LockFor, relation::LockAfter, Locked, Unlocked};
//! #
//! # #[derive(Default)]
//! # struct HoldsLocks {
//! #     a: Mutex<u8>,
//! #     b: Mutex<u32>,
//! # }
//! #
//! # enum LockA {}
//! # enum LockB {}
//! #
//! # impl LockFor<LockA> for HoldsLocks {
//! #     type Data = u8;
//! #     type Guard<'l> = std::sync::MutexGuard<'l, u8>
//! #         where Self: 'l;
//! #     fn lock(&self) -> Self::Guard<'_> {
//! #         self.a.lock().unwrap()
//! #     }
//! # }
//! #
//! # impl LockFor<LockB> for HoldsLocks {
//! #     type Data = u32;
//! #     type Guard<'l> = std::sync::MutexGuard<'l, u32>
//! #         where Self: 'l;
//! #     fn lock(&self) -> Self::Guard<'_> {
//! #         self.b.lock().unwrap()
//! #     }
//! # }
//! #
//! # // LockA is the top of the lock hierarchy.
//! # impl LockAfter<Unlocked> for LockA {}
//! # // LockA can be acquired before LockB.
//! # impl_lock_after!(LockA => LockB);
//! #
//! #
//! let state = HoldsLocks::default();
//! let mut locked = Locked::new(&state);
//!
//! let (b, mut locked_b) = locked.lock_and::<LockB>();
//! drop(b);
//! let b = locked_b.lock::<LockB>();
//! // Won't work; `locked` is mutably borrowed by `locked_b`.
//! let a = locked.lock::<LockA>();
//! ```
//!
//! The [`impl_lock_after`] macro provides implementations of `LockAfter` for
//! a pair of locks. The complete lock ordering tree can be spelled out by
//! calling `impl_lock_after` for each parent and child in the hierarchy. One
//! of the upsides to using `impl_lock_after` is that it also prevents
//! accidental lock ordering inversion. This won't compile:
//! ```compile_fail
//! enum LockA {}
//! enum LockB {}
//!
//! impl_lock_after(LockA => LockB);
//! impl_lock_after(LockB => LockA);
//! ```

#![cfg_attr(not(test), no_std)]

pub mod lock;
pub mod relation;
pub mod wrap;

use core::{marker::PhantomData, ops::Deref};

use crate::{
    lock::{LockFor, RwLockFor, UnlockedAccess},
    relation::LockBefore,
};

/// Enforcement mechanism for lock ordering.
///
/// `Locked` won't allow locking that violates the described lock order. It
/// enforces this by allowing access to state so long as either
///   1. the state does not require a lock to access, or
///   2. the state does require a lock and that lock comes after the current
///      lock level in the global lock order.
///
/// In the locking case, acquiring a lock produces the new state and a new
/// `Locked` instance that mutably borrows from the original instance. This
/// means the original instance can't be used to acquire new locks until the
/// new instance leaves scope.
pub struct Locked<T, L>(T, PhantomData<L>);

/// "Highest" lock level
///
/// The lock level for the thing returned by `Locked::new`. Users of this crate
/// should implement `LockAfter<Unlocked>` for the root of any lock ordering
/// trees.
pub struct Unlocked;

impl<'a, T> Locked<&'a T, Unlocked> {
    /// Entry point for locked access.
    ///
    /// `Unlocked` is the "root" lock level and can be acquired before any lock.
    ///
    /// This function is equivalent to [`Locked::new_with_deref`] but coerces
    /// the argument to a simple borrow, which is the expected common use case.
    pub fn new(t: &'a T) -> Self {
        Self::new_with_deref(t)
    }
}

impl<T> Locked<T, Unlocked>
where
    T: Deref,
    T::Target: Sized,
{
    /// Entry point for locked access.
    ///
    /// `Unlocked` is the "root" lock level and can be acquired before any lock.
    ///
    /// Unlike [`Locked::new`], this function just requires that `T` be
    /// [`Deref`] and doesn't coerce the type. Use this function when creating a
    /// new `Locked` from cell-like types.
    ///
    /// Prefer [`Locked::new`] in most situations given the coercion to a simple
    /// borrow is generally less surprising. For example, `&mut T` also `Deref`s
    /// to `T` and makes for sometimes hard to pin down compilation errors when
    /// implementing traits for `Locked<&State, L>` as opposed to `&mut State`.
    pub fn new_with_deref(t: T) -> Self {
        Self::new_locked_with_deref(t)
    }
}

