async_lock/rwlock.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
use std::cell::UnsafeCell;
use std::fmt;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::process;
use std::sync::atomic::{AtomicUsize, Ordering};
use event_listener::Event;
use crate::{Mutex, MutexGuard};
const WRITER_BIT: usize = 1;
const ONE_READER: usize = 2;
/// An async reader-writer lock.
///
/// This type of lock allows multiple readers or one writer at any point in time.
///
/// The locking strategy is write-preferring, which means writers are never starved.
/// Releasing a write lock wakes the next blocked reader and the next blocked writer.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::RwLock;
///
/// let lock = RwLock::new(5);
///
/// // Multiple read locks can be held at a time.
/// let r1 = lock.read().await;
/// let r2 = lock.read().await;
/// assert_eq!(*r1, 5);
/// assert_eq!(*r2, 5);
/// drop((r1, r2));
///
/// // Only one write lock can be held at a time.
/// let mut w = lock.write().await;
/// *w += 1;
/// assert_eq!(*w, 6);
/// # })
/// ```
pub struct RwLock<T: ?Sized> {
/// Acquired by the writer.
mutex: Mutex<()>,
/// Event triggered when the last reader is dropped.
no_readers: Event,
/// Event triggered when the writer is dropped.
no_writer: Event,
/// Current state of the lock.
///
/// The least significant bit (`WRITER_BIT`) is set to 1 when a writer is holding the lock or
/// trying to acquire it.
///
/// The upper bits contain the number of currently active readers. Each active reader
/// increments the state by `ONE_READER`.
state: AtomicUsize,
/// The inner value.
value: UnsafeCell<T>,
}
unsafe impl<T: Send + ?Sized> Send for RwLock<T> {}
unsafe impl<T: Send + Sync + ?Sized> Sync for RwLock<T> {}
impl<T> RwLock<T> {
/// Creates a new reader-writer lock.
///
/// # Examples
///
/// ```
/// use async_lock::RwLock;
///
/// let lock = RwLock::new(0);
/// ```
pub const fn new(t: T) -> RwLock<T> {
RwLock {
mutex: Mutex::new(()),
no_readers: Event::new(),
no_writer: Event::new(),
state: AtomicUsize::new(0),
value: UnsafeCell::new(t),
}
}
/// Unwraps the lock and returns the inner value.
///
/// # Examples
///
/// ```
/// use async_lock::RwLock;
///
/// let lock = RwLock::new(5);
/// assert_eq!(lock.into_inner(), 5);
/// ```
pub fn into_inner(self) -> T {
self.value.into_inner()
}
}
impl<T: ?Sized> RwLock<T> {
/// Attempts to acquire a read lock.
///
/// If a read lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
/// guard is returned that releases the lock when dropped.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::RwLock;
///
/// let lock = RwLock::new(1);
///
/// let reader = lock.read().await;
/// assert_eq!(*reader, 1);
///
/// assert!(lock.try_read().is_some());
/// # })
/// ```
pub fn try_read(&self) -> Option<RwLockReadGuard<'_, T>> {
let mut state = self.state.load(Ordering::Acquire);
loop {
// If there's a writer holding the lock or attempting to acquire it, we cannot acquire
// a read lock here.
if state & WRITER_BIT != 0 {
return None;
}
// Make sure the number of readers doesn't overflow.
if state > std::isize::MAX as usize {
process::abort();
}
// Increment the number of readers.
match self.state.compare_exchange(
state,
state + ONE_READER,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => return Some(RwLockReadGuard(self)),
Err(s) => state = s,
}
}
}
/// Acquires a read lock.
///
/// Returns a guard that releases the lock when dropped.
///
/// Note that attempts to acquire a read lock will block if there are also concurrent attempts
/// to acquire a write lock.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::RwLock;
///
/// let lock = RwLock::new(1);
///
/// let reader = lock.read().await;
/// assert_eq!(*reader, 1);
///
/// assert!(lock.try_read().is_some());
/// # })
/// ```
pub async fn read(&self) -> RwLockReadGuard<'_, T> {
let mut state = self.state.load(Ordering::Acquire);
loop {
if state & WRITER_BIT == 0 {
// Make sure the number of readers doesn't overflow.
if state > std::isize::MAX as usize {
process::abort();
}
// If nobody is holding a write lock or attempting to acquire it, increment the
// number of readers.
match self.state.compare_exchange(
state,
state + ONE_READER,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => return RwLockReadGuard(self),
Err(s) => state = s,
}
} else {
// Start listening for "no writer" events.
let listener = self.no_writer.listen();
// Check again if there's a writer.
if self.state.load(Ordering::SeqCst) & WRITER_BIT != 0 {
// Wait until the writer is dropped.
listener.await;
// Notify the next reader waiting in line.
self.no_writer.notify(1);
}
// Reload the state.
state = self.state.load(Ordering::Acquire);
}
}
}
/// Attempts to acquire a read lock with the possiblity to upgrade to a write lock.
