netstack3_ip/multicast_forwarding/
packet_queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Declares types and functionality related to queued multicast packets.

use alloc::collections::{btree_map, BTreeMap};
use alloc::vec::Vec;
use arrayvec::ArrayVec;
use core::time::Duration;
use derivative::Derivative;
use net_types::ip::{Ip, IpVersionMarker};
use netstack3_base::{
    CoreTimerContext, FrameDestination, Inspectable, Inspector, Instant as _,
    StrongDeviceIdentifier as _, WeakDeviceIdentifier,
};
use packet::{Buf, ParseBufferMut};
use packet_formats::ip::IpPacket;
use zerocopy::SplitByteSlice;

use crate::internal::multicast_forwarding::{
    MulticastForwardingBindingsContext, MulticastForwardingBindingsTypes,
    MulticastForwardingTimerId,
};
use crate::multicast_forwarding::MulticastRouteKey;
use crate::IpLayerIpExt;

/// The number of packets that the stack is willing to queue for a given
/// [`MulticastRouteKey`] while waiting for an applicable route to be installed.
///
/// This value is consistent with the defaults on both Netstack2 and Linux.
pub(crate) const PACKET_QUEUE_LEN: usize = 3;

/// The amount of time the stack is willing to queue a packet while waiting
/// for an applicable route to be installed.
///
/// This value is consistent with the defaults on both Netstack2 and Linux.
const PENDING_ROUTE_EXPIRATION: Duration = Duration::from_secs(10);

/// The minimum amount of time after a garbage-collection run across the
/// [`MulticastForwardingPendingPackets`] table that the stack will wait before
/// performing another garbage-collection.
///
/// This value is consistent with the defaults on both Netstack2 and Linux.
const PENDING_ROUTE_GC_PERIOD: Duration = Duration::from_secs(10);

/// A table of pending multicast packets that have not yet been forwarded.
///
/// Packets are placed in this table when, during forwarding, there is no route
/// in the [`MulticastRouteTable`] via which to forward them. If/when such a
/// route is installed, the packets stored here can be forwarded accordingly.
#[derive(Derivative)]
#[derivative(Debug(bound = ""))]
pub struct MulticastForwardingPendingPackets<
    I: IpLayerIpExt,
    D: WeakDeviceIdentifier,
    BT: MulticastForwardingBindingsTypes,
> {
    table: BTreeMap<MulticastRouteKey<I>, PacketQueue<I, D, BT>>,
    /// Periodically triggers invocations of [`Self::run_garbage_collection`].
    ///
    /// All interactions with the `gc_timer` must uphold the invariant that the
    /// timer is not scheduled if [`Self::table`] is empty.
    ///
    /// Note: When [`Self`] is held by [`MulticastForwardingEnabledState`], it
    /// is lock protected, which prevents method calls on it from racing. E.g.
    /// no overlapping calls to [`Self::try_queue_packet`], [`Self::remove`],
    /// or [`Self::run_garbage_collection`].
    gc_timer: BT::Timer,
}

impl<
        I: IpLayerIpExt,
        D: WeakDeviceIdentifier,
        BC: MulticastForwardingBindingsContext<I, D::Strong>,
    > MulticastForwardingPendingPackets<I, D, BC>
{
    pub(crate) fn new<CC>(bindings_ctx: &mut BC) -> Self
    where
        CC: CoreTimerContext<MulticastForwardingTimerId<I>, BC>,
    {
        Self {
            table: Default::default(),
            gc_timer: CC::new_timer(
                bindings_ctx,
                MulticastForwardingTimerId::PendingPacketsGc(IpVersionMarker::<I>::new()),
            ),
        }
    }