impl<'a, T, L> Locked<&'a T, L> {
    /// Entry point for locked access.
    ///
    /// Creates a new `Locked` that restricts locking to levels after `L`. This
    /// is safe because any acquirable locks must have a total ordering, and
    /// restricting the set of locks doesn't violate that ordering.
    ///
    /// See discussion on [`Locked::new_with_deref`] for when to use this
    /// function versus [`Locked::new_locked_with_deref`].
    pub fn new_locked(t: &'a T) -> Locked<&'a T, L> {
        Self::new_locked_with_deref(t)
    }

    /// Access some state that doesn't require locking.
    ///
    /// This allows access to state that doesn't require locking (and depends on
    /// [`UnlockedAccess`] to be implemented only in cases where that is true).
    pub fn unlocked_access<M>(&self) -> T::Guard<'a>
    where
        T: UnlockedAccess<M>,
    {
        let Self(t, PhantomData) = self;
        T::access(t)
    }

    /// Access some state that doesn't require locking from an internal impl of
    /// [`UnlockedAccess`].
    ///
    /// This allows access to state that doesn't require locking (and depends on
    /// [`UnlockedAccess`] to be implemented only in cases where that is true).
    pub fn unlocked_access_with<M, X>(&self, f: impl FnOnce(&'a T) -> &'a X) -> X::Guard<'a>
    where
        X: UnlockedAccess<M>,
    {
        let Self(t, PhantomData) = self;
        X::access(f(t))
    }
}

// It's important that the lifetime on `Locked` here be anonymous. That means
// that the lifetimes in the returned `Locked` objects below are inferred to
// be the lifetimes of the references to self (mutable or immutable).
impl<T, L> Locked<T, L>
where
    T: Deref,
    T::Target: Sized,
{
    /// Entry point for locked access.
    ///
    /// Creates a new `Locked` that restricts locking to levels after `L`. This
    /// is safe because any acquirable locks must have a total ordering, and
    /// restricting the set of locks doesn't violate that ordering.
    ///
    /// See discussion on [`Locked::new_with_deref`] for when to use this
    /// function versus [`Locked::new_locked`].
    pub fn new_locked_with_deref(t: T) -> Locked<T, L> {
        Self(t, PhantomData)
    }

    /// Acquire the given lock.
    ///
    /// This requires that `M` can be locked after `L`.
    pub fn lock<M>(&mut self) -> <T::Target as LockFor<M>>::Guard<'_>
    where
        T::Target: LockFor<M>,
        L: LockBefore<M>,
    {
        self.lock_with::<M, _>(|t| t)
    }

    /// Acquire the given lock and a new locked context.
    ///
    /// This requires that `M` can be locked after `L`.
    pub fn lock_and<M>(&mut self) -> (<T::Target as LockFor<M>>::Guard<'_>, Locked<&T::Target, M>)
    where
        T::Target: LockFor<M>,
        L: LockBefore<M>,
    {
        self.lock_with_and::<M, _>(|t| t)
    }

    /// Acquire the given lock from an internal impl of [`LockFor`].
    ///
    /// This requires that `M` can be locked after `L`.
    pub fn lock_with<M, X>(&mut self, f: impl FnOnce(&T::Target) -> &X) -> X::Guard<'_>
    where
        X: LockFor<M>,
        L: LockBefore<M>,
    {
        let (data, _): (_, Locked<&T::Target, M>) = self.lock_with_and::<M, _>(f);
        data
    }

    /// Acquire the given lock and a new locked context from an internal impl of
    /// [`LockFor`].
    ///
    /// This requires that `M` can be locked after `L`.
    pub fn lock_with_and<M, X>(
        &mut self,
        f: impl FnOnce(&T::Target) -> &X,
    ) -> (X::Guard<'_>, Locked<&T::Target, M>)
    where
        X: LockFor<M>,
        L: LockBefore<M>,
    {
        let Self(t, PhantomData) = self;
        let t = Deref::deref(t);
        let data = X::lock(f(t));
        (data, Locked(t, PhantomData))
    }