///
/// If a read lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
/// guard is returned that releases the lock when dropped.
///
/// Upgradable read lock reserves the right to be upgraded to a write lock, which means there
/// can be at most one upgradable read lock at a time.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{RwLock, RwLockUpgradableReadGuard};
///
/// let lock = RwLock::new(1);
///
/// let reader = lock.upgradable_read().await;
/// assert_eq!(*reader, 1);
/// assert_eq!(*lock.try_read().unwrap(), 1);
///
/// let mut writer = RwLockUpgradableReadGuard::upgrade(reader).await;
/// *writer = 2;
/// # })
/// ```
pub fn try_upgradable_read(&self) -> Option<RwLockUpgradableReadGuard<'_, T>> {
// First try grabbing the mutex.
let lock = self.mutex.try_lock()?;
let mut state = self.state.load(Ordering::Acquire);
// Make sure the number of readers doesn't overflow.
if state > std::isize::MAX as usize {
process::abort();
}
// Increment the number of readers.
loop {
match self.state.compare_exchange(
state,
state + ONE_READER,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
return Some(RwLockUpgradableReadGuard {
reader: RwLockReadGuard(self),
reserved: lock,
})
}
Err(s) => state = s,
}
}
}
/// Attempts to acquire a read lock with the possiblity to upgrade to a write lock.
///
/// Returns a guard that releases the lock when dropped.
///
/// Upgradable read lock reserves the right to be upgraded to a write lock, which means there
/// can be at most one upgradable read lock at a time.
///
/// Note that attempts to acquire an upgradable read lock will block if there are concurrent
/// attempts to acquire another upgradable read lock or a write lock.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{RwLock, RwLockUpgradableReadGuard};
///
/// let lock = RwLock::new(1);
///
/// let reader = lock.upgradable_read().await;
/// assert_eq!(*reader, 1);
/// assert_eq!(*lock.try_read().unwrap(), 1);
///
/// let mut writer = RwLockUpgradableReadGuard::upgrade(reader).await;
/// *writer = 2;
/// # })
/// ```
pub async fn upgradable_read(&self) -> RwLockUpgradableReadGuard<'_, T> {
// First grab the mutex.
let lock = self.mutex.lock().await;
let mut state = self.state.load(Ordering::Acquire);
// Make sure the number of readers doesn't overflow.
if state > std::isize::MAX as usize {
process::abort();
}
// Increment the number of readers.
loop {
match self.state.compare_exchange(
state,
state + ONE_READER,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
return RwLockUpgradableReadGuard {
reader: RwLockReadGuard(self),
reserved: lock,
}
}
Err(s) => state = s,
}
}
}
/// Attempts to acquire a write lock.
///
/// If a write lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
/// guard is returned that releases the lock when dropped.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::RwLock;
///
/// let lock = RwLock::new(1);
///
/// assert!(lock.try_write().is_some());
/// let reader = lock.read().await;
/// assert!(lock.try_write().is_none());
/// # })
/// ```
pub fn try_write(&self) -> Option<RwLockWriteGuard<'_, T>> {
// First try grabbing the mutex.
let lock = self.mutex.try_lock()?;
// If there are no readers, grab the write lock.
if self
.state
.compare_exchange(0, WRITER_BIT, Ordering::AcqRel, Ordering::Acquire)
.is_ok()
{
Some(RwLockWriteGuard {
writer: RwLockWriteGuardInner(self),
reserved: lock,
})
} else {
None
}
}
/// Acquires a write lock.
///
/// Returns a guard that releases the lock when dropped.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::RwLock;
///
/// let lock = RwLock::new(1);
///
/// let writer = lock.write().await;
/// assert!(lock.try_read().is_none());
/// # })
/// ```
pub async fn write(&self) -> RwLockWriteGuard<'_, T> {
// First grab the mutex.
let lock = self.mutex.lock().await;
// Set `WRITER_BIT` and create a guard that unsets it in case this future is canceled.
self.state.fetch_or(WRITER_BIT, Ordering::SeqCst);
let guard = RwLockWriteGuard {
writer: RwLockWriteGuardInner(self),
reserved: lock,
};
// If there are readers, we need to wait for them to finish.
while self.state.load(Ordering::SeqCst) != WRITER_BIT {
// Start listening for "no readers" events.
let listener = self.no_readers.listen();
// Check again if there are readers.
if self.state.load(Ordering::Acquire) != WRITER_BIT {
// Wait for the readers to finish.
listener.await;
}
}
guard
}
/// Returns a mutable reference to the inner value.