    /// Attempt to queue the packet in the pending_table.
    ///
    /// If the table becomes newly occupied, the GC timer is scheduled.
    pub(crate) fn try_queue_packet<B>(
        &mut self,
        bindings_ctx: &mut BC,
        key: MulticastRouteKey<I>,
        packet: &I::Packet<B>,
        dev: &D::Strong,
        frame_dst: Option<FrameDestination>,
    ) -> QueuePacketOutcome
    where
        B: SplitByteSlice,
    {
        let was_empty = self.table.is_empty();
        let outcome = match self.table.entry(key) {
            btree_map::Entry::Vacant(entry) => {
                let queue = entry.insert(PacketQueue::new(bindings_ctx));
                queue
                    .try_push(|| QueuedPacket::new(dev, packet, frame_dst))
                    .expect("newly instantiated queue must have capacity");
                QueuePacketOutcome::QueuedInNewQueue
            }
            btree_map::Entry::Occupied(mut entry) => {
                match entry.get_mut().try_push(|| QueuedPacket::new(dev, packet, frame_dst)) {
                    Ok(()) => QueuePacketOutcome::QueuedInExistingQueue,
                    Err(PacketQueueFullError) => QueuePacketOutcome::ExistingQueueFull,
                }
            }
        };

        // If the table is newly non-empty, schedule the GC. The timer must not
        // already be scheduled (given the invariants on `gc_timer`).
        if was_empty && !self.table.is_empty() {
            assert!(bindings_ctx
                .schedule_timer(PENDING_ROUTE_GC_PERIOD, &mut self.gc_timer)
                .is_none());
        }

        outcome
    }

    #[cfg(any(debug_assertions, test))]
    pub(crate) fn contains(&self, key: &MulticastRouteKey<I>) -> bool {
        self.table.contains_key(key)
    }

    /// Remove the key from the pending table, returning its queue of packets.
    ///
    /// If the table becomes newly empty, the GC timer is canceled.
    pub(crate) fn remove(
        &mut self,
        key: &MulticastRouteKey<I>,
        bindings_ctx: &mut BC,
    ) -> Option<PacketQueue<I, D, BC>> {
        let was_empty = self.table.is_empty();
        let queue = self.table.remove(key);

        // If the table is newly empty, cancel the GC. Note, we don't assert on
        // the previous state of the timer, because it's possible cancelation
        // will race with the timer firing.
        if !was_empty && self.table.is_empty() {
            let _: Option<BC::Instant> = bindings_ctx.cancel_timer(&mut self.gc_timer);
        }

        queue
    }

    /// Removes expired [`PacketQueue`] entries from [`Self`].
    ///
    /// Returns the number of packets removed as a result.
    pub(crate) fn run_garbage_collection(&mut self, bindings_ctx: &mut BC) -> u64 {
        let now = bindings_ctx.now();
        let mut removed_count = 0u64;
        self.table.retain(|_key, packet_queue| {
            if packet_queue.expires_at > now {
                true
            } else {
                // NB: "as" conversion is safe because queue_len has a maximum
                // value of `PACKET_QUEUE_LEN`, which fits in a u64.
                removed_count += packet_queue.queue.len() as u64;
                false
            }
        });

        // If the table is still not empty, reschedule the GC. Note that we
        // don't assert on the previous state of the timer, because it's
        // possible that starting GC raced with a new timer being scheduled.
        if !self.table.is_empty() {
            let _: Option<BC::Instant> =
                bindings_ctx.schedule_timer(PENDING_ROUTE_GC_PERIOD, &mut self.gc_timer);
        }

        removed_count
    }
}

impl<I: IpLayerIpExt, D: WeakDeviceIdentifier, BT: MulticastForwardingBindingsTypes> Inspectable
    for MulticastForwardingPendingPackets<I, D, BT>
{
    fn record<II: Inspector>(&self, inspector: &mut II) {
        let MulticastForwardingPendingPackets { table, gc_timer: _ } = self;
        // NB: Don't record all routes, as the size of the table may be quite
        // large, and its contents are dictated by network traffic.
        inspector.record_usize("NumRoutes", table.len())
    }
}