    /// Attempt to acquire the given read lock.
    ///
    /// For accessing state via reader/writer locks. This requires that `M` can
    /// be locked after `L`.
    pub fn read_lock<M>(&mut self) -> <T::Target as RwLockFor<M>>::ReadGuard<'_>
    where
        T::Target: RwLockFor<M>,
        L: LockBefore<M>,
    {
        self.read_lock_with::<M, _>(|t| t)
    }

    /// Attempt to acquire the given read lock and a new locked context.
    ///
    /// For accessing state via reader/writer locks. This requires that `M` can
    /// be locked after `L`.
    pub fn read_lock_and<M>(
        &mut self,
    ) -> (<T::Target as RwLockFor<M>>::ReadGuard<'_>, Locked<&T::Target, M>)
    where
        T::Target: RwLockFor<M>,
        L: LockBefore<M>,
    {
        self.read_lock_with_and::<M, _>(|t| t)
    }

    /// Attempt to acquire the given read lock from an internal impl of
    /// [`RwLockFor`].
    ///
    /// For accessing state via reader/writer locks. This requires that `M` can
    /// be locked after `L`.
    pub fn read_lock_with<M, X>(&mut self, f: impl FnOnce(&T::Target) -> &X) -> X::ReadGuard<'_>
    where
        X: RwLockFor<M>,
        L: LockBefore<M>,
    {
        let (data, _): (_, Locked<&T::Target, M>) = self.read_lock_with_and::<M, _>(f);
        data
    }

    /// Attempt to acquire the given read lock and a new locked context from an
    /// internal impl of [`RwLockFor`].
    ///
    /// For accessing state via reader/writer locks. This requires that `M` can
    /// be locked after `L`.
    pub fn read_lock_with_and<M, X>(
        &mut self,
        f: impl FnOnce(&T::Target) -> &X,
    ) -> (X::ReadGuard<'_>, Locked<&T::Target, M>)
    where
        X: RwLockFor<M>,
        L: LockBefore<M>,
    {
        let Self(t, PhantomData) = self;
        let t = Deref::deref(t);
        let data = X::read_lock(f(t));
        (data, Locked(t, PhantomData))
    }

    /// Attempt to acquire the given write lock.
    ///
    /// For accessing state via reader/writer locks. This requires that `M` can
    /// be locked after `L`.
    pub fn write_lock<M>(&mut self) -> <T::Target as RwLockFor<M>>::WriteGuard<'_>
    where
        T::Target: RwLockFor<M>,
        L: LockBefore<M>,
    {
        self.write_lock_with::<M, _>(|t| t)
    }

    /// Attempt to acquire the given write lock.
    ///
    /// For accessing state via reader/writer locks. This requires that `M` can
    /// be locked after `L`.
    pub fn write_lock_and<M>(
        &mut self,
    ) -> (<T::Target as RwLockFor<M>>::WriteGuard<'_>, Locked<&T::Target, M>)
    where
        T::Target: RwLockFor<M>,
        L: LockBefore<M>,
    {
        self.write_lock_with_and::<M, _>(|t| t)
    }

    /// Attempt to acquire the given write lock from an internal impl of
    /// [`RwLockFor`].
    ///
    /// For accessing state via reader/writer locks. This requires that `M` can
    /// be locked after `L`.
    pub fn write_lock_with<M, X>(&mut self, f: impl FnOnce(&T::Target) -> &X) -> X::WriteGuard<'_>
    where
        X: RwLockFor<M>,
        L: LockBefore<M>,
    {
        let (data, _): (_, Locked<&T::Target, M>) = self.write_lock_with_and::<M, _>(f);
        data
    }

    /// Attempt to acquire the given write lock from an internal impl of
    /// [`RwLockFor`].
    ///
    /// For accessing state via reader/writer locks. This requires that `M` can
    /// be locked after `L`.
    pub fn write_lock_with_and<M, X>(
        &mut self,
        f: impl FnOnce(&T::Target) -> &X,
    ) -> (X::WriteGuard<'_>, Locked<&T::Target, M>)
    where
        X: RwLockFor<M>,
        L: LockBefore<M>,
    {
        let Self(t, PhantomData) = self;
        let t = Deref::deref(t);
        let data = X::write_lock(f(t));
        (data, Locked(t, PhantomData))
    }