///
/// Since this call borrows the lock mutably, no actual locking takes place. The mutable borrow
/// statically guarantees no locks exist.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::RwLock;
///
/// let mut lock = RwLock::new(1);
///
/// *lock.get_mut() = 2;
/// assert_eq!(*lock.read().await, 2);
/// # })
/// ```
pub fn get_mut(&mut self) -> &mut T {
unsafe { &mut *self.value.get() }
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for RwLock<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct Locked;
impl fmt::Debug for Locked {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
match self.try_read() {
None => f.debug_struct("RwLock").field("value", &Locked).finish(),
Some(guard) => f.debug_struct("RwLock").field("value", &&*guard).finish(),
}
}
}
impl<T> From<T> for RwLock<T> {
fn from(val: T) -> RwLock<T> {
RwLock::new(val)
}
}
impl<T: Default + ?Sized> Default for RwLock<T> {
fn default() -> RwLock<T> {
RwLock::new(Default::default())
}
}
/// A guard that releases the read lock when dropped.
pub struct RwLockReadGuard<'a, T: ?Sized>(&'a RwLock<T>);
unsafe impl<T: Sync + ?Sized> Send for RwLockReadGuard<'_, T> {}
unsafe impl<T: Sync + ?Sized> Sync for RwLockReadGuard<'_, T> {}
impl<T: ?Sized> Drop for RwLockReadGuard<'_, T> {
fn drop(&mut self) {
// Decrement the number of readers.
if self.0.state.fetch_sub(ONE_READER, Ordering::SeqCst) & !WRITER_BIT == ONE_READER {
// If this was the last reader, trigger the "no readers" event.
self.0.no_readers.notify(1);
}
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for RwLockReadGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for RwLockReadGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: ?Sized> Deref for RwLockReadGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.0.value.get() }
}
}
/// A guard that releases the upgradable read lock when dropped.
pub struct RwLockUpgradableReadGuard<'a, T: ?Sized> {
reader: RwLockReadGuard<'a, T>,
reserved: MutexGuard<'a, ()>,
}
unsafe impl<T: Send + Sync + ?Sized> Send for RwLockUpgradableReadGuard<'_, T> {}
unsafe impl<T: Sync + ?Sized> Sync for RwLockUpgradableReadGuard<'_, T> {}
impl<'a, T: ?Sized> RwLockUpgradableReadGuard<'a, T> {
/// Converts this guard into a writer guard.
fn into_writer(self) -> RwLockWriteGuard<'a, T> {
let writer = RwLockWriteGuard {
writer: RwLockWriteGuardInner(self.reader.0),
reserved: self.reserved,
};
mem::forget(self.reader);
writer
}
/// Downgrades into a regular reader guard.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{RwLock, RwLockUpgradableReadGuard};
///
/// let lock = RwLock::new(1);
///
/// let reader = lock.upgradable_read().await;
/// assert_eq!(*reader, 1);
///
/// assert!(lock.try_upgradable_read().is_none());
///
/// let reader = RwLockUpgradableReadGuard::downgrade(reader);
///
/// assert!(lock.try_upgradable_read().is_some());
/// # })
/// ```
pub fn downgrade(guard: Self) -> RwLockReadGuard<'a, T> {
guard.reader
}
/// Attempts to upgrade into a write lock.
///
/// If a write lock could not be acquired at this time, then [`None`] is returned. Otherwise,
/// an upgraded guard is returned that releases the write lock when dropped.
///
/// This function can only fail if there are other active read locks.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{RwLock, RwLockUpgradableReadGuard};
///
/// let lock = RwLock::new(1);
///
/// let reader = lock.upgradable_read().await;
/// assert_eq!(*reader, 1);
///
/// let reader2 = lock.read().await;
/// let reader = RwLockUpgradableReadGuard::try_upgrade(reader).unwrap_err();
///
/// drop(reader2);
/// let writer = RwLockUpgradableReadGuard::try_upgrade(reader).unwrap();
/// # })
/// ```
pub fn try_upgrade(guard: Self) -> Result<RwLockWriteGuard<'a, T>, Self> {
// If there are no readers, grab the write lock.