/// Possible outcomes from calling [`MulticastForwardingPendingPackets::try_queue_packet`].
#[derive(Debug, PartialEq)]
pub(crate) enum QueuePacketOutcome {
    /// The packet was successfully queued. There was no existing
    /// [`PacketQueue`] for the given route key, so a new one was instantiated.
    QueuedInNewQueue,
    /// The packet was successfully queued. It was added onto an existing
    /// [`PacketQueue`] for the given route key.
    QueuedInExistingQueue,
    /// The packet was not queued. There was an existing [`PacketQueue`] for the
    /// given route key, but that queue was full.
    ExistingQueueFull,
}

/// A queue of multicast packets that are pending the installation of a route.
#[derive(Derivative)]
#[derivative(Debug(bound = ""))]
pub struct PacketQueue<I: Ip, D: WeakDeviceIdentifier, BT: MulticastForwardingBindingsTypes> {
    queue: ArrayVec<QueuedPacket<I, D>, PACKET_QUEUE_LEN>,
    /// The time after which the PacketQueue is allowed to be garbage collected.
    expires_at: BT::Instant,
}

impl<
        I: IpLayerIpExt,
        D: WeakDeviceIdentifier,
        BC: MulticastForwardingBindingsContext<I, D::Strong>,
    > PacketQueue<I, D, BC>
{
    fn new(bindings_ctx: &mut BC) -> Self {
        Self {
            queue: Default::default(),
            expires_at: bindings_ctx.now().panicking_add(PENDING_ROUTE_EXPIRATION),
        }
    }

    /// Try to push a packet into the queue, returning an error when full.
    ///
    /// Note: the packet is taken as a builder closure, because constructing the
    /// packet is an expensive operation (requiring a `Vec` allocation). By
    /// taking a closure we can defer construction until we're certain the queue
    /// has the free space to hold it.
    fn try_push(
        &mut self,
        packet_builder: impl FnOnce() -> QueuedPacket<I, D>,
    ) -> Result<(), PacketQueueFullError> {
        if self.queue.is_full() {
            return Err(PacketQueueFullError);
        }
        self.queue.push(packet_builder());
        Ok(())
    }
}

#[derive(Debug)]
struct PacketQueueFullError;

impl<I: Ip, D: WeakDeviceIdentifier, BT: MulticastForwardingBindingsTypes> IntoIterator
    for PacketQueue<I, D, BT>
{
    type Item = QueuedPacket<I, D>;
    type IntoIter = <ArrayVec<QueuedPacket<I, D>, PACKET_QUEUE_LEN> as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        let Self { queue, expires_at: _ } = self;
        queue.into_iter()
    }
}

/// An individual multicast packet that's queued.
#[derive(Debug, PartialEq)]
pub struct QueuedPacket<I: Ip, D: WeakDeviceIdentifier> {
    /// The device on which the packet arrived.
    pub(crate) device: D,
    /// The packet.
    pub(crate) packet: ValidIpPacketBuf<I>,
    /// The link layer (L2) destination that the packet was sent to, or `None`
    /// if the packet arrived above the link layer (e.g. a Pure IP device).
    pub(crate) frame_dst: Option<FrameDestination>,
}

impl<I: IpLayerIpExt, D: WeakDeviceIdentifier> QueuedPacket<I, D> {
    fn new<B: SplitByteSlice>(
        device: &D::Strong,
        packet: &I::Packet<B>,
        frame_dst: Option<FrameDestination>,
    ) -> Self {
        QueuedPacket {
            device: device.downgrade(),
            packet: ValidIpPacketBuf::new(packet),
            frame_dst,
        }
    }
}

/// A buffer containing a known-to-be valid IP packet.
///
/// The only constructor of this type takes an `I::Packet`, which is already
/// parsed & validated.
#[derive(Clone, Debug, PartialEq)]
pub(crate) struct ValidIpPacketBuf<I: Ip> {
    buffer: Buf<Vec<u8>>,
    _version_marker: IpVersionMarker<I>,
}

impl<I: IpLayerIpExt> ValidIpPacketBuf<I> {
    fn new<B: SplitByteSlice>(packet: &I::Packet<B>) -> Self {
        Self { buffer: Buf::new(packet.to_vec(), ..), _version_marker: Default::default() }
    }