    /// Returns an owned `Locked` from a current `Locked`.
    ///
    /// Useful when callers need to have access to an owned `Locked` but only
    /// have access to a reference.
    ///
    /// This method is a shorthand for `self.cast_with(|s| s)`. This is safe
    /// because the returned `Locked` instance borrows `self` mutably so it
    /// can't be used until the new instance is dropped.
    pub fn as_owned(&mut self) -> Locked<&T::Target, L> {
        self.cast_with(|s| s)
    }

    /// Narrow the type on which locks can be acquired.
    ///
    /// Like `cast_with`, but with `AsRef` instead of using a callable function.
    /// The same safety arguments apply.
    pub fn cast<R>(&mut self) -> Locked<&R, L>
    where
        T::Target: AsRef<R>,
    {
        self.cast_with(AsRef::as_ref)
    }

    /// Narrow the type on which locks can be acquired.
    ///
    /// This allows scoping down the state on which locks are acquired. This is
    /// safe because
    ///   1. the locked wrapper does not take the type `T` being locked into
    ///      account, so there's no danger of lock ordering being different for
    ///      `T` and some other type `R`,
    ///   2. because the new `&R` references a part of the original `&T`, any
    ///      state that was lockable from `&T` was lockable from `&R`, and
    ///   3. the returned `Locked` instance borrows `self` mutably so it can't
    ///      be used until the new instance is dropped.
    ///
    /// This method provides a flexible way to access some state held within the
    /// protected instance of `T` by scoping down to an individual field, or
    /// infallibly indexing into a `Vec`, slice, or map.
    pub fn cast_with<R>(&mut self, f: impl FnOnce(&T::Target) -> &R) -> Locked<&R, L> {
        let Self(t, PhantomData) = self;
        Locked(f(Deref::deref(t)), PhantomData)
    }

    /// Restrict locking as if a lock was acquired.
    ///
    /// Like `lock_and` but doesn't actually acquire the lock `M`. This is
    /// safe because any locks that could be acquired with the lock `M` held can
    /// also be acquired without `M` being held.
    pub fn cast_locked<M>(&mut self) -> Locked<&T::Target, M>
    where
        L: LockBefore<M>,
    {
        let Self(t, _marker) = self;
        Locked(Deref::deref(t), PhantomData)
    }

    /// Convenience function for accessing copyable state.
    ///
    /// This, combined with `cast` or `cast_with`, makes it easy to access
    /// non-locked state.
    pub fn copied(&self) -> T::Target
    where
        T::Target: Copy,
    {
        let Self(t, PhantomData) = self;
        *t.deref()
    }

    /// Adopts reference `n` to the locked context.
    ///
    /// This allows access on disjoint structures to adopt the same lock level.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use lock_order::{Locked, relation::LockBefore};
    /// struct StateA;
    /// struct StateB;
    /// # impl lock_order::lock::LockFor<LockX> for StateB {
    /// #   type Data = u8;
    /// #   type Guard<'l> = std::sync::MutexGuard<'l, u8>
    /// #       where Self: 'l;
    /// #   fn lock(&self) -> Self::Guard<'_> {
    /// #       unimplemented!()
    /// #   }
    /// # }
    /// enum LockX {}
    ///
    /// fn adopt_example<L: LockBefore<LockX>>(mut locked: Locked<&StateA, L>, state_b: &StateB) {
    ///     let mut locked = locked.adopt(state_b);
    ///     // Lock something from `StateB` advancing the lock level to `LockX`.
    ///     let (guard, mut locked) = locked.lock_with_and::<LockX, _>(|c| c.right());
    ///     // We can get back a `Locked` for `StateA` at the new lock level.
    ///     let locked: Locked<&StateA, LockX> = locked.cast_with(|c| c.left());
    /// }
    /// ```
    pub fn adopt<'a, N>(
        &'a mut self,
        n: &'a N,
    ) -> Locked<OwnedTupleWrapper<&'a T::Target, &'a N>, L> {
        let Self(t, PhantomData) = self;
        Locked(OwnedWrapper(TupleWrapper(Deref::deref(t), n)), PhantomData)
    }