if guard
.reader
.0
.state
.compare_exchange(ONE_READER, WRITER_BIT, Ordering::AcqRel, Ordering::Acquire)
.is_ok()
{
Ok(guard.into_writer())
} else {
Err(guard)
}
}
/// Upgrades into a write lock.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{RwLock, RwLockUpgradableReadGuard};
///
/// let lock = RwLock::new(1);
///
/// let reader = lock.upgradable_read().await;
/// assert_eq!(*reader, 1);
///
/// let mut writer = RwLockUpgradableReadGuard::upgrade(reader).await;
/// *writer = 2;
/// # })
/// ```
pub async fn upgrade(guard: Self) -> RwLockWriteGuard<'a, T> {
// Set `WRITER_BIT` and decrement the number of readers at the same time.
guard
.reader
.0
.state
.fetch_sub(ONE_READER - WRITER_BIT, Ordering::SeqCst);
// Convert into a write guard that unsets `WRITER_BIT` in case this future is canceled.
let guard = guard.into_writer();
// If there are readers, we need to wait for them to finish.
while guard.writer.0.state.load(Ordering::SeqCst) != WRITER_BIT {
// Start listening for "no readers" events.
let listener = guard.writer.0.no_readers.listen();
// Check again if there are readers.
if guard.writer.0.state.load(Ordering::Acquire) != WRITER_BIT {
// Wait for the readers to finish.
listener.await;
}
}
guard
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for RwLockUpgradableReadGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for RwLockUpgradableReadGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: ?Sized> Deref for RwLockUpgradableReadGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.reader.0.value.get() }
}
}
struct RwLockWriteGuardInner<'a, T: ?Sized>(&'a RwLock<T>);
impl<T: ?Sized> Drop for RwLockWriteGuardInner<'_, T> {
fn drop(&mut self) {
// Unset `WRITER_BIT`.
self.0.state.fetch_and(!WRITER_BIT, Ordering::SeqCst);
// Trigger the "no writer" event.
self.0.no_writer.notify(1);
}
}
/// A guard that releases the write lock when dropped.
pub struct RwLockWriteGuard<'a, T: ?Sized> {
writer: RwLockWriteGuardInner<'a, T>,
reserved: MutexGuard<'a, ()>,
}
unsafe impl<T: Send + ?Sized> Send for RwLockWriteGuard<'_, T> {}
unsafe impl<T: Sync + ?Sized> Sync for RwLockWriteGuard<'_, T> {}
impl<'a, T: ?Sized> RwLockWriteGuard<'a, T> {
/// Downgrades into a regular reader guard.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{RwLock, RwLockWriteGuard};
///
/// let lock = RwLock::new(1);
///
/// let mut writer = lock.write().await;
/// *writer += 1;
///
/// assert!(lock.try_read().is_none());
///
/// let reader = RwLockWriteGuard::downgrade(writer);
/// assert_eq!(*reader, 2);
///
/// assert!(lock.try_read().is_some());
/// # })
/// ```
pub fn downgrade(guard: Self) -> RwLockReadGuard<'a, T> {
// Atomically downgrade state.
guard
.writer
.0
.state
.fetch_add(ONE_READER - WRITER_BIT, Ordering::SeqCst);
// Trigger the "no writer" event.
guard.writer.0.no_writer.notify(1);
// Convert into a read guard and return.
let new_guard = RwLockReadGuard(guard.writer.0);
mem::forget(guard.writer); // `RwLockWriteGuardInner::drop()` should not be called!
new_guard
}
/// Downgrades into an upgradable reader guard.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard};
///
/// let lock = RwLock::new(1);
///
/// let mut writer = lock.write().await;
/// *writer += 1;
///
/// assert!(lock.try_read().is_none());
///
/// let reader = RwLockWriteGuard::downgrade_to_upgradable(writer);
/// assert_eq!(*reader, 2);
///
/// assert!(lock.try_write().is_none());
/// assert!(lock.try_read().is_some());
///
/// assert!(RwLockUpgradableReadGuard::try_upgrade(reader).is_ok())
/// # })
/// ```
pub fn downgrade_to_upgradable(guard: Self) -> RwLockUpgradableReadGuard<'a, T> {
// Atomically downgrade state.
guard
.writer
.0
.state
.fetch_add(ONE_READER - WRITER_BIT, Ordering::SeqCst);
// Convert into an upgradable read guard and return.
let new_guard = RwLockUpgradableReadGuard {
reader: RwLockReadGuard(guard.writer.0),
reserved: guard.reserved,
};
mem::forget(guard.writer); // `RwLockWriteGuardInner::drop()` should not be called!
new_guard
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for RwLockWriteGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for RwLockWriteGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: ?Sized> Deref for RwLockWriteGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.writer.0.value.get() }
}
}
impl<T: ?Sized> DerefMut for RwLockWriteGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.writer.0.value.get() }
}
}