    /// Parses the internal buffer into a mutable IP Packet.
    ///
    /// # Panics
    ///
    /// This function panics if called multiple times. Parsing moves the cursor
    /// in the underlying buffer from the start of the IP header to the start
    /// of the IP body.
    pub(crate) fn parse_ip_packet_mut(&mut self) -> I::Packet<&mut [u8]> {
        // NB: Safe to unwrap here because the buffer is known to be valid.
        self.buffer.parse_mut().unwrap()
    }

    pub(crate) fn into_inner(self) -> Buf<Vec<u8>> {
        let Self { buffer, _version_marker } = self;
        buffer
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use assert_matches::assert_matches;
    use ip_test_macro::ip_test;
    use netstack3_base::testutil::{
        FakeInstant, FakeTimerCtxExt, FakeWeakDeviceId, MultipleDevicesId,
    };
    use netstack3_base::{CounterContext, InstantContext, StrongDeviceIdentifier, TimerContext};
    use packet::ParseBuffer;
    use static_assertions::const_assert;
    use test_case::test_case;

    use crate::internal::multicast_forwarding;
    use crate::internal::multicast_forwarding::counters::MulticastForwardingCounters;
    use crate::internal::multicast_forwarding::testutil::{
        FakeBindingsCtx, FakeCoreCtx, TestIpExt,
    };

    #[ip_test(I)]
    #[test_case(None; "no_frame_dst")]
    #[test_case(Some(FrameDestination::Multicast); "some_frame_dst")]
    fn queue_packet<I: TestIpExt>(frame_dst: Option<FrameDestination>) {
        const DEV: MultipleDevicesId = MultipleDevicesId::A;
        let key1 = MulticastRouteKey::new(I::SRC1, I::DST1).unwrap();
        let key2 = MulticastRouteKey::new(I::SRC2, I::DST2).unwrap();
        let key3 = MulticastRouteKey::new(I::SRC1, I::DST2).unwrap();

        // NB: technically the packet's addresses only match `key1`, but for the
        // sake of this test that doesn't cause problems.
        let buf = multicast_forwarding::testutil::new_ip_packet_buf::<I>(I::SRC1, I::DST1);
        let mut buf_ref = buf.as_ref();
        let packet = buf_ref.parse::<I::Packet<_>>().expect("parse should succeed");

        let mut bindings_ctx = FakeBindingsCtx::<I, MultipleDevicesId>::default();

        let mut pending_table =
            MulticastForwardingPendingPackets::<
                I,
                <MultipleDevicesId as StrongDeviceIdentifier>::Weak,
                _,
            >::new::<FakeCoreCtx<I, MultipleDevicesId>>(&mut bindings_ctx);

        // The first packet gets a new queue.
        assert_eq!(
            pending_table.try_queue_packet(
                &mut bindings_ctx,
                key1.clone(),
                &packet,
                &DEV,
                frame_dst
            ),
            QueuePacketOutcome::QueuedInNewQueue
        );
        // The second - Nth packets uses the existing queue.
        for _ in 1..PACKET_QUEUE_LEN {
            assert_eq!(
                pending_table.try_queue_packet(
                    &mut bindings_ctx,
                    key1.clone(),
                    &packet,
                    &DEV,
                    frame_dst
                ),
                QueuePacketOutcome::QueuedInExistingQueue
            );
        }
        // The Nth +1 packet is rejected.
        assert_eq!(
            pending_table.try_queue_packet(
                &mut bindings_ctx,
                key1.clone(),
                &packet,
                &DEV,
                frame_dst
            ),
            QueuePacketOutcome::ExistingQueueFull
        );

        // A packet with a different key gets a new queue.
        assert_eq!(
            pending_table.try_queue_packet(
                &mut bindings_ctx,
                key2.clone(),
                &packet,
                &DEV,
                frame_dst
            ),
            QueuePacketOutcome::QueuedInNewQueue
        );