    /// Casts the left reference of the [`TupleWrapper`] deref'ed by `T`.
    pub fn cast_left<'a, X, A: Deref + 'a, B: Deref + 'a, F: FnOnce(&A::Target) -> &X>(
        &'a mut self,
        f: F,
    ) -> Locked<OwnedTupleWrapper<&X, &B::Target>, L>
    where
        T: Deref<Target = TupleWrapper<A, B>>,
    {
        let Self(t, PhantomData) = self;
        Locked(Deref::deref(t).cast_left(f), PhantomData)
    }

    /// Casts the right reference of the [`TupleWrapper`] deref'ed by `T`.
    pub fn cast_right<'a, X, A: Deref + 'a, B: Deref + 'a, F: FnOnce(&B::Target) -> &X>(
        &'a mut self,
        f: F,
    ) -> Locked<OwnedTupleWrapper<&A::Target, &X>, L>
    where
        T: Deref<Target = TupleWrapper<A, B>>,
    {
        let Self(t, PhantomData) = self;
        Locked(Deref::deref(t).cast_right(f), PhantomData)
    }
}

/// An owned wrapper for `T` that implements [`Deref`].
pub struct OwnedWrapper<T>(T);

impl<T> Deref for OwnedWrapper<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        let Self(t) = self;
        t
    }
}

/// A convenient alias for a [`TupleWrapper`] inside an [`OwnedWrapper`].
pub type OwnedTupleWrapper<A, B> = OwnedWrapper<TupleWrapper<A, B>>;

/// A wrapper for tuples to support implementing [`Locked::adopt`].
pub struct TupleWrapper<A, B>(A, B);

impl<A, B> TupleWrapper<A, B>
where
    A: Deref,
    B: Deref,
{
    pub fn left(&self) -> &A::Target {
        let Self(a, _) = self;
        a.deref()
    }

    pub fn right(&self) -> &B::Target {
        let Self(_, b) = self;
        b.deref()
    }

    pub fn both(&self) -> (&A::Target, &B::Target) {
        let Self(a, b) = self;
        (a.deref(), b.deref())
    }

    pub fn cast_left<X, F: FnOnce(&A::Target) -> &X>(
        &self,
        f: F,
    ) -> OwnedTupleWrapper<&X, &B::Target> {
        let Self(a, b) = self;
        OwnedWrapper(TupleWrapper(f(Deref::deref(a)), Deref::deref(b)))
    }

    pub fn cast_right<X, F: FnOnce(&B::Target) -> &X>(
        &self,
        f: F,
    ) -> OwnedTupleWrapper<&A::Target, &X> {
        let Self(a, b) = self;
        OwnedWrapper(TupleWrapper(Deref::deref(a), f(Deref::deref(b))))
    }
}

#[cfg(test)]
mod test {
    use std::{
        ops::Deref,
        sync::{Mutex, MutexGuard},
    };

    mod lock_levels {
        //! Lock ordering tree:
        //! A -> B -> {C, D}

        extern crate self as lock_order;

        use crate::{impl_lock_after, relation::LockAfter, Unlocked};

        pub enum A {}
        pub enum B {}
        pub enum C {}
        pub enum D {}
        pub enum E {}

        impl LockAfter<Unlocked> for A {}
        impl_lock_after!(A => B);
        impl_lock_after!(B => C);
        impl_lock_after!(B => D);
        impl_lock_after!(D => E);
    }

    use crate::{
        lock::{LockFor, UnlockedAccess},
        Locked,
    };
    use lock_levels::{A, B, C, D, E};

    /// Data type with multiple locked fields.
    #[derive(Default)]
    struct Data {
        a: Mutex<u8>,
        b: Mutex<u16>,
        c: Mutex<u64>,
        d: Mutex<u128>,
        e: Vec<Mutex<usize>>,
        u: usize,
    }

    impl LockFor<A> for Data {
        type Data = u8;
        type Guard<'l> = MutexGuard<'l, u8>;
        fn lock(&self) -> Self::Guard<'_> {
            self.a.lock().unwrap()
        }
    }

    impl LockFor<B> for Data {
        type Data = u16;
        type Guard<'l> = MutexGuard<'l, u16>;
        fn lock(&self) -> Self::Guard<'_> {
            self.b.lock().unwrap()
        }
    }

    impl LockFor<C> for Data {
        type Data = u64;
        type Guard<'l> = MutexGuard<'l, u64>;
        fn lock(&self) -> Self::Guard<'_> {
            self.c.lock().unwrap()
        }
    }

    impl LockFor<D> for Data {
        type Data = u128;
        type Guard<'l> = MutexGuard<'l, u128>;
        fn lock(&self) -> Self::Guard<'_> {
            self.d.lock().unwrap()
        }
    }

    impl LockFor<E> for Mutex<usize> {
        type Data = usize;
        type Guard<'l> = MutexGuard<'l, usize>;
        fn lock(&self) -> Self::Guard<'_> {
            self.lock().unwrap()
        }
    }

    enum UnlockedUsize {}
    enum UnlockedELen {}

    impl UnlockedAccess<UnlockedUsize> for Data {
        type Data = usize;
        type Guard<'l> = &'l usize where Self: 'l;

        fn access(&self) -> Self::Guard<'_> {
            &self.u
        }
    }

    struct DerefWrapper<T>(T);

    impl<T> Deref for DerefWrapper<T> {
        type Target = T;
        fn deref(&self) -> &Self::Target {
            &self.0
        }
    }

    impl UnlockedAccess<UnlockedELen> for Data {
        type Data = usize;
        type Guard<'l> = DerefWrapper<usize>;

        fn access(&self) -> Self::Guard<'_> {
            DerefWrapper(self.e.len())
        }
    }

    #[test]
    fn lock_a_then_c() {
        let data = Data::default();

        let mut w = Locked::new(&data);
        let (_a, mut wa) = w.lock_and::<A>();
        let (_c, _wc) = wa.lock_and::<C>();
        // This won't compile!
        // let _b = _wc.lock::<B>();
    }

    #[test]
    fn unlocked_access_does_not_prevent_locking() {
        let data = Data { a: Mutex::new(15), u: 34, ..Data::default() };

        let mut locked = Locked::new(&data);
        let u = locked.unlocked_access::<UnlockedUsize>();

        // Prove that `u` does not prevent locked state from being accessed.
        let a = locked.lock::<A>();
        assert_eq!(u, &34);
        assert_eq!(&*a, &15);
    }

    #[test]
    fn unlocked_access_with_does_not_prevent_locking() {
        let data = Data { a: Mutex::new(15), u: 34, ..Data::default() };
        let data = (data,);

        let mut locked = Locked::new(&data);
        let u = locked.unlocked_access_with::<UnlockedUsize, _>(|(data,)| data);

        // Prove that `u` does not prevent locked state from being accessed.
        let a = locked.lock_with::<A, _>(|(data,)| data);
        assert_eq!(u, &34);
        assert_eq!(&*a, &15);
    }

    /// Demonstrate how [`Locked::cast_with`] can be used to index into a `Vec`.
    #[test]
    fn cast_with_for_indexing_into_sub_field_state() {
        let data = Data { e: (0..10).map(Mutex::new).collect(), ..Data::default() };

        let mut locked = Locked::new(&data);
        for i in 0..*locked.unlocked_access::<UnlockedELen>() {
            // Use cast_with to select an individual lock from the list.
            let mut locked_element = locked.cast_with(|data| &data.e[i]);
            let mut item = locked_element.lock::<E>();

            assert_eq!(*item, i);
            *item = i + 1;
        }
    }

    #[test]
    fn adopt() {
        let data_left = Data { a: Mutex::new(55), b: Mutex::new(11), ..Data::default() };
        let mut locked = Locked::new(&data_left);
        let data_right = Data { a: Mutex::new(66), b: Mutex::new(22), ..Data::default() };
        let mut locked = locked.adopt(&data_right);

        let (guard_left, mut locked) = locked.lock_with_and::<A, Data>(|t| t.left());
        let guard_right = locked.lock_with::<B, Data>(|t| t.right());
        assert_eq!(*guard_left, 55);
        assert_eq!(*guard_right, 22);
    }
}