        // Based on the calls above, `key1` should have a full queue, `key2`
        // should have a queue with only 1 packet, and `key3` shouldn't have
        // a queue.
        let expected_packet = QueuedPacket::new(&DEV, &packet, frame_dst);
        let queue =
            pending_table.remove(&key1, &mut bindings_ctx).expect("key1 should have a queue");
        assert_eq!(queue.queue.len(), PACKET_QUEUE_LEN);
        for packet in queue.queue.as_slice() {
            assert_eq!(packet, &expected_packet);
        }

        let queue =
            pending_table.remove(&key2, &mut bindings_ctx).expect("key2 should have a queue");
        let packet = assert_matches!(&queue.queue[..], [p] => p);
        assert_eq!(packet, &expected_packet);

        assert_matches!(pending_table.remove(&key3, &mut bindings_ctx), None);
    }

    /// Helper to observe the next scheduled GC for the core_ctx pending table.
    fn next_gc_time<I: TestIpExt>(
        core_ctx: &mut FakeCoreCtx<I, MultipleDevicesId>,
        bindings_ctx: &mut FakeBindingsCtx<I, MultipleDevicesId>,
    ) -> Option<FakeInstant> {
        multicast_forwarding::testutil::with_pending_table(core_ctx, |pending_table| {
            bindings_ctx.scheduled_instant(&mut pending_table.gc_timer)
        })
    }

    /// Helper to queue packet in the core_ctx pending table.
    fn try_queue_packet<I: TestIpExt>(
        core_ctx: &mut FakeCoreCtx<I, MultipleDevicesId>,
        bindings_ctx: &mut FakeBindingsCtx<I, MultipleDevicesId>,
        key: MulticastRouteKey<I>,
        dev: &MultipleDevicesId,
        frame_dst: Option<FrameDestination>,
    ) -> QueuePacketOutcome {
        let buf =
            multicast_forwarding::testutil::new_ip_packet_buf::<I>(key.src_addr(), key.dst_addr());
        let mut buf_ref = buf.as_ref();
        let packet = buf_ref.parse::<I::Packet<_>>().expect("parse should succeed");
        multicast_forwarding::testutil::with_pending_table(core_ctx, |pending_table| {
            pending_table.try_queue_packet(bindings_ctx, key, &packet, dev, frame_dst)
        })
    }

    /// Helper to remove a packet queue in the core_ctx pending table.
    fn remove_packet_queue<I: TestIpExt>(
        core_ctx: &mut FakeCoreCtx<I, MultipleDevicesId>,
        bindings_ctx: &mut FakeBindingsCtx<I, MultipleDevicesId>,
        key: &MulticastRouteKey<I>,
    ) -> Option<
        PacketQueue<I, FakeWeakDeviceId<MultipleDevicesId>, FakeBindingsCtx<I, MultipleDevicesId>>,
    > {
        multicast_forwarding::testutil::with_pending_table(core_ctx, |pending_table| {
            pending_table.remove(key, bindings_ctx)
        })
    }

    /// Helper to trigger the GC.
    fn run_gc<I: TestIpExt>(
        core_ctx: &mut FakeCoreCtx<I, MultipleDevicesId>,
        bindings_ctx: &mut FakeBindingsCtx<I, MultipleDevicesId>,
    ) {
        assert_matches!(
            &bindings_ctx.trigger_timers_until_instant(bindings_ctx.now(), core_ctx)[..],
            [MulticastForwardingTimerId::PendingPacketsGc(_)]
        );
    }

    #[ip_test(I)]
    fn garbage_collection<I: TestIpExt>() {
        const DEV: MultipleDevicesId = MultipleDevicesId::A;
        const FRAME_DST: Option<FrameDestination> = None;
        let key1 = MulticastRouteKey::<I>::new(I::SRC1, I::DST1).unwrap();
        let key2 = MulticastRouteKey::<I>::new(I::SRC2, I::DST2).unwrap();

        let mut api = multicast_forwarding::testutil::new_api();
        assert!(api.enable());
        let (core_ctx, bindings_ctx) = api.contexts();

        // NB: As written, the test requires that
        //  1. `PENDING_ROUTE_GC_PERIOD` >= `PENDING_ROUTE_EXPIRATION`, and
        //  2. `PENDING_ROUTE_EXPIRATION > 0`.
        // If the values are ever changed such that that is not true, the test
        // will need to be re-written.
        const_assert!(PENDING_ROUTE_GC_PERIOD.checked_sub(PENDING_ROUTE_EXPIRATION).is_some());
        const_assert!(!PENDING_ROUTE_EXPIRATION.is_zero());

        // The GC shouldn't be scheduled with an empty table.
        assert!(next_gc_time(core_ctx, bindings_ctx).is_none());
        core_ctx.with_counters(|counters: &MulticastForwardingCounters<I>| {
            assert_eq!(counters.pending_table_gc.get(), 0);
            assert_eq!(counters.pending_packet_drops_gc.get(), 0);
        });

        // Queue a packet, and expect the GC to be scheduled.
        let expected_first_gc = bindings_ctx.now() + PENDING_ROUTE_GC_PERIOD;
        assert_eq!(
            try_queue_packet(core_ctx, bindings_ctx, key1.clone(), &DEV, FRAME_DST),
            QueuePacketOutcome::QueuedInNewQueue
        );
        assert_eq!(next_gc_time(core_ctx, bindings_ctx), Some(expected_first_gc));

        // Sleep until we're ready to GC, and then queue a second packet under a
        // new key. Expect that the GC timer is still scheduled for the original
        // instant.
        bindings_ctx.timers.instant.sleep(PENDING_ROUTE_GC_PERIOD);
        assert_eq!(
            try_queue_packet(core_ctx, bindings_ctx, key2.clone(), &DEV, FRAME_DST),
            QueuePacketOutcome::QueuedInNewQueue
        );
        assert_eq!(next_gc_time(core_ctx, bindings_ctx), Some(expected_first_gc));

        // Run the GC, and verify that it was rescheduled after the fact
        // (because `key2` still exists in the table).
        run_gc(core_ctx, bindings_ctx);
        let expected_second_gc = bindings_ctx.timers.instant.now() + PENDING_ROUTE_GC_PERIOD;
        assert_eq!(next_gc_time(core_ctx, bindings_ctx), Some(expected_second_gc));

        // Verify that `key1` was removed, but `key2` remains.
        core_ctx.with_counters(|counters: &MulticastForwardingCounters<I>| {
            assert_eq!(counters.pending_table_gc.get(), 1);
            assert_eq!(counters.pending_packet_drops_gc.get(), 1);
        });
        assert_matches!(remove_packet_queue(core_ctx, bindings_ctx, &key1), None);
        assert_matches!(remove_packet_queue(core_ctx, bindings_ctx, &key2), Some(_));

        // Now that we've explicitly removed `key2`, the table is empty and the
        // GC should have been canceled.
        assert!(next_gc_time(core_ctx, bindings_ctx).is_none());

        // Finally, verify that if the GC clears the table, it doesn't
        // reschedule itself.
        assert_eq!(
            try_queue_packet(core_ctx, bindings_ctx, key1.clone(), &DEV, FRAME_DST),
            QueuePacketOutcome::QueuedInNewQueue
        );
        assert_eq!(next_gc_time(core_ctx, bindings_ctx), Some(expected_second_gc));
        bindings_ctx.timers.instant.sleep(PENDING_ROUTE_GC_PERIOD);
        run_gc(core_ctx, bindings_ctx);
        core_ctx.with_counters(|counters: &MulticastForwardingCounters<I>| {
            assert_eq!(counters.pending_table_gc.get(), 2);
            assert_eq!(counters.pending_packet_drops_gc.get(), 2);
        });
        assert_matches!(remove_packet_queue(core_ctx, bindings_ctx, &key1), None);
        assert!(next_gc_time(core_ctx, bindings_ctx).is_none());
    }